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ON OSCILLATION AND ASYMPTOTIC BEHAVIOUR OF A
NEUTRAL DIFFERENTIAL EQUATION OF FIRST ORDER

WITH POSITIVE AND NEGATIVE COEFFICIENTS

RADHANATH RATH, PRAYAG PRASAD MISHRA, LAXMI NARAYAN PADHY

Abstract. In this paper sufficient conditions are obtained so that every so-

lution of

(y(t)− p(t)y(t− τ))′ + Q(t)G(y(t− σ))− U(t)G(y(t− α)) = f(t)

tends to zero or to ±∞ as t tends to∞, where τ, σ, α are positive real numbers,

p, f ∈ C([0,∞), R), Q, U ∈ C([0,∞), [0,∞)), and G ∈ C(R, R), G is non
decreasing with xG(x) > 0 for x 6= 0. The two primary assumptions in this

paper are
R∞

t0
Q(t) =∞ and

R∞
t0

U(t) <∞. The results hold when G is linear,

super linear,or sublinear and also hold when f(t) ≡ 0. This paper generalizes
and improves some of the recent results in [5, 7, 8, 10].

1. Introduction

The study of neutral delay differential equation (NDDE)has been the centre of
attraction of many researchers all over the world for the last several years. The
authors in a recent paper [10] which improved [7] substantially considered the first
order forced nonlinear neutral delay differential equation

(y(t)− p(t)y(t− τ))′ + Q(t)G(y(t− σ))− U(t)G(y(t− α)) = f(t), (1.1)

where τ, σ, α are positive numbers, p, f ∈ C([0,∞), R), Q,U ∈ C([0,∞), [0,∞)).
The authors in [10] proved that every non-oscillatory solution of (1.1) tends to zero
as t tends to ∞, using the following hypothesis.

(H0) G ∈ C(R,R) with G non-decreasing and xG(x) > 0 for x 6= 0.
(H1)

∫∞
t0

Q(t) dt = ∞.
(H2)

∫∞
t0

U(t) dt < ∞.
(H3) There exists a bounded function F ∈ C ′([0,∞), R) such that F ′(t) = f(t)

and limt→∞ F (t) = 0.
(H4) lim inf |u|→∞

G(U)
U ≤ β where β > 0.

(H5) Q(t) > U(t− σ + α).
(H6) σ > α or σ < α.

Further the following ranges of p(t) were considered in [10].
(A1) 0 ≤ p(t) ≤ p < 1,
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(A2) −1 < −p ≤ p(t) ≤ 0,
(A3) −p2 ≤ p(t) ≤ −p1 < −1,
(A4) 1 < p1 ≤ p(t) ≤ p2,
(A5) −p2 ≤ p(t) ≤ 0,
(A6) 0 ≤ p(t) ≤ p2,

where p, p1, p2 are positive real numbers.
We strongly feel (1.1) is not yet studied systematically. In this paper we find

sufficient conditions so that all non-oscillatory solutions of (1.1) tend to zero or
±∞, as t tends to ∞ and these conditions improve [10]. Almost all authors [4, 7,
10, 11, 12] studied (1.1) with assumption (H6). But in this paper we could do away
with the conditions (H6). Further we succeeded to relax (H4) and (H5) as suggested
by the authors in their comments in [10] for further research. We have given two
more theorems, one with p(t) as in (A6) and another when p(t) is oscillatory and
noted some errors in the literature. In this work the assumption (H2) permits to
take U(t) ≡ 0. Thus this paper extends and generalizes the work [5, 8]. At the last
but not the least an example is given to illustrate the significance of our work.

By a solution of (1.1), we mean a real valued continuous function y on [ty−ρ,∞)
such that (y(t)−p(t)y(t−τ)) is once continuously differentiable for t ≥ ty and (1.1)
is satisfied identically for t ≥ ty, where ρ = max(τ, σ). A solution of (1.1) is said to
be oscillatory if and only if it has arbitrarily large zeros. Otherwise it is said to be
non-oscillatory.So far as existence and uniqueness of solutions of (1.1) are concerned
one may refer [6], but in this work we assume the existence of solutions of (1.1) and
study their qualitative behaviour. In the sequel, unless otherwise specified, when
we write a functional inequality, it will be assumed to hold for all sufficiently large
values of t.

2. Main Results

Theorem 2.1. Suppose that p(t) satisfies (A1) or (A2). Let (H0)-(H3) hold. Then
every solution of (1.1) oscillates or tends to zero as t →∞.

Proof. Let y(t) be any non-oscillatory positive solution of (1.1) on [ty,∞). For
t ≥ t0 = ty + ρ, we set

z(t) = y(t)− p(t)y(t− τ), (2.1)

K(t) =
∫ ∞

t

U(s)G(y(s− α)) ds, (2.2)

w(t) = z(t) + K(t)− F (t). (2.3)

Thus for t ≥ t0, we obtain

w′(t) = −G(y(t− σ))Q(t) ≤ 0. (2.4)

Hence w(t) ≤ 0 or w(t) ≥ 0 for t > t1 > t0 and limt→∞ w(t) = l where −∞ ≤ l <
∞. We claim y(t) is bounded. Otherwise there exists a sequence < Tn > such that
n →∞ implies

Tn →∞, y(Tn) →∞ and y(Tn) = max(y(s) : t1 ≤ s ≤ Tn). (2.5)

We may choose n sufficiently large such that Tn−ρ > t1. Suppose that p(t) satisfies
(A1). Then using (H3), for any t > t2 > t1 we obtain

w(Tn) ≥ y(Tn)− p(Tn)y(Tn − τ) + K(Tn)− F (Tn) ≥ (1− p)y(Tn)− ε. (2.6)
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As n →∞,we see that w(tn) →∞ ,a contradiction. Hence y(t) is bounded. Simi-
larly it can be shown if p(t) satisfies (A2) then also y(t) is bounded. Consequently
z(t) and w(t) are bounded. Hence it follows from (H0), (H2) and (2.2) that K(t)
is convergent and

K(t) → 0 as t →∞. (2.7)
Then

lim
t→∞

w(t) = lim
t→∞

z(t) = l. (2.8)

Next we claim lim inft→∞ y(t) = 0. Otherwise for large t ≥ t2, y(t) > m > 0 and
since G is nondecreasing,∫ ∞

t2

G(y(s− σ))Q(s) ds > G(β)
∫ ∞

t2

Q(s) ds = ∞, (2.9)

by (H1). However, integrating (2.4) between t2 to ∞ we obtain∫ ∞

t2

G(y(s− σ))Q(s) ds < ∞, (2.10)

a contradiction. Hence our claim holds. If p(t) satisfies (A1) then lim inft→∞ z(t) <
lim inft→∞ y(t) = 0. Now two distinct cases arise. Consider the first one l ≥ 0.
Then z(t) ≥ 0 for large t. Then it follows that limt→∞ z(t) = 0. Then

0 = lim
t→∞

z(t) = lim sup
t→∞

(y(t)− p(t)y(t− τ))

≥ lim sup
t→∞

y(t) + lim inf
t→∞

(−py(t− τ))

= (1− p) lim sup
t→∞

y(t);

which implies lim supt→∞ y(t) = 0. Hence limt→∞ y(t) = 0. Next consider the
second case l ≤ 0. Then z(t) ≤ 0. We claim lim supt→∞ y(t) = 0. Otherwise
suppose lim supt→∞ y(t) = µ > 0. Then we can find a sequence〈tn〉 such that
y(tn) → µ as n → ∞. As y(tn − τ) is bounded, hence there can be a subsequence
< tnk

> such that y(tnk
− τ) → λ where λ ≤ µ. Then

z(tnk
) = y(tnk

)− p(tnk
)y(tnk

− τ)

≥ y(tnk
)− py(tnk

− τ)

→ µ− pλ ≥ (1− p)µ > 0.

Hence we have a contradiction because z(t) ≤ 0. Thus our claim holds and con-
sequently limt→∞ y(t) = 0. If the function p(t) satisfies (A2), then z(t) ≥ 0.
Since lim inft→∞ y(t) = 0, we get a infinite sequence 〈tn〉 such that n →∞ implies
tn →∞ and consequently y(tn) → 0. Then z(tn) ≤ y(tn)+py(tn−τ). Taking limit
n →∞ we get l ≤ pµ, where lim supt→∞ y(t) = µ. As z(t) ≥ y(t), because of (A2)
it is found that lim supt→∞ z(t) ≥ µ. This implies l ≥ µ. Thus µ(p− 1) ≥ 0. Then
µ must be zero because p < 1. Hence lim supt→∞ y(t) = 0. Thus limt→∞ y(t) = 0.
The proof for the case when y(t) < 0 is similar. Thus the theorem is completely
proved. �

Next we state a Lemma found in [6, page19].

Lemma 2.2. Let u, v, p : [0,∞) → R be such that u(t) = v(t)− p(t)v(t− c), t ≥ c,
where c ≥ 0. Suppose that p(t) is in one of the ranges (A2), (A3) or(A6). If
v(t) > 0 for t ≥ 0 and lim inft→∞ v(t) = 0 and limt→∞ u(t) = L exists then L = 0.
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Theorem 2.3. Suppose (H0)-(H3) hold.

(i) If p(t) lies in the ranges (A3) then every solution of (1.1) oscillates or tends
to zero as t →∞.

(ii) If p(t) satisfies (A4) then every bounded solution of (1.1) oscillates or tends
to zero as t →∞.

Proof. Consider first the proof for (i) and suppose that p(t) satisfies (A3). Let y(t)
be any nonoscillatory positive solution of (1.1) on [ty,∞). For t ≥ t0 = ty + ρ, we
set z(t),K(t) and w(t) as in (2.1), (2.2) and (2.3) respectively and obtain (2.4). As
in the Theorem 2.1 we prove that y(t) is bounded. Then it follows that (2.7) and
(2.8) hold. Next we use (2.9) and (2.10) to prove lim inft→∞ y(t) = 0 as in Theorem
2.1. If p(t) satisfies (A3), then we apply Lemma 2.2 and obtain limt→∞ z(t) = 0.
Then since y(t) ≤ z(t), lim supt→∞ y(t) ≤ 0. Consequently, limt→∞ y(t) = 0.

The proof for (ii) follows similarly and we obtain limt→∞ z(t) = 0. Then we
note that 0 ≤ limt→∞ z(t) ≤ (1−p1) lim supt→∞ y(t). Hence limt→∞ y(t) = 0 since
p1 > 1. The proof for the case y(t) < 0 for t ≥ ty is similar. Thus the theorem is
proved. �

Remark 2.4. Theorems 2.1 and 2.3 hold when G is linear, sublinear or super linear.
These two theorems improve [10, Theorems 2.2, 2.4, 2.7] because the conditions
(H4),(H5) and (H6) are not used in our result. These conditions are used in previous
papers [4, 10, 12].

Theorem 2.5. Suppose that p(t) satisfies (A5). Let (H0), (H2) and (H3) hold.
Then suppose that

(H7)
∫∞

ρ
Q∗(t) dt = ∞ where Q∗(t) = min [Q(t), Q(t− τ)],

(H8) G(−u) = −G(u),
(H9) for u > 0, v > 0, G(u)G(v) ≥ G(u)G(v) and G(u) + G(v) ≥ δG(u + v),

where δ > 0 is a constant.

Then every solution of (1.1) oscillates or tends to zero as t →∞.

Proof. Let y(t) be an eventually positive solution of (1.1) for t > ty. Then we set
z(t),K(t) and w(t) as in (2.1) ,(2.2) and (2.3) respectively and obtain (2.4). Then
w′(t) ≤ 0. Hence w(t) is monotonic and single sign. Consequently limt→∞ w(t) = l
where−∞ ≤ l < ∞. We claim y(t) is bounded, otherwise y(t) is unbounded
implies z(t) is unbounded. Hence there exists an increasing sequence 〈tn〉 such that
tn → ∞, z(tn) → ∞ as n → ∞ and z(tn) = max(z(t) : t1 ≤ t ≤ tn). Then n →∞
implies w(tn) = z(tn) + K(tn) − F (tn) → ∞. Thus we get a contradiction.Hence
y(t) is bounded which implies limt→∞ z(t) = l. Further l < 0 is not possible since
z(t) ≥ 0 for large t. Thus 0 ≤ l < ∞. Again bounded ness of y(t) and (H2) yield
(2.7). If l=0 then limt→∞ y(t) = 0 and if l > 0 then for t ≥ t2 > t1, z(t) > λ > 0.
Using definition of Q∗(t) and (H9) one may obtain

0 = w′(t) + Q(t)G(y(t− σ)) + G(−p(t− σ))w′(t− τ)

+ G(−p(t− σ))G(y(t− σ − τ))Q(t− τ)

≥ w′(t) + G(p2)w′(t− τ) + Q∗(t)[G(y(t− σ)) + G(−p(t− σ))G(y(t− σ − τ))]

≥ w′(t) + G(p2)w′(t− τ) + δQ∗(t)G(z(t− σ))

≥ w′(t) + G(p2)w′(t− τ) + δG(λ)Q∗(t).
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Integrating the above inequality from t2 to ∞ and using (H7) we arrive at the
contradiction that w(t) + G(p2)w(t− τ) → −∞ as t →∞. The proof for the case
y(t) < 0 is similar and it may be noted that (H8) is required in this case. Thus the
theorem is proved. �

Remark 2.6. The prototype of function satisfying (H8) and (H9) is G(u) = (β +
|u|λ)|u|µ sgn u with λ > 0, µ > 0, β ≥ 1.

Remark 2.7. The above Theorem substantially improves [10, Theorems 2.11] be-
cause the authors there have used the following three additional conditions for their
work.

(i) U(t) is monotonic increasing.
(ii) α > σ.
(iii) Q∗(t) ≥ U(t− σ + α− τ).

Remark 2.8. Condition (H7) implies (H1), but the converse is not true.

Theorem 2.9. Suppose p(t) is oscillating and tends to zero as t →∞ with −p2 ≤
p(t) ≤ p1 < 1 ,where p1 and p2 are positive real numbers. If (H0)-(H3) hold then
every solution of (1.1) oscillates or tend to 0 as t →∞.

Proof. Suppose y(t) does not oscillate. Then y(t) > 0 or y(t) < 0 for t ≥ t0. Let
y(t) > 0 for t ≥ t1 > t0. The proof for the case y(t) < 0 is similar. Set z(t), w(t),
and k(t) as in (2.1), (2.2) and (2.3) respectively and obtain (2.4). Hence w(t) is
monotonic and single sign. w(t) > 0 or w(t) < 0 for t > t2 > t1. We claim y(t) is
bounded. Otherwise there exists a sequence< Tn >such that Tn →∞, y(Tn) →∞
as n → ∞ and y(Tn) = max (y(s) : t1 ≤ s ≤ Tn). We may choose n sufficiently
large such that Tn − ρ > t2. Then using (H3) for any t > t3 > t2 we obtain

w(Tn) ≥ y(Tn)− p(Tn) + K(Tn)− F (Tn) ≥ y(Tn)(1− p1)− ε.

As n → ∞, we see that w(tn) → ∞, a contradiction. Hence y(t) is bounded.
Consequently z(t) and w(t) are bounded. Use of (H0) and (H2) yields (2.7). Next
we prove lim inft→∞ y(t) = 0 as in Theorem 2.1. Since p(t) → 0 as t → ∞ and
y(t) is bounded therefore we have limt→∞ p(t)y(t − τ) = 0. From the facts that
limt→∞ w(t) = l exists, limt→∞ k(t) = 0 and limt→∞ F (t) = 0 it follows that
limt→∞ y(t) exists and must be equal to zero. Thus the theorem is proved. �

Remark 2.10. For the results with p(t) oscillating, we may refer Theorem 6(ii) of
[3] where the proof is wrong because they have used Lemma2.2 in their proof which
is not permissible since p(t) does not satisfy the conditions of the lemma. Again we
have another result with p(t) oscillating is [9, Theorem 2.4] where p(t) is periodic
and −1 < −p4 ≤ p(t) ≤ p5 < 1 with p5 + p4 < 1.

Theorem 2.11. Let p(t) be in range (A6). Suppose that (H0), (H2) and (H3) hold.
Then (i) every unbounded solution of (1.1) oscillates or tends to ±∞ as t → ∞
and (ii) every bounded solution of (1.1) oscillates or tends to zero as t →∞ if the
following condition holds:
(H10) suppose that, for every sequence 〈σi〉 ⊂ (0,∞), σi → ∞ as i → ∞ and for

every β > 0 such that the intervals (σi − β, σi + β), i = 1, 2, . . . , are non
overlapping,

Σ∞i=1

∫ σi+β

σi−β
Q(t) dt = ∞.
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Proof. First let us prove (i) and suppose y(t) is an unbounded positive solution of
(1.1) for t ≥ T0. Then set z(t),K(t) and w(t) as in (2.1), (2.2) and (2.3) respectively
and obtain (2.4). Hence w′(t) ≤ 0, for t ≥ T0 + σ. Then w(t) > 0 or w(t) < 0 for
t > T1 > T0+σ. In either case limt→∞ w(t) = l where −∞ ≤ l < ∞.If l 6= −∞ then
limt→∞ w(t) exists. Integrating (2.4) from T1 to t and then taking limit as t →∞,
one obtains (2.10). Since y(t) is unbounded, there exists a sequence 〈tn〉 ⊂ [T1,∞)
such that tn → ∞ and y(tn) → ∞ as n → ∞. Hence, for every M > 0, there
exists N1 > 0 such that y(tn) > M for n ≥ N1. Since y(t) is continuous, there
exists δn > 0 such that y(t) > M for t ∈ (tn − δn, tn + δn) and n ≥ N1 and
lim infn→∞ δn > 0. Hence δn > δ > 0 for n ≥ N2. Choose N > max (N1, N2) such
that tN > T1. Hence∫ ∞

tN+δN+σ

Q(t)G(y(t− σ)) dt ≥
∞∑

i=N+1

∫ ti+δi+σ

ti−δi+σ

Q(t)G(y(t− σ)) dt

≥ G(M)
∞∑

i=N+1

∫ ti+δi+σ

ti−δi+σ

Q(t) dt

≥ G(M)
∞∑

i=N+1

∫ ti+σ+δ

ti+σ−δ

Q(t) dt.

Then from (H10) it follows that
∫∞

tN+δN+σ
Q(t)G(y(t− σ)) dt = ∞, a contradiction

to (2.10). If l = −∞ then from (2.3) it follows that w(t)+F (t) ≥ z(t). Hence using
(H3) one may obtain limt→∞ z(t) = −∞. As z(t) > −p(t)y(t − τ) ≥ −p2y(t − τ)
for t ≥ T1, then limt→∞ y(t) = ∞. If y(t) < 0, and unbounded for large t then
we proceed similarly to obtain limt→∞ y(t) = −∞. Next let us prove (ii) and
assume y(t) to be an eventually positive and bounded solution of (1.1) for large
t. Then we proceed as in the first case and obtain (2.10) because l 6= −∞. We
claim lim supt→∞ y(t) = 0. Otherwise let lim supt→∞ y(t) = µ > 0. Then there
exists a sequence 〈tn〉 such that y(tn) > M > 0 for large n. Since y(t) is continuous
there exists δn > 0 such that y(t) > M for t ∈ (tn − δn, tn + δn) and n ≥ N1 and
lim infn→∞ δn > 0. Then proceeding as in the y(t) unbounded case, we get∫ ∞

tN+δN+σ

Q(t)G(y(t− σ)) dt = ∞,

by (H10) which contradicts (2.10). Hence limt→∞ y(t) = 0. The proof for the case
when y(t) < 0 is similar. Thus the proof is complete. �

Remark 2.12. Condition (H10) implies (H1) but not conversely.

Remark 2.13. In [10] the authors in their comments for further research suggested
to develop a theorem for (1.1) when p(t) is in the range (A6).

Remark 2.14. In all the results above we do not have any restriction on the sign
of coefficient function f(t). It may be positive, negative, zero or oscillating.

Example. Consider the NDDE

(y(t)−e−1y(t−1))′+2y3(t−3)− t−2y3(t−2) = 2e9−3t− t−2e6−3t, t > 0. (2.11)

This equation satisfies all the conditions of Theorem 2.1 of this paper for p(t) in the
range (A1). Hence all solutions of (2.11) either oscillate or tend to zero as t →∞.
As such y(t) = e−t is a solution which tends to 0 as t → ∞. Here G(u) = u3 is
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super linear. Since α = 2 < 3 = σ, the results in [4, 7, 11, 12] cannot be applied
to this NDDE. Even [10, Theorem 2.2] (where σ > α) cannot be applied to (2.11)
because it does not satisfy the sub linear condition (H4).

Acknowledgements. The authors are thankful to the anonymous referee for his
or her helpful comments to improve the presentation of the paper.
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