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A SPATIALLY PERIODIC KURAMOTO-SIVASHINSKY
EQUATION AS A MODEL PROBLEM FOR INCLINED FILM

FLOW OVER WAVY BOTTOM

HANNES UECKER, ANDREAS WIERSCHEM

Abstract. The spatially periodic Kuramoto-Sivashinsky equation (pKS)

∂tu = −∂4
xu− c3∂3

xu− c2∂2
xu + 2δ∂x(cos(x)u)− ∂x(u2),

with u(t, x) ∈ R, t ≥ 0, x ∈ R, is a model problem for inclined film flow over
wavy bottoms and other spatially periodic systems with a long wave instabil-

ity. For given c2, c3 ∈ R and small δ ≥ 0 it has a one dimensional family of

spatially periodic stationary solutions us(·; c2, c3, δ, um), parameterized by the

mass um = 1
2π

R 2π
0 us(x) dx. Depending on the parameters these stationary

solutions can be linearly stable or unstable. We show that in the stable case
localized perturbations decay with a polynomial rate and in a universal non-

linear self-similar way: the limiting profile is determined by a Burgers equation

in Bloch wave space. We also discuss linearly unstable us, in which case we
approximate the pKS by a constant coefficient KS-equation. The analysis is

based on Bloch wave transform and renormalization group methods.

1. Introduction

The inclined film problem concerns the flow of a viscous liquid film down an
inclined plane, driven by gravity. This has various engineering applications, where
often the bottom plate is not flat but has a wavy profile, for instance y = δ cos(x).
Over an infinitely long flat (δ = 0) bottom the problem can be reduced in a hier-
archy of (formal) reductions to a variety of simpler equations, such as Boundary
Layer equations, Integral Boundary Layer equations (IBL), also called Shkadov
models, and KdV and Kuramoto–Sivashinsky (KS) type of equations, see [3] and
the references therein. Moreover, there exist approximation results [11] concerning
the validity of some of these simplified equations, and results on special nontrivial
solutions such as pulse trains and their stability; see [3], and [6]. Finally, for the
problem over a flat incline it is shown in [12] that in the linearly stable case localized
perturbation of the trivial (Nusselt) solution decay in a universal way to zero, with
limiting profile determined by the Burgers equation.

Over wavy bottoms the problem becomes much more complicated. For exper-
imental results we refer to [15, 1]. Analytically, first of all, the basic spatially
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periodic stationary solution Us (Nusselt solution) is not known in closed form. In
[15] an expansion of Us in the film thickness is given, and the associated critical
Reynolds number Rc is calculated, such that Us is linearly stable for R≤Rc and un-
stable for R>Rc. However, for thicker films over wavy bottoms no analytical results
are known. Therefore, simplifications of the full Navier–Stokes problem are much
desired. In [13] the problem is reduced to a two dimensional quasilinear parabolic
system with spatially periodic coefficients, the periodic Integral Boundary Layer
equation (pIBL), and stationary solutions US of the pIBL are calculated which
show good agreement with experiments. Moreover, preliminary numerical simu-
lations of the dynamic pIBL yield a variety of interesting regimes, two of which
are:

(i) self–similar decay of localized perturbations of Us to zero in the case of
linearly stable Us;

(ii) modulated pulses in the linearly unstable case.

Here we prove, for a model problem, a rigorous nonlinear stability result which
explains the behaviour in (i). Moreover, we remark on (formal) explanations for
(ii). Our model problem is an extension of the KS equation as a model problem
for inclined film flow over flat bottom. In particular, it has dynamics similar to (i),
(ii) above, see Fig. 1. In detail, our model problem is

∂tu = −∂4
xu− c3∂

3
xu− c2∂

2
xu+ 2δ∂x(cos(x)u)− ∂x(u2), (1.1)

with t ≥ 0, x ∈ R, u(t, x) ∈ R; i.e., a spatially periodic Kuramoto–Sivashinsky
equation (pKS) over the infinite line. In context with the inclined film problem,
u should be interpretated as the film height, while the parameters c2, c3, δ, have
the following meaning: c2 ∈ R corresponds to R − Rc; i.e., to the distance from
criticality, and δ models the amplitude of the bottom, thus, w.l.o.g δ ≥ 0. The
linear terms −∂4

xu−c2∂2
xumodel a long wave instability (for c2 > 0) with short wave

saturation, while −c3∂3
x models 3rd order dispersion. The nonlinearity −∂x(u2) is

the standard convective one. An important feature of the inclined film problem is
the conservation of mass; i.e., ∂t

∫
R h(t, x)−h0 dx = 0, where h is the film height

and h0 the reference film height. This also holds for (1.1): the right hand side is a
total derivative. Consequently the mass (or average film height)

um := lim
M→∞

1
2M

∫ M

−M

u(t, x) dx

can be seen as a 4th parameter. Given c2, c3, um ∈ R and small δ > 0, (1.1) has a
unique spatially 2π periodic stationary solution

us(x) = us(x; c2, δ, um) = um + δu1(x) +O(δ2)

which can be calculated by expansion in δ (see sec.2).

Remark 1.1. From the modelling point of view it appears reasonable to also
include a parameter γ for the bottom wave number; i.e., to consider

∂tu = −∂4
xu− c3∂

3
xu− c2∂

2
xu+ 2δ∂x(cos(γx)u)− ∂x(u2). (1.2)

However, rescaling v(τ, y) = αu(βτ, γy) with β = γ4 and α = γ3 yields that v
fulfills (1.1) with c3, c2, δ replaced by c̃3 = γ2c3, c̃2 = γ2c2 and δ̃ = γ3δ. Hence γ is
not independent.
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Figure 1. Numerical simulations of (1.1) with periodic bound-
ary conditions on large domains. (a) (δ, c2, c3) = (0.1,−1, 0) (sta-
ble case), x ∈ [0, 80π], initial data u0(x) = 2 for x ∈ [39π, 41π],
u0(x) = 1 else. The solution decays to us in a self–similar way
determined by the Burgers equation (1.8) below. (b) (δ, c2, c3) =
(0.1, 0.2,−1) (unstable case), x ∈ [0, 40π], initial data u(0, x)=2
for 19π ≤ x ≤ 21π and u(0, x)=1 else (full line). Modulated pulses
emerge and travel forever. The dotted line shows the solution of
the associated amplitude equation (5.3), see Appendix 5.

Moreover, the KdV term −c3∂3
x plays no essential role in case (i) and hence for

the main results of our paper; however, in the unstable case (ii), the KdV term
becomes important, in particular in the limit of large c3, see [6] for the constant
coefficient case. Therefore we also include it in (1.1).

1.1. Linear and Nonlinear diffusive stability. Setting u(t, x) = us(x)+v(t, x)
we obtain

∂tv = L(x)v − ∂x(v2) (1.3)

with 2π periodic linear operator

L(x)v = −∂4
xv − c3∂

3
xv − c2∂

2
xv + 2δ∂x(cos(x)v)− 2(u′s(x)v + us(x)∂xv), (1.4)

where u′s = ∂xus. To calculate the eigenfunctions of the linearization ∂tv = L(x)v
we make a Bloch wave ansatz [7]

v(t, x) = eλ(`)t+i`xṽ(`, x).
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Here ` ∈ [−1/2, 1/2), which is called the first Brillouin zone, and ṽ(`, x + 2π) =
ṽ(`, x) and ṽ(` + 1, x) = eixṽ(`, x). Then λ(`) and ṽ(`, ·) are determined from the
linear eigenvalue problem

λ(`)ṽ(`, x) = L̃(`, x)ṽ(`, x)

:=
[
−(∂x+i`)4 − c3(∂x+i`)3 − c2(∂x+i`)2 + 2δ(cos(x)(∂x+i`)− sin(x))

]
ṽ

−2
[
u′s(x)+us(x)(∂x+i`)

]
ṽ

over the bounded domain x ∈ (0, 2π). Thus we obtain curves of eigenvalues
` 7→ λn(`), n ∈ N, which we sort by Reλn(`) ≥ Reλn+1(`), with associated eigen-
functions ṽn(`, x). The λn(`) can again be calculated by perturbation analysis in
δ, again see sec.2 for details. Clearly, Reλn(`) → −∞ as n→∞, and us is linearly
stable if Reλ1(`) ≤ 0 for all ` ∈ [−1/2, 1/2). Since, for given c2, c3, δ, we have a
1–parameter family us(x; c2, c3, δ, um) of stationary solutions, parametrized by um,
we always have λ1(0) = 0 with

ṽ1(0, x) = ∂um
us(x; c2, c3, δ, um).

This corresponds to conservation of mass in the inclined film problem. Next writing

λ1(`) = −id1`− d2`
2 +O(`3) (1.5)

and assuming that Reλ1(`) < 0 outside some neighborhood of ` = 0 we find that
us is linearly stable for small δ if d2 > 0. In this case, the continuous spectrum up
to the imaginary axis yields diffusive decay of localized perturbations to zero; i.e.,
for solutions v of ∂tv(t, x) = L(x)v(t, x) with v0 ∈ L1(R) we have

v(t, x) =
z√

4πd2t
exp(−(x− d1t)2/4d2t)ṽ1(0, x) +O(t−1), (1.6)

where z =
∫

R v0(x) dx is the mass of the perturbation and where d1 = 2um +O(δ)
is the speed of the comoving frame.

In contrast to exponential decay rates, the algebraic decay (1.6) is too weak
to control arbitrary nonlinear terms. For instance, solutions to ∂tv = ∂2

xv + v2

on the real line may blow up in finite time [14], even for arbitrary small initial
data. On the other hand, for ∂tv = ∂2

xv + vp1(∂xv)p2 with p1 + 2p2 > 3 it is well
known that solution to small localized initial data decay asymptotically as for the
linear problem ∂tv = ∂2

xv (cf. (1.6) with d1 = 0, d2 = 1). This is called nonlinear
diffusive stability, and the nonlinearity is called asymptotically irrelevant. A very
robust method to prove such results is the renormalization group [2], which uses an
iterative rescaling argument and has been applied to a variety of diffusive stability
problems [8, 9, 12].

The case p1 + 2p2 = 3 is called marginal. In fact, we show that the asymptotics
of solutions of (1.3) to small localized initial conditions are not given by Gaussian
decay as in (1.6) but are determined by a non Gaussian profile related to the Burgers
equation

∂tv = d2∂
2
xv + b∂x(v2) with b = −1 +O(δ2). (1.7)

This profile is obtained by Cole Hopf transformation. Setting

ψ(t, x) = exp
( b

d2

∫ √
d2x

−∞
v(t, ξ) dξ

)
, v(t, x) =

√
d2

b

ψy(t, y)
ψ(t, y)

, y = x/
√
d2
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the Burgers equation is transformed into the linear diffusion equation ∂tψ = ∂2
xψ,

ψ|t=0 = ψ0. For limx→−∞ ψ0(x) = 1 and setting limx→∞ ψ0(x)=z+1; i.e.,

ln(z+1)=
b

d2

∫
R
v0(t, ξ) dξ,

it is well known that 1 + z erf(x/
√
t) with erf(x) = 1√

4π

∫ x

−∞ e−ξ2/4 dξ is an exact
solution of ∂tψ = ∂2

xψ. It follows that

v(z)(t, x) = t−1/2fz(x/
√
t) with fz(y) =

√
d2

b

z erf ′(y)
1 + z erf(y)

(1.8)

is an exact solution of the Burgers equation. Moreover,

ψ(t, x) =
1√
4πt

∫
e−(x−y)2/(4t)ψ0(y) dy = 1 + z erf(x/

√
t) +O(t−1/2)

as t → ∞, for initial conditions ψ0 ∈ L∞(R) with limξ→−∞ ψ(ξ) = 1 and with
limξ→∞ ψ(ξ) = 1+z. Therefore the so called renormalized solution of (1.7) satisfies

t1/2v(t, t1/2x) = fz(x) +O(t−1/2); (1.9)
i.e., it converges towards a non-Gaussian limit. It has been shown in [2] that the
dynamics (1.9) in the Burgers equation is stable under addition of higher order
terms. Similarly, our basic idea is that after a suitable transform (see (3.6) below),
(1.3) in the linearly stable case (d2 > 0 in (1.5)) can be interpretated as a higher
order perturbation of the Burgers equation (1.7).

1.2. The nonlinear stability result. Throughout this paper we denote many
different constants that are independent of δ and the rescaling parameter L>0
(see below) by the same symbol C. For m,n ∈ N we define the weighted spaces
Hm(n)={u ∈ L2(R) : ‖u‖Hm(n)<∞} with ‖u‖Hm(n) = ‖uρn‖Hm(R), where ρ(x) =
(1+ |x|2)1/2 and Hm(R) is the Sobolev space of functions with derivatives up to or-
der m in L2(R). With an abuse of notation we sometimes write, e.g., ‖u(t, x)‖Hm(n)

for the Hm(n) norm of the function x 7→ u(t, x). For the bounded domain (0, 2π)
with periodic boundary conditions we also write T2π; i.e.,

∫
T2π

u(x) dx :=
∫ 2π

0
u(x) dx.

Fourier transform is denoted by F , e.g., if u ∈ L2(R), then û(k) := F(u)(k) =
1
2π

∫
e−ikxu(x) dx. From F(∂xu)(k) = ikû(k) and Parseval’s identity we have that

F is an isomorphism between Hm(n) and Hn(m); i.e., the weight in x–space yields
smoothness in Fourier space and vice versa. This smoothness in k is essential for
the proof of the following theorem, where for convenience we take initial conditions
at t = 1.

Theorem 1.2. Assume that the parameters c2, c3, um ∈ R and δ > 0 small are
chosen in such a way that d2 > 0 in the expansion (1.5), and Reλn(`) < 0 for all
n ∈ N and all ` ∈ [−1/2, 1/2), except for λ1(0) = 0. Let p ∈ (0, 1/2). There exist
C1, C2 > 0 such that the following holds. If ‖v0‖H2(2) ≤ C1, then there exists a
unique global solution v of (1.3) with v|t=1 = v0, and

sup
x∈R

∣∣∣v(t, x)− t−1/2fz(t−1/2(x− d1t))ṽ1(0, x)
∣∣∣ ≤ C2t

−1+p, t ∈ [1,∞), (1.10)

with d1 = 2um +O(δ) from (1.5), fz(y) =
√

d2
b

z erf′(y)
1+z erf(y) from (1.8), and ln(1+ z) =

b
d2

∫
R v0(x) dx.
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Thus we have the asymptotic (H2(2), L∞)–stability of v = 0; i.e., for all ε > 0
there exists a ν>0 such that ‖v0‖Hr(2) ≤ ν implies ‖v(t)‖L∞ ≤ ε, for all t≥1, and
‖v(t)‖L∞ → 0 with rate t−1/2. The perturbations decay in an universal manner
determined by the decay of localized initial data in the Burgers equation. Theorem
1.2 is in fact a corollary to the more detailed Theorem 3.1 stated in Bloch space in
§3.3. In §2 we give examples such that the assumption d2 > 0 holds. In particular,
we shall see that d2 > 0 may hold for c2 > 0; i.e., the critical “Reynolds num-
ber” may be larger than 0 which is the critical Reynolds number in the spatially
homogeneous case. A similar effect is also known in the full inclined film problem
[15].

The remainder of this paper is organized as follows. In §2 we briefly review
the properties of stationary solutions to (1.1), explain the set–up of Bloch waves,
and give examples for λ1(`) from (1.5) for some chosen parameter values. In §3
we review the concept of irrelevant nonlinearities and the idea of renormalization,
give a formal derivation of the Burgers equation as the amplitude equation for
the critical mode ṽ1(0, x) for (1.3) in the linearly stable case, and introduce Bloch
spaces with weights to formulate our precise result Theorem 3.1. In §4 we set up a
renormalization process to prove Theorem 3.1. In Appendix 5 we give some remarks
on the unstable case (ii).

2. Spectral analysis

2.1. Expansion of the stationary solutions. To calculate us we expand in δ.
We set

us(x) = um + δu1(x) + δ2u2(x) +O(δ3),
where uj for j ≥ 1 is 2π–periodic and has zero mean; i.e., um is considered as
an additional parameter. Thus we write us(x) = us(x; c2, c3, δ, um). We obtain a
hierarchy of linear inhomogeneous equations of the form

L0uj(x) = g(x), L0u = −∂4
xu− c3∂

3
xu− c2∂

2
xu− 2um∂xu,

where g(x) comes from the previous step. At O(δ) we have g(x) = 2um sin(x),
hence we use the ansatz u1(x) = α1 cos(x) + β1 sin(x) to obtain the linear system(

µ1 ν1
−ν1 µ1

) (
α1

β1

)
=

(
0

2um

)
, µj = −j4 + c2j

2, νj = c3j
3 − 2jum, (2.1)

with solution(
α1

β1

)
=

1
d1

(
−(c3 − 2um)2um

(−1 + c2)2um

)
, dj = (−j4 + c2j

2)2 + (c3j3 − 2umj)2.

At O(δ2) we have g(x) = 2u′1u1−2∂x(cos(x)u1), hence u1 = α2 cos(2x)+β2 sin(2x),
which again yields a 2× 2 linear system for (α2, β2), while at O(δ3), the right hand
side contains harmonics eijx with j = 1, 2, 3. Thus we need the ansatz

u3(x) = α31 cos(x)+α32 cos(2x)+α33 cos(3x)+β31 sin(x)+β32 sin(2x)+β33 sin(3x),

and have to solve a 6 × 6 linear system. This can be continued to any order
in δ and the resulting systems can conveniently be solved using some symbolic
algebra package. Moreover, from the diagonals of the linear systems we obtain the
convergence of the Fourier series for us.

The maximum amplitude of us and the phase–shift with the “bottom profile”
cos(x) depend on the parameters c2, c3, δ, um in a rather complicated way. Here,
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instead of giving explicit formulas we plot some solutions us in fig.2 on page 8,
together with eigenvalue curves for the associated linearizations.

2.2. Bloch wave analysis. To calculate the spectrum of the linearization L of
(1.1) around us we use the Bloch wave transform. The basic idea is to write

v(x) =
∫

R
eikxv̂(k) dk

=
∑
j∈Z

∫ 1/2+j

−1/2+j

eikxv̂(k) dk

=
∫ 1/2

−1/2

∑
j∈Z

ei(`+j)xv̂(`+ j) d`

=
∫ 1/2

−1/2

ei`xṽ(`, x) d` =: (J−1ṽ)(x)

(2.2)

where ṽ(`, x) = (J v)(`, x) =
∑

j∈Z eijxv̂(`+ j). By construction we have

ṽ(`, x) = ṽ(`, x+ 2π) and ṽ(`, x) = ṽ(`+ 1, x)eix. (2.3)

Bloch transform is an isomorphism between Hs(R,C) and L2((−1/2, 1/2],Hs(T2π))
[7], where

‖ṽ‖L2((−1/2,1/2],Hs(T2π)) =
( ∫ 1/2

−1/2

‖ṽ(`, ·)‖2Hs(T2π)d`
)1/2

.

Multiplication u(x)v(x) in x-space corresponds in Bloch space to the “convolution”

(ũ ∗ ṽ)(`, x) =
∫ 1/2

−1/2

ũ(`−m,x)ṽ(m,x) dm, (2.4)

where (2.3) has to be used for |`−m| > 1/2. However, if χ : R → R is 2π periodic,
then J (χu)(`, x) = χ(x)(J u)(`, x).

In Bloch space the linear eigenvalue problem for L(x) thus becomes

λ(`)ṽ(`, x) != L̃(`, x)ṽ(`, x) := e−i`x
[
L(x)ei`xṽ(`, x)

]
=

[
−(∂x+i`)4 − c3(∂x+i`)3 − c2(∂x+i`)2

+ 2δ(cos(x)(∂x+i`)− sin(x))
]
ṽ − 2

[
u′s(x) + us(x)(∂x+i`)

]
ṽ

(2.5)

over the bounded domain T2π. This yields curves of eigenvalues λn(`), with ` in
(−1/2, 1/2) and n ∈ N. To calculate λn(`) we let

ṽ(`, x) =
∑
j∈Z

bj(`)eijx,

which yields the infinite coupled system

iδ(j+`)(1− 2a1)bj−1 +mj(`)bj + iδ(j+`)(1− 2a1)bj+1 +O(δ2)bk = λ(`)bj , (2.6)

j, k ∈ Z, where mj(`) = −(j + `)4 + c3i(j + `)3 + c2(j + `)2 − 2ium(j + `) and
a1 = 1

2 (α1 − iβ1) from us = um + δ(α1 cos(x) + β1 sin(x)) + O(δ2). For δ = 0
we have eigenvalues mj(`) with φj(`, x) = eijx. In particular, m0(0) = 0 with
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φ0(x) ≡ 1. For δ > 0, and returning to counting λn(`) with n ∈ N, we still always
have λ1(0) = 0, with

ṽ1(0, x) = ∂um
us(x; c2, c3, δ, um) = 1 + δ[b1(0)eix + b−1(0)e−ix] +O(δ2). (2.7)

To order δ2 the eigenvalue problem (2.6) yields

det(A(`)− λ(`)) = 0 (2.8)

with

A =

 m−1(`) iδ(`− 1)(1− 2a1) 0
iδ`(1− 2a1) m0(`) iδ`(1− 2a1)

0 iδ(1 + `)(1− 2a1) m1(`)

 .

The truncated eigenvalue problem (2.8) can again be solved explicitly using some
algebra package, but as mentioned above, instead of giving the explicit formulas,
in fig. 2 we plot us and λ1(`) for some parameters values.

60

1.2

0.8

0.40.20

0.0025

0

Figure 2. Left: parametric dependence of stationary solutions
us(x; c2, c3, δ, um) on c2 for (c3, δ, um) = (0, 0.5, 1). Top down at
x = 0: c2 = 0.5, 0,−0.5, and ∂um

us(x; 0, 0, 0.5, 1) (dotted curve).
Right: Reλ1(`) as obtained from (2.8) for (δ, um) = (0.5, 1); left
to right at Reλ = −0.00125: c2 = −0.5, 0, 0.1, 0.2, and Rem0(`)
for (um, c2, c3) = (1, 0.1, 0) (dotted curve); us(·, 0.1, 0.5, 1) is still
spectrally stable, while clearly in the homogeneous case (δ = 0) we
have us ≡ um unstable for c2 > 0. The imaginary part of λ1(`)
only depends very weakly on c2 and δ and is given by Imλ1(`) =
−2um`− id3`

3 +O(`5) with d3 = −c3 +O(δ).

3. Nonlinear analysis in Bloch wave space

3.1. The idea of renormalization. To explain the idea of irrelevant nonlineari-
ties and the renormalization group we consider

∂tv = ∂2
xv − ∂x(v2) + αh(v), v|t=1 = v0, h(v) = vp1(∂xv)p2 , (3.1)

with p1+2p2 ≥ 4. For α=0 we know that ‖v(t, x) − t−1/2fz(x/t1/2)‖L∞ = O(t−1)
as t → ∞ with ln(1 + z) = −

∫
v0 dx. To show a similar behaviour for α 6= 0 we
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may use the renormalization group. These calculations are well documented in the
literature, but we briefly repeat them here as the template for treating (1.3).

For L > 0 we define the rescaling operators RL with RLv(x) = v(Lx), and for
L > 1 chosen sufficiently large we let

vn(τ, ξ) := Lnv(L2nτ, Lnξ) = LnRLnv(L2nτ, ξ). (3.2)

Then vn satisfies

∂τvn = ∂2
ξvn+∂ξ(v2

n)+αhn(vn) with hn(vn) = L(3−p1−2p2)nvp1
n ∂ξ(vp2

n ), (3.3)

and solving (3.1) for t ∈ [1,∞) is equivalent to iterating

solve (3.3) on τ ∈ [L−2, 1] with initial data vn(L−2, ξ) = LRLvn−1(1, ξ) ∈ X,
(3.4)

where X is a suitable Banach space. For p1 +2p2 ≥ 4 the term hn in (3.3) formally
goes to zero. Thus, in the limit n → ∞ we recover the Burgers equation for vn,
with family of exact solutions {vz(τ, ξ) = τ−1/2fz(ξ/

√
t) : z > −1}. In particular,

these solutions are fixed points of the renormalization map v(1/L2, ·) 7→ Lv(1, L·)
where v solves the Burgers equation.

It turns out that this line of fixed points is attractive in suitable spaces X, for
instance X = H2(2), cf. the definition on p. 5. Moreover, this also holds for the
flow of the perturbed Burgers equation. For more details concerning problems of
type (3.1) we refer to [2, 12]. However, two observations are most important: (a)
In (3.3) we see that derivatives in x, corresponding to factors ik in Fourier space
according to F(∂xu)(k) = ikû(k), give additional factors L−1 in the rescaling; (b)
The diffusive spreading in x space corresponds to concentration at k = 0 in Fourier
space according to F(LRLu)(k) = û(k/L). Therefore, only the parabolic shape of
the spectrum λ(k) = −k2 of the operator ∂2

x locally near k = 0 is relevant, as well as
only the local behaviour of the nonlinearity near k = 0. For (1.1) Fourier analysis
has to be replaced by Bloch wave analysis, where similar ideas apply: a factor i`
corresponds to a derivative in x, and spreading in x corresponds to localization at
` = 0. This is made rigorous in Lemma 4.2 below.

3.2. Formal derivation of the Burgers equation. In order to (formally) derive
the Burgers equation as the amplitude equation for the critical mode ṽ1(0, x) for
(1.3) in the linearly stable case – and in order to later justify this and rigorously
prove Theorem 1.2 – we consider (1.3) in Bloch space, i.e.

∂tṽ(t, `, x) = L̃(l, x)ṽ(t, `, x) +N(ṽ(t))(`, x), (3.5)

with
N(ṽ(t))(`, x) = J (−∂xv

2(t))(`, x) = −(∂x + il)(ṽ(t) ∗ ṽ(t))(`, x).
To motivate the next transform we recall that the curve λ1(`) = −id1`−d2`

2+O(`3)
with critical mode ṽ1(`, ·) corresponds to ∂tv = (−d1∂x + d2∂

2
x)v; i.e., the linear

diffusion equation in the comoving frame y = x−d1t. Thus, it is tempting to simply
go into this comoving frame in (1.3). However, this would give a space and time
periodic operator L(y + d1t) in (1.3) which would make the subsequent analysis
more complicated. Instead we introduce

ũ(t, `, x) = ei`d1tṽ(t, `, x) (3.6)

which fulfills

∂tũ(t, `, x) = M̃(l, x)ṽ(t, `, x) +N(ṽ(t))(`, x), M̃(l, x) = L̃(l, x) + id1`. (3.7)
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Clearly, M̃ has the same eigenfunctions ṽj as L̃ with eigenvalues µj(`) = λj(`)+id1`.
In particular

µ1(`) = −d2`
2 +O(`3).

In general, (3.6) does not correspond to a simple transform in x–space. However,
if ũ has the special form ũ(t, `, x) = α̃(t, l)g(x) then

v(t, x) =
∫
T2π

ei`(x−d1t)α̃(t, `)g(x) d` = α(t, x− d1t)g(x),

which we will exploit to prove Theorem 1.2.
Next we introduce mode filters to extract the critical mode ṽ1(·, ·) from ũ. Let

ρ > 0 be sufficiently small such that µ1(`) is isolated from the rest of the spectrum
of L̃(`, ∂x) for |`| ≤ ρ, and let χ : R → R be a smooth cut-off function with χ(`) = 1
for |`| ≤ ρ/2 and χ(`) = 0 for |`| > ρ. Then define

Ẽc(`)ṽ(`, x) = χ(`)〈ṽ(`, ·), ũ1(`, ·)〉ṽ1(`, x).

Here 〈v, w〉 =
∫
T2π

v(x)w(x) dx, and ũ1 is the critical eigenfunction of the L2(T2π)-
adjoint operator

M̃∗(`, x) = −(∂x+i`)4+c3(∂x+i`)3 − c2(∂x+i`)2 − 2(∂x+i`)(δ cos(x)ũ−usũ)− id1`,
(3.8)

normalized such that 〈ṽ1(`), ũ1(`)〉 = 1. Let Ẽs = Id−Ẽc. Moreover, define aux-
iliary mode filters Ẽh

c (`)ũ(`, x) = χ(2`)〈ũ(`, ·), ũ1(`, ·)〉ṽ1(`, x) and Ẽh
s (`)ũ(`, x) =

ṽ(`, x) − χ(`/2)〈ũ(`, ·), ũ1(`, ·)〉ṽ1(`, x). Thus Ẽh
c Ẽc = Ẽc and Ẽh

s Ẽs = Ẽs, which
will be used to substitute for missing projection properties of Ẽc and Ẽs. Finally,
define the scalar mode filter Ẽ∗c by Ẽc(`)ũ(`, x) = (Ẽ∗c (`)ũ(`, ·))ṽ1(`, x).

Thus, if (α̃, ũs) satisfies

∂tα̃(t, `) = µ1(`)α̃(t, `) + Ẽ∗cN(ṽ(t))(`),

∂tũs(t, `, x) = M̃sṽ(t, `, x) + ẼsN(ṽ(t))(`, x),
(3.9)

then ũ(t, `, x) = ṽc(t, `, x) + ũs(t, `, x) satisfies equation (3.7), where ũc(t, `, x) =
α̃(t, `)ṽ1(`, x). The idea of this splitting is that ũs is linearly exponentially damped.
Thus we may expect that the dynamics of (3.7) and hence of (1.3) are dominated
by the dynamics of α̃. This will be made rigorous in §4. Here we first formally
derive the Burgers equation for α̃, ignoring ũs. Then the nonlinearity in (3.9) is
given by (suppressing t for now)

Ẽ∗cN(ũc)(`)

= −χ(`)
∫
T2π

(∂x + i`)
∫ 1/2

−1/2

α̃(`−m)ṽ1(`−m,x)α̃(m)ṽ1(m,x) dmũ1(`, x) dx

=
∫ 1/2

−1/2

K(`, `−m,m)α̃(`−m)α̃(m) dm

with

K(`, `−m,m) = χ(`)
∫ 2π

0

ṽ1(`−m,x)ṽ1(m,x)(i`ũ1(`, x) + ∂xũ1(`, x)) dx. (3.10)

Automatically we have K(0, 0, 0). This is due to the following abstract argument
[8, 9, 10]. If we consider (1.3) over T2π, then there exists a one dimensional center



EJDE-2007/118 KURAMOTO-SIVASHINSKY EQUATION 11

manifold Wc = {v(x) = γṽ1(0, x) + h(γ)(x) : γ ∈ (−γ0, γ0)}, and the flow on Wc is
given by the reduced equation

d
dt
γ = Pc

[
M(γṽ1 + h(γ)) +N(γṽ1 + h(γ))

]
= 〈−∂x(ṽ2

1), w1〉γ2 + h.o.t.,

where h.o.t. denotes higher order terms and the projection Pc is Ẽ∗c (0). However,Wc

coincides with the one-dimensional family of stationary solutions {us(·, c2, δ,m) :
m ≈ um}, hence d

dtγ=0 and the projection vanishes. Alternatively, we can inspect
(3.8) to see that ũ1(0, x) ≡ const, which implies K(0, 0, 0) as well.

We expand K(`, `−m,m) = ∂1K(0)`+∂2K(0)(`−m)+∂3K(0)m+O((`+m)2).
Ignoring for now the O((`+m)2) terms we obtain

Ẽ∗cN(ũc)(`) = χ(`)ib`(α̃∗2)(`)

with

b = −i
(
∂1K(0) +

1
2
∂2K(0) +

1
2
∂3K(0)

)
= −i

( ∫
T2π

ṽ2
1(0, x)(−iũ1(0, x) + ∂`∂xũ(0, x)) + (∂`ṽ1(0, x))ṽ1(0, x)∂xũ1(0, x) dx

)
= −1 +O(δ2) ∈ iR,

(3.11)
where we used the facts that ṽ1(0, x) = 1 +O(δ) ∈ R, that ũ1(0, x) = 1/2π due to
the normalization 〈ṽ1(0, ·), ũ1(0, ·)〉 = 1, and that i∂`ũ1(0, x) ∈ R, see (3.8).

The result of these calculations (ignoring ũs and the O((l+m)2) terms inK(`, `−
m,m)) is that α̃ fulfills

∂tα̃(t, `) = µ1(`)α̃(t, `) + ib`α̃∗2(t, `), (3.12)

Motivated by §3.1 we may for now also discard the O(`3) terms in µ1(`) to see that
α(t, x) = (J−1α̃(t))(x) fulfills the Burgers equation

∂tα = d2∂
2
xα+ b∂x(α2).

In a nutshell, this, combined with §3.1, explains why the “comoving frame Burgers
profile” t−1/2fz((x− d1t)/

√
t)ṽ1(0, x) gives the lowest order asymptotics for (1.3).

3.3. The result in Bloch wave space. To make the formal calculations from §3.2
rigorous and thus prove Theorem 1.2 we need scaled Bloch spaces with regularity
and weights. We first collect a number of definitions and basic properties. Let
ρ(`) = (1 + |`|2)1/2. For L > 1 and m,n, b ≥ 0 define

BL(n,m, b) := {ṽ ∈ Hn((−L/2, L/2),Hm(T2π) : ‖ṽ‖BL(n,m,b) <∞},

‖ṽ‖2BL(n,m,b) =
∑
α≤n

∑
β≤m

‖(∂α
` ∂

β
x ṽ)ρ

b‖2L2((−L/2,L/2),L2(T2π)).

Let B(n,m, b) := B1(n,m, b). Based on Parseval’s identity we have that J is
an isomorphism between Hm(n) and B(n,m, b), with arbitrary b ≥ 0, see, e.g.,
[9, Lemma 5.4]. Indeed, for fixed L > 0 the weight ρ is irrelevant since due to
the bounded wave number domain all norms ‖ · ‖BL(n,m,b1) and ‖ · ‖BL(n,m,b2) are
equivalent, but the constants depend on b1, b2 and L, see (4.7), which will be crucial
in our analysis. Next we define the scaling operators

R1/L : B(n,m, b) → BL(n,m, b), R1/Lṽ(`, x) = ṽ(`/L, x).
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Only ` is rescaled, and x is not, and as in (3.6) this in general does not correspond
to a simple rescaling in x–space. In Bloch space our main result now reads as
follows.

Theorem 3.1. Assume that the parameters c2, c3, um ∈ R and δ > 0 sufficiently
small are chosen in such a way that d2 > 0 in the expansion (1.5) and that
Reλn(`) < 0 for all n ∈ N and all ` ∈ [−1/2, 1/2), except for λ1(0) = 0. Let
p ∈ (0, 1/2). There exist C1, C2 > 0 such that the following holds. If ‖v0‖H2(2) ≤
C1, then∥∥(`, x) 7→

[
ṽ(t, `/

√
t, x)− ei`d1tf̃z(·)ṽ1(0, x)

]∥∥
B√t(2,2,2)

≤ C2t
−1/2+p, (3.13)

with d1 = 2um + O(δ) from (1.5), f̃z(`) = F(fz)(`), where fz(y) =
√

d2
b

z erf′(y)
1+z erf(y)

from (1.8) with z = b
d2

∫
R v0(x) dx.

Before proving this theorem we translate (3.13) back into x-space. In L∞(R) we
have

v(t, x) =
∫ 1/2

−1/2

exp(i`x)ṽ(t, `, x) d` =
∫ 1/2

−1/2

exp(i`(x− d1t))ũ(t, `, x) d`

= t−1/2

∫ √
t/2

−
√

t/2

exp(i`t−1/2(x− d1t))ũ(t, t−1/2`, x) d`

= t−1/2

∫ √
t/2

−
√

t/2

exp(i`t−1/2(x− d1t))f̃z(`) d`ṽ1(0, x) +O(t−1+p/2)

= t−1/2fz(t−1/2(x− d1t))ṽ1(0, x) +O(t−1+p/2).

This proves Theorem 1.2.

4. Proof of Theorem 3.1

4.1. The rescaled systems. To prove Theorem 3.1 we now start with the system
(3.9). Similar to (3.2) we introduce scaled variables

αn(τ, κ) = RL−n α̃(L2nτ, κ) and wn(τ, κ, x) = Ln(1−p)RL−n ũs(L2nτ, κ, x).
(4.1)

Here we “blow up” wn since by this we can more directly control the terms involving
wn in the equation for αn, see Lemma 4.3 below. We obtain

∂ταn(t, κ) = L2nµ1(κ/Ln)αn(τ, κ) + L2nN c
n(αn, wn),

∂τwn(τ, κ, x) = L2nM̃s
nwn + L(3−p)nNs

n(αn, wn),
(4.2)

where M̃s
n = L2nR−n

L M̃sRLn and

N c
n(αn, wn)(κ, x) = RL−nẼcN

(
(RLnαn)ṽ1(κ, x) + L−n(1−p)RLnwn

)
,

Ns
n(αn, wn)(κ, x) = RL−nẼsN

(
(RLnαn)ṽ1(κ, x) + L−n(1−p)RLnwn

)
.

(4.3)

Similar to (3.4), we consider the following iteration:

solve (4.2) on τ ∈ [L−2, 1] with initial data(
αn

wn

)
(L−2, κ, ξ) = R1/L

(
αn−1

L1−pwn−1

)
(1, κ, ξ).

(4.4)
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As phase space for (4.2) we choose Xn × Xn with Xn = BLn(2, 2, 2), where for
αn we can identify Xn with the Fourier space H2(2) since αn is independent of x.
Moreover, suppαn ⊂ {|`| ≤ Lnρ}. To treat (4.4) we note a number of estimates.

Lemma 4.1. For b2 ≥ b1 ≥ 0 there exists a C > 0 such that in the critical part we
have

‖eL2nµ1(·/Ln)(τ−τ ′)αn‖BLn (2,2,b1) ≤ C(τ − τ ′)(b1−b2)/2‖αn‖BLn (2,2,b1). (4.5)

The stable part is linearly exponentially damped; i.e., there exists a γ0 > 0 such
that

‖eL2nM̃s
n(τ−τ ′)wn‖BLn (k,b,b) ≤ Ce−γ0L2n(τ−τ ′)(τ−τ ′)−1/2‖wn‖BLn (k,b−1,b−1). (4.6)

Proof. Inequality (4.5) follows from the locally parabolic shape of L2nµ1(κ/Ln) =
−d2κ

2 + O(κ/Ln) near κ = 0. Inequality (4.6) follows from Reσ(M̃s)≤ − γ0. In
fact, M̃s is a 4th order operator and therefore has better smoothing properties than
stated in (4.6), but this estimate is sufficient in the following. �

Next we note
‖R1/Lṽ‖BL(2,2,b) ≤ CLb+1/2‖ṽ‖B(2,2,b), (4.7)

and, for ũ, ṽ ∈ BL(n,m, 0) with n,m ≥ 1/2 and ` ∈ (−L/2, L/2),

R1/L(RLũ ∗ RLṽ)(`, x)

=
∫ 1/2

−1/2

ũ(`− Lm, x)v(Lm, x) dm

= L−1

∫ L/2

−L/2

ũ(`−m,x)ṽ(m,x) dm =: L−1(ũ ∗L ṽ)(`, x),

which will be used to express the rescaled nonlinear terms. Henceforth we will drop
the subscript L in ∗L. To estimate the nonlinearity ∂x(v2) in Bloch space we need
to exploit the derivative using the following Lemma [8, Lemma 14].

Lemma 4.2. Let K̃ ∈ C2
b ([−1/2, 1/2)2,H2(T2π)) with

‖K̃(κ−`, `)‖H2(T2π) ≤ C(|κ−`|+|`|)γ .

Then

(ṽ, ũ) 7→ (M1/LK)(ṽ, ũ)(κ) :=
∫ (

R1/LK̃(κ− `, `, x)
)
ṽ(κ, x)ũ(κ− `, x) d`

defines a bilinear mapping (M1/LK) : BL(2, 2, 2)×BL(2, 2, 2) → BL(2, 2, 2). There
exists a C > 0 such that for all L > 1 we have

‖(M1/LK)(ṽ, ũ)‖BL(2,2,2−γ) ≤ CL−min{γ,1}‖ṽ‖BL(2,2,2)‖ũ‖BL(2,2,2).

Lemma 4.3. For p ∈ (0, 1/2) there exists a C > 0 such that for all (αn, wn) ∈ Xn

we have L2nN c
n(αn, wn) = s1 + s2 + s3 + s4 with s1(κ) = ibκα∗2n (κ) and

‖s2‖BLn (2,2,2p) ≤ CL−n(1−2p)‖αn‖2Xn
, (4.8)

‖s3‖BLn (2,2,1) ≤ CL−n(1−p)‖αn‖Xn‖wn‖Xn , (4.9)

‖s4‖BLn (2,2,1) ≤ CL−2n(1−p)‖wn‖2Xn
. (4.10)
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Moreover,

L(3−p)n‖Ns
n(αn, wn)‖BLn (2,1,1)

≤ C
(
L(1−p)n‖αn‖2Xn

+ ‖αn‖Xn
‖wn‖Xn

+ L−(1−p)n‖wn‖2Xn

)
.

(4.11)

Proof. Explicitly we have

L2nN c
n(κ) = L2nχ(

κ

L2n
)
∫

x∈T2π

( ∫ 1/2

m=−1/2

(∂x +
iκ
Ln

)Π(κ,m, x) dm
)
ũ1(

κ

Ln
, x) dx,

(4.12)
with

Π(κ,m, x) =
(
αn(κ− Lnm)ṽ1(

κ

Ln
−m,x) + L−n(1−p)nwn(κ− Lnm)

)
×

(
αn(Lnm)ṽ1(m,x) + L−n(1−p)nwn(Lnm)

)
.

Thus, substituting Lnm→ m in (4.12) yields L2nN c
n(κ) = s1 + s2 + s3 + s4 with

s1 + s2 = Ln

∫ Ln/2

−Ln/2

K(
κ

Ln
,
κ−m

Ln
,
m

Ln
)αn(κ−m)αn(m) dm

= ibκα∗2n + Ln

∫ Ln/2

−Ln/2

(RL−nM(κ,m))αn(κ−m)αn(m) dm,

where M ∈ C2 with M(`,m) ≤ C((` + m)γ) with 1 < γ ≤ 2. Now using Lemma
4.2 with γ = 2− 2p we obtain (4.8).

Similarly,

‖s3(κ)‖BLn (2,2,1)

= LnL−n(1−p)
∥∥χ(

κ

Ln
)〈(∂x +

iκ
Ln

)(wn ∗Ln (eid1Ln·ταnṽ(·/Ln))), ũ1(
κ

Ln
)〉

∥∥
BLn (2,2,1)

which shows (4.9) by again using that ∂xũ1( κ
Ln ) = O( κ

Ln ), and (4.10) follows in the
same way, as well as the estimate (4.11) in the stable part. �

The terms involving αn in (4.11) do not decay. However, combining (4.11) with
the exponential decay of the stable semigroup we still get a local existence result
for (4.2) with bounds independent of n.

Lemma 4.4. There exist C1, C2 > 0 and L0 > 1 such that for L > L0 the following
holds. Let

ρn−1 := ‖(αn−1, wn−1)(1)‖Xn−1 ≤ C1L
−5/2.

Then there exists a local solution (αn, wn) ∈ C([1/L2, 1],Xn) of (4.2), with

sup
τ∈[1/L2,1]

‖(αn, wn)‖Xn ≤ C2L
5/2ρn−1. (4.13)

Proof. The variation of constant formula for (4.2) yields

αn(τ) =e(τ−L−2)L2nµ1(κ/Ln)R1/Lαn−1(1)

+ L2n

∫ τ

1/L2
e(τ−s)L2nµ1(κ/Ln)N c

n(αn(s), wn(s)) ds,
(4.14)

wn(τ) = e(τ−L−2)Ms
nR1/Lwn−1(1) + L(3−p)n

∫ τ

1/L2
e(τ−s)Ms

nN c
n(αn(s), wn(s)) ds.

(4.15)
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Combining (4.7) with Lemmas 4.1 and 4.3 and applying the contraction mapping
theorem yields the result. �

4.2. Splitting and iteration. Due to the loss of L5/2 in Lemma 4.4 we need to
refine our estimate of the solutions of (4.2). Therefore let

αn(τ, κ) = α(z)
n (τ, κ) + γn(τ, κ) (4.16)

where α(z)
n (τ, κ) := χ(κ/Ln)v̂z(τ, κ), v̂z(τ, κ) = f̂z(τ1/2κ), with z defined by ln(z +

1) = b
d2
αn(1/L2, κ)|κ=0. Since N(·)(`, x) in (3.7) vanishes at ` = 0, so do N c

n and
Ns

n at κ = 0, which corresponds to the conservation of mass by the nonlinearity
−∂x(v2) in (1.1). Therefore γn(τ, 0) = 0 for all n ∈ N and all τ ∈ [1/L2, 1]. We
obtain

∂τγn = L2nµ1(·/Ln)γn + L2n(N c
n(αn, wn)−N c

n(α(z)
n , 0)) + Res

n
, (4.17)

where
Res

n
= −∂τα

(z)
n + L2n(µ1(·/Ln)α(z)

n +N c
n(α(z)

n , 0)).

Lemma 4.5. Let |z|<1. There exists a C>0 such that

sup
τ∈[L−2,1]

‖Res
n
‖Xn

≤CL−n|z|.

Proof. By construction, L2nµ1(κ/Ln) = −d2κ
2 +O(κ3/Ln) and L2nN c

n(α(z)
n , 0)) =

(ibκ+O((κ/Ln)2))(α(z)
n ∗α(z)

n ). Combining this with ∂τ v̂z = −d2`
2v̂z + ibκ(v̂z ∗ v̂z)

yields
Res

n
= CL−n(O(κ3)α(z)

n +O(κ2(α(z)
n ∗ α(z)

n ))

which can be estimated in Xn = BLn(2, 2, 2) by CL−n|z| since v̂z is an analytic and
exponentially decaying function. �

Next write

αn(1, κ) = α(z)
n (1, κ) + gn,c(κ), wn(1, κ, x) = gn,s(κ, x).

By construction gn,c(0) = 0, and finally we use the contraction properties of the
linear semigroup eL2nµ1(·/Ln)(1−L2)R1/L when acting on functions g(·) with g(0) =
0, i.e.

‖eL2nµ1(·/Ln)(1−L2)R1/Lg‖BLn (2,2,2) ≤ CL−1‖g‖BLn−1 (2,2,2). (4.18)

Here we need the smoothness in `. Using g(`/L, x) = g(0, x) + (`/L)∂`g(l̃, x) =
(`/L)∂`g(l̃, x) we have

‖g(`/L, ·)‖H2(T2π) ≤
`

L
‖g‖C1(TLn ,H2(T2π)) ≤ C

`

L
‖g‖BLn (2,2,2),

cf., e.g., [10, Lemma 28]. Thus, combining (4.5), (4.7), (4.8)–(4.10) and (4.18) we
obtain in the critical part

ρn,c := ‖gn,c‖Xn
≤ CL−1‖gn−1,c‖Xn−1 + C(|z|L5/2ρn−1 + (L5/2ρn−1)2 + L−n|z|),

(4.19)
while in the stable part we have, for L sufficiently large,

ρn,s := ‖gn,s‖Xn

≤ Ce−γ0L2n(1−L−2)
[
L5/2‖gn−1,s‖Xn−1 + L(1−p)n(L5/2ρn−1)2

]
≤ L−1ρn−1

(4.20)
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Proof of Theorem 3.1. This now follows from a simple iterative argument. Let
ρ0 ≤ L−m0 =: ε, hence also |z| ≤ CL−m0 , and let L ≥ L0 with L0 sufficiently large
such that CL−1 ≤ L−(1−p). Then (4.19) implies ρn,c ≤ L−(mn−np) + L−n(1−p)|z|
with

mn = min{mn−1 + 1,m0 +mn−1 − 5/2, 2mn−1 − 5},
while (4.20) yields ρn,s ≤ L−n(1−p). Letting, e.g., m0 = 6 yields m1 = 7, m2 =
8, . . ., hence ρn,c ≤ L−n(1−p)(1 + |z|) and ρn ≤ C|z| + L−mn . For ṽn(κ, x) :=
ṽ(L2n, κ/Ln, x) this yields

‖vn − α(z)
n R1/Ln ṽ1‖Xn

=
∥∥∥vn(1)− χ(

·
Ln

)f̂z(·)ṽ1(
·
Ln

, ·)
∥∥∥
Xn

≤ ‖gn,c + L−n(1−p)gn,s‖Xn ≤ 2L−n(1−p).

This is (3.13) for t = L2n, and the local existence Lemma 4.4 yields the result for
all t ∈ [L2n, L2(n+1)]. �

5. Remarks on the unstable case

In the unstable case d2 < 0 in (1.5) we expand λ1(`) further to obtain

λ1(`) = −id1`− d2`
2 − id3`

3 − d4`
4 +O(`5) (5.1)

with d3 = −c3 +O(δ) ∈ R and d4 = −1 +O(δ) < 0. Then, with the same ansatz
as in §3.2; i.e.,

ṽ(t, `, x) = e−i`d1tα̃(t, `)ṽ1(`, x), (5.2)
we may formally derive the constant coefficient Kuramoto-Sivashinsky equation

∂tα = (d2∂
2
x + d3∂

3
x − d4∂

4
x)α− b∂x(α2) (5.3)

as the amplitude equation for the critical mode ṽ1(`, x), which gives

∂tα = (−d1∂x + d2∂
2
x + d3∂

3
x − d4∂

4
x)α− b∂x(α2) (5.4)

as the amplitude equation in the laboratory frame. Equation (5.3) (or (5.4)) is only
slightly simpler than (1.1), but, importantly, (5.3) is a well known (at least with
d3 = 0), much studied, generic amplitude equation for long wave instabilities; see,
e.g., [5, 3] and the references therein, and [4] for recent progress.

However, it is not clear a priori if (5.3) is a useful approximation in our problem,
in contrast to the stable case, where the Burgers equation (1.7) is used to “guess” the
lowest order asymptotics of small localized solutions of (1.1) which is then proved
rigorously a posteriori. In the unstable case no such behaviour can be expected:
solutions of (5.3) are O(1) in general and do not decay but show complicated
dynamical behaviour, see the references above, and [6].

Thus, first of all, already for the formal derivation of (5.3) an amplitude param-
eter ε should be introduced. This can be done by defining

ε := Reλ1(`c) with ∂` Reλ1|`=`c
= 0;

i.e., ε is defined as the maximum growth rate in (1.5). Then the so called justifi-
cation of (5.3) as the amplitude equation for (1.1) should be studied, namely: over
what time–scales (relative to ε) and in what spaces do solutions of (5.3) via (5.2)
approximate solutions of (1.1)? Here we refrain from this analysis, which would
first require a number of assumptions on the coefficients c2, c3, δ in (1.1); we refer
to [11] and the references therein for related work in this direction.
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Instead, here we report some numerical simulations concerning the approxima-
tion of (1.1) by (5.2) and (5.4). The full line in Fig.1b) shows a numerical solution
to (1.1) with

(δ, c2, c3) = (0.1,−0.2,−1) and mass um = 1 (5.5)

domain and initial condition um as noted. For the perturbation analysis with
parameters (5.5) we numerically find that a good 4th order approximation for λ1 is
λ1(`) = −2i`+ 0.186`2− i`3− `4. Next we approximate b = −1 +O(δ2) by −1 and
thus consider (5.3) with

(d1, d2, d3, d4, b) = (2,−0.186,−1,−1,−1). (5.6)

The KS-equation (5.3) has boost (or Galilean) invariance: if α(t, x) solves (5.3)
then β(t, x) = α(t, x) + c solves ∂tβ = (bc∂x + d2∂

2
x + d3∂

3
x − d4∂

4
x)β − b∂x(β2).

Therefore the amplitude α for the approximation uα can be calculated in two dif-
ferent ways: First we may set α(0, x) = u(0, x) and integrate (5.3). This gives the
dotted line in Fig. 1b), while Fig.3a) compares the solutions u(100, x) and α(100, x)
thus obtained.

(a) (b)

 1

 1.25

 1.5

 0  40  80  120
 0

 0.5

 1

 1.5

 0  40  80  120

a
b
c

Figure 3. (a) the numerical solutions of (1.1) (full line) and (5.3)
(dotted line) from Fig.1b) at t = 100. (b) the solution of (1.1) (a),
of (5.4) with α(0, x) = u(0, x)− 1 (b), and of (5.4) with d2 = −0.2
(c), all at t = 500.



18 H. UECKER, A. WIERSCHEM EJDE-2007/118

Equivalently, but more in the spirit of amplitude equations, we may set α(0, x) =
u(0, x)−1 such that α represents the amplitude of the perturbation, and integrate
(5.4). The result at t=500 is shown in Fig. 3b) (curve b), together with u|t=500

(curve a) and finally compared with the solution of (5.3) with d2 = −c2 = −0.2
(curve c). This last solution corresponds to simply setting δ = 0 in (1.1). Clearly,
d2 = −0.186 gives a much better approximation. The reason is that d2=−0.2 gives
a stronger instability than the “effective instability” with d2= − 0.186; therefore
the humps in the amplitude curve c are larger and hence travel faster than in
curve b, which over large times in particular leads to the incorrect shift in curve
c. Similar results were obtained in all our simulations which covered a variety of
parameter-regimes and initial conditions, in particular also for larger δ.

In summary, we see that the formal derivation of (5.3) gives a useful amplitude
equation, in contrast to just setting δ = 0 in (1.1) which can be seen as a (very)
naive averaging. Whether (5.3) allows to show interesting rigorous results for (1.1)
in the unstable case remains to be seen.
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