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DIFFERENT TYPES OF SOLVABILITY CONDITIONS FOR
DIFFERENTIAL OPERATORS

SERGEY G. KRYZHEVICH, VITALY A. VOLPERT

Abstract. Solvability conditions for linear differential equations are usually
formulated in terms of orthogonality of the right-hand side to solutions of

the homogeneous adjoint equation. However, if the corresponding operator

does not satisfy the Fredholm property such solvability conditions may be not
applicable. For this case, we obtain another type of solvability conditions, for

ordinary differential equations on the real axis, and for elliptic problems in

unbounded cylinders.

1. Introduction

Many methods of linear and nonlinear analysis are based on Fredholm type solv-
ability conditions. We recall that an operator L satisfies the Fredholm property if,
by definition, the dimension of its kernel is finite, the image is closed, the codimen-
sion of the image is also finite. If it is the case then the nonhomogeneous equation
Lu = f is solvable if and only if φ(f) = 0 for a finite number of linearly inde-
pendent functionals φ from the dual space. These functionals are solutions of the
homogeneous adjoint equation L∗φ = 0.

General elliptic boundary-value problems in bounded domains satisfy the Fred-
holm property if they satisfy the conditions of ellipticity, proper ellipticity and the
Lopatinskii condition (see [2], [3], [21] and the references therein). In the case of
unbounded domains these conditions are not sufficient. Some additional conditions
formulated in terms of limiting operator should be imposed (see [22] and the refer-
ences therein). To illustrate these conditions consider the one-dimensional second
order operator

Lu = a(x)u′′ + b(x)u′ + c(x)u, x ∈ R
where a, b, and c are bounded sufficiently smooth matrices. We can consider it as
acting in Sobolev or in Hölder spaces. Let hk be a sequence of numbers, hk → +∞
or hk → −∞. Consider the shifted coefficients ãk(x) = a(x+hk), b̃k(x) = b(x+hk),
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c̃k(x) = c(x + hk) and choose locally convergent subsequences of these sequences.
Then the operator with the limiting coefficients

L̂u = â(x)u′′ + b̂(x)u′ + ĉ(x)u, x ∈ R

is called limiting operator. There can exists many limiting operator for the same
operator L. The operator L is Fredholm if in addition to the conditions mentioned
above all limiting operators are invertible. This condition is necessary and sufficient.

It is known that if an elliptic operator in an unbounded domain satisfies the
Fredholm property, then the bounded solutions of the homogeneous equation Lu =
0 decay exponentially at infinity. Suppose that, for the operator considered above,
there exists a bounded solution u0(x) of this equation that does not converge to
zero at infinity. Then there exists a sequence hk and a subsequence of the shifted
solutions u0(x+hk) locally converging to some limiting function û(x) such that it is
a bounded nonzero solution of one of the limiting problems L̂û = 0. Therefore the
limiting operator is not invertible and the operator L does not satisfy the Fredholm
property.

Thus, if the homogeneous equation has a bounded solution that does not decay at
infinity, then the usual solvability conditions may be not applicable. In some cases
it is possible to reduce an operator that does not satisfy the Fredholm property to
an operator that satisfies it. It can be done by introduction of some special weighted
spaces or replacing, for example, a differential operator by an integro-differential
operator (see e.g. [8]). In this work we develop another approach to study non
Fredholm operators. In the case where the Fredholm type solvability conditions
are not applicable we obtain another type of solvability conditions. They are also
formulated in terms of solutions of the homogeneous adjoint equation but they
cannot be written in terms of linear functionals from the dual space.

First we obtain these solvability conditions for ordinary differential operators on
the real axis. Then we apply these results to study elliptic problems in unbounded
cylinders. Some spectral projections allow us to reduce them to a sequence of
ordinary differential operators.

Consider the operators L : U → X,

Lu = uxx + ∆yu+A0(x, y)ux +
m∑

k=1

Ak(x, y)uyk
+B(x, y)u (1.1)

in an unbounded cylinder Ω = R × Ω′ with the homogeneous Dirichlet boundary
condition. Here Ω′ is a bounded domain in Rm with C2+δ boundary, 0 < δ < 1,
the coefficients of the operator belong to Cδ(Ω̄), x is a variable along the axis of
the cylinder Ω, and y = (y1, . . . , ym) is a vector variable in the section Ω′. The
function spaces are

U = {u ∈ C2+δ(Ω̄) : u|∂Ω = 0} and X = Cδ(Ω̄).

Here Cδ(Ω̄) is a Hölder space with the norm

‖u‖ = sup
Ω
|u(x)|+ sup

x,y∈Ω

|u(x)− u(y)|
|x− y|δ

,

C2+δ(Ω̄) is the space of functions whose second derivatives belong to Cδ(Ω̄).



EJDE-2006/100 DIFFERENT TYPES OF SOLVABILITY CONDITIONS 3

The Fredholm property of such operators is studied in [9]–[16]. The particular
form of the operator L,

Lu = uxx + ∆yu+A(x)ux +B(x)u, (1.2)

where its coefficients are independent of the variable y is more convenient to study
it by the Fourier decomposition (see below). In some cases more general operator
(1.1) can be reduced to the form (1.2) by a continuous deformation in the class of
Fredholm operators (see [9]) or be approximated by an operator (1.2).

We shall study the linear boundary problems

Lu = 0 (1.3)

and the nonhomogeneous one

Lu = f, f ∈ X. (1.4)

Denote by ωk eigenvalues of the Laplace operator ∆y on the space

U ′ = {v ∈ C2+δ(Ω̄′) : v|∂Ω′ = 0}
and by pk their multiplicities. Note that all ωk are negative, tend to −∞ as k →∞
and their multiplicities pk are finite [11]. The corresponding eigenfunctions ϕi

k

(k ∈ N, i = 1, . . . , pk) form an orthogonal basis in the space L2(Ω′), so the functions
u and f can be presented as Fourier series

u(x, y) =
∞∑

k=1

pk∑
i=1

ui
k(x)ϕi

k(y);

f(x, y) =
∞∑

k=1

pk∑
i=1

f i
k(x)ϕi

k(y).

(1.5)

Having denoted λk =
√
−ωk, vi

k = ui
k
′
/λk, wi

k = (ui
k, v

i
k)T , we can reduce bound-

ary problems (1.3) and (1.4) to infinite sequences of 2n - dimensional ordinary
differential systems

wi
k

′
= Pk(x)wi

k (1.6)
and

wi
k

′
= Pk(x)wi

k + F i
k(x) (1.7)

respectively. Here

Pk(x) =
(

0 λkEn

−
(
B(x)/λk

)
+ λkEn −A(x)

)
; F i

k(x) =
(

0
f i

k(x)/λk

)
,

where En is n× n unit matrix.

Definition 1.1 ([19]). Let I be closed convex subset of R. Consider a n×n matrix
P (x), continuous and bounded on I. The system

u′ = P (x)u

is dichotomic on I if there exist positive constants c and λ, and subspaces Us(x)
and Uu(x) of Rn, defined for all x ∈ I and such that

(1) Φ(x, ξ)Us,u(ξ) = Us,u(x) for all x, ξ ∈ I;
(2) Us(x)⊕ Uu(x) = Rn for every x ∈ I;
(3) |Φ(x, ξ)u0| ≤ c exp(−λ(x− ξ))|u0| for all x, ξ ∈ I: x ≥ ξ, u0 ∈ Us(ξ);
(4) |Φ(x, ξ)u0| ≤ c exp(λ(x− ξ))|u0|, if x, ξ ∈ I: x ≤ ξ, u0 ∈ Uu(ξ).



4 S. G. KRYZHEVICH, V. A. VOLPERT EJDE-2006/100

This property is also called hyperbolicity and the corresponding system is called
hyperbolic. Nevertheless, we shall always call it dichotomic in order not to confuse
this notion with hyperbolicity of partial differential equations. Note that Definition
1.1 coincides with the definition of exponential dichotomy given by Coppel [7, p. 10]
with the additional assumption of the boundedness of the matrix P .

Here and below we denote by |·| the Euclidian vector norm and the corresponding
matrix norm,while by ‖ · ‖ the norms in function spaces. We shall use the following
hypotheses:

Condition 1.2. All systems (1.6) are dichotomic on R.

Condition 1.3. All systems (1.6) are dichotomic both on R+ = [0,+∞) and on
R− = (−∞, 0].

It is shown in [14] that there exists a number N ∈ N (which depends on the
operator L) such that every system (1.6) for k > N is dichotomic on R. Therefore
it is sufficient to check conditions 1.2 and 1.3 for a finite set of systems (1.6).

The following results are established in [15].

Theorem 1.4. The operator L of the form (1.2) is invertible if and only if it
satisfies condtion 1.2.

Theorem 1.5. The operator L of the form (1.2) is Fredholm if and only if it
satisfies 1.3. Its index, that is the difference between the dimension of the kernel
and the codimension of the image is given by the expression

indL =
+∞∑
k=1

pk(d+
k − d−k ),

where d+
k and d−k are dimensions of spaces Ms,+

k (x) and Ms,−
k (x), stable for systems

(1.6) for t ≥ 0 and t ≤ 0 respectively, and pk is a multiplicity of the eigenvalue ωk.

These theorems show that the dichotomy condition for elliptic operators intro-
duced by Palmer [17] (see also [5], [6]) can be reduced to a sequence of dichotomy
conditions for systems (1.6).

If one of systems (1.6) has a bounded solution that does not converge to zero
at infinity, then Conditions 1.2 and 1.3 are not satisfied, and the elliptic operator
does not satisfy the Fredholm property. To study such operators we introduce
almost dichotomic systems (Section 3, 4) and weakly hyperbolic systems (Section
5) and obtain for them solvability conditions. These results are applied in Section
6 to study elliptic operators. In the next section we present a simple example
illustrating non Fredholm solvability conditions.

2. Example of non Fredholm solvability conditions

We present here a simple example that illustrates the classical Fredholm type
solvability conditions and other type solvability conditions when the Fredholm prop-
erty is not satisfied. Consider the scalar equation

du

dt
= a(t)u+ f(t), t ∈ R. (2.1)

One of solutions of (2.1) is given by the equality

u(t) = u0(t)
∫ t

0

v0(τ)f(τ)dτ, (2.2)
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where

u0(t) = e
R t
0 a(τ)dτ , v0(t) = e−

R t
0 a(τ)dτ =

1
u0(t)

,

where u0(t) is a solution of the homogeneous equation, and v0(t) is a solution of
the homogeneous adjoint equation

du0

dt
= a(t)u0,

dv0
dt

= −a(t)v0.

Let us introduce the functions

Φ+(t) = |u0(t)|
∫ t

0

|v0(τ)|dτ, Ψ+(t) = |u0(t)|
∫ ∞

t

|v0(τ)|dτ, t > 0,

Φ−(t) = |u0(t)|
∫

t

0|v0(τ)|dτ, Ψ−(t) = |u0(t)|
∫ t

−∞
|v0(τ)|dτ, t < 0.

Condition 2.1. There exists a positive constant M such that:
- either Φ+(t) ≤ M for all t ≥ 0 or the integral in the expressions for Ψ+(t) is
defined and Ψ+(t) ≤M for all t ≥ 0,
- either Φ−(t) ≤ M for all t ≤ 0 or the integral in the expressions for Ψ−(t) is
defined and Ψ−(t) ≤M for all t ≤ 0.

Proposition 2.2. Let Condition 2.1 be satisfied. If at least one of the functions
Φ+(t) and Φ−(t) is bounded then equation (2.1) has a bounded solution for any
bounded function f . If both of them are not bounded, then a bounded solution exists
if and only if ∫ ∞

−∞
v0(t)f(t)dt = 0. (2.3)

Proof. Suppose that both functions Φ+(t) and Φ−(t) are bounded. Then the solu-
tion of equation (2.1) is given by expression (2.2), and it is obviously bounded.

Suppose next that Φ+(t) is bounded and Φ−(t) is not bounded. Then Ψ−(t) is
defined. Put

u−(t) = u0(t)
∫ t

−∞
v0(τ)f(τ)dτ, (2.4)

It is easy to verify u−(t) is bounded on the whole axis for any bounded f . Moreover,
since u0(t) is not bounded as t → −∞, this function u−(t) is the only solution of
(2.1), bounded as t→ −∞.

The case then Φ−(t) is bounded and Φ+(t) is not, is similar. The bounded
solution is given by formula

u+(t) = −u0(t)
∫ ∞

t

v0(τ)f(τ)dτ. (2.5)

This is the only solution, bounded as t→ +∞.
If both functions Φ+(t) and Φ−(t) are not bounded but Ψ+(t) and Ψ−(t) are

bounded, then u0(t) is not bounded as t → ±∞. Therefore the functions u− and
u+, defined by (2.4) and (2.5), are the only solutions, bounded as t → −∞ and
t→ +∞ respectively. The solution, bounded on the whole axis exists if and only if
u+(0) = u−(0). This gives us the necessity and sufficiency of condition (2.3) The
proposition is proved. �
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Example 2.3. Suppose that a(t) = a+ for t sufficiently large, and a(t) = a− for −t
sufficiently large. If a± 6= 0, then u0(t) and v0(t) behave exponentially at infinity.
Then Condition 2.1 is satisfied.

Note that Proposition 2.2 shows that Condition 2.1 is sufficient for the Fredholm
property. Condition (2.3) is a typical Fredholm type solvability condition. It may
be not satisfied. Suppose for example that v0(t) is integrable. We can choose such
t0 that for the function

f(t) =

{
1, t ≥ t0

−1, t < t0

then Condition (2.3) is satisfied. From the integrability of v0(t) it follows that
u0(t) is not bounded as t→ ±∞. Therefore, the functions Φ+(t) and Φ−(t) are not
bounded neither. If Condition 2.1 is not satisfied, then at least one of the functions
Ψ+(t) and Ψ−(t) is not bounded. Hence there is no bounded solution of equation
(2.1) with such f . Thus, Condition (2.3) may be not sufficient for solvability of
equation (2.1).

To illustrate another type of solvability conditions suppose that the function

b(t) =
∫ t

0

a(s)ds

is bounded uniformly. Then v0(t) is bounded and |u0(t)| ≥ ε > 0 for some ε.
Therefore the solution given by (2.2) is bounded if and only if

sup
t

∣∣ ∫ t

0

v0(s)f(s)ds
∣∣ <∞. (2.6)

As above, the solvability condition is given in terms of bounded solutions of the
homogeneous adjoint equation. However, the principal difference is that condition
(2.6), contrary to Fredholm type solvability conditions, cannot be formulated in the
form φ(f) = 0, where φ is a functional from the dual space.

We will see below that solvability conditions of this type are also applicable for
systems of equations.

3. Ordinary differential systems on the real line

In this section we study invertibility and Fredholm property for linear operators,
corresponding to o.d.e. systems. Let u ∈ Rn. Denote by | · | the Euclidian vector
norm in Rn and the corresponding matrix norm and by 〈·, ·〉 the scalar product in
Rn. Consider the linear system

u′ = P (x)u (3.1)

where the matrix P (x) is defined, bounded and continuous on the interval (a, b) ⊂
R. Here a is a real number or −∞ and b is a real number or +∞. Let Φ(x, t) be
the Cauchy matrix of system (3.1).

Definition 3.1. The system (3.1) is almost dichotomic on (a, b) with positive
constants c and λ if for every x ∈ (a, b) there exist three spaces MS(x) (stable space),
MU (x) (unstable space) and MB(x) (zero space), satisfying following conditions:

(1) MS(x)
⊕
MU (x)

⊕
MB(x) = Rn for all x ∈ (a, b);

(2) Φ(x, t)Mσ(t) = Mσ(x) for all σ ∈ {S,U,B}, x, t ∈ (a, b);
(3) |Φ(x, t)u0| ≤ c exp(−λ(x− t))|u0| for all x ≥ t, x, t ∈ (a, b), u0 ∈MS(t);
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(4) |Φ(x, t)u0| ≤ c exp(λ(x− t))|u0| for all x ≤ t, x, t ∈ (a, b), u0 ∈MU (t);
(5) |Φ(x, t)u0| ≤ c|u0| for all x, t ∈ (a, b), u0 ∈MB(t);

The following statement is evident.

Lemma 3.2. Let matrix P (x) be constant, i.e. P (x) ≡ P . The system (3.1) is
almost dichotomic if and only if for every purely imaginary eigenvalue λ of the
matrix P the number of linearly independent eigenvectors corresponding to λ is
equal to the multiplicity of λ.

Remark 3.3. In other words, the condition is the following: for every λ ∈ iR every
block in the Jordan form of the matrix A corresponding to λ is simple.

Remark 3.4. The statement of the lemma holds true if the matrix P does not
have purely imaginary eigenvalues at all. In this case the space MB is trivial and
system (3.1) is dichotomic.

Definition 3.5 ([1]). Consider the change of variables

u = L(x)v, x ∈ R. (3.2)

It is called Lyapunov transform if the matrix L(x) is C1 - smooth invertible and
all matrices L(x), L−1(x) and L′(x) are bounded.

Lemma 3.6. Let system (3.1) be almost dichotomic and let the dimensions of the
corresponding spaces MS(x), MU (x) and MB(x) be nS, nU and nB, respectively.
Then, for every x there exist continuous projectors ΠS(x), ΠU (x) and ΠB(x) on the
spaces MS(x), MU (x) and MB(x) respectively, such that ΠS(x)+ΠU (x)+ΠB(x) ≡
id . These projectors are uniformly bounded.

Also, there exists a Lyapunov transform (3.2), which reduces system (3.1) to the
form

v′ = P̃ (x)v, (3.3)

where v = (vS , vU , vB), P̃ (x) = diag(PS(x), PU (x), PB(x)), and system (3.3) splits
into three subsystems:

vS
′ = PS(x)vS , (3.4)

vU
′ = PU (x)vU , (3.5)

vB
′ = PB(x)vB . (3.6)

Systems (3.4)–(3.6) satisfy the following properties:
(1) The system (3.4) is steadily dichotomic, i.e. it is dichotomic and the cor-

responding stable space coincides with the space RnS for all x.
(2) The system (3.5) is unsteadily dichotomic, i.e. it is dichotomic and the

corresponding unstable space coincides with the space RnU for all x.
(3) Every solution of the system (3.6) is bounded.

Remark 3.7. The matrix P̃ (x) can be found by the formula

P̃ (x) = L−1(x)P (x)L(x)− L−1(x)L′(x). (3.7)

Since the matrix P (x) is bounded, the matrix P̃ (x) is also bounded. If for a certain
δ ≥ 0, P (x) ∈ Cδ and L(x) ∈ C1+δ, then P̃ (x) ∈ Cδ.

The proof of Lemma 3.6 is the same as the proof for dichotomic (hyperbolic)
ordinary differential systems [7, Lemma 3, p.41], [20, Theorem 0.1, p.14].
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Lemma 3.8. If the system (3.1) is steadily dichotomic, the dual system

u′ = −PT (x)u, (3.8)

is unsteadily dichotomic. If (3.1) is an unsteadily dichotomic system, then the
system (3.8) is steadily dichotomic. If the system (3.1) is almost dichotomic with
all solutions bounded, the dual system also is.

The lemma above follows from the fact that for every fundamental matrix Φ(x)
of system (3.1), the matrix (Φ−1)T (x) is fundamental for system (3.8).

The following statement is evident.

Lemma 3.9. Any system (3.1), which splits into almost dichotomic blocks, is al-
most dichotomic. The stable, unstable and bounded spaces are direct products of the
corresponding spaces for blocks.

Having fixed a number δ ≥ 0, define spaces X = Cδ(R → Rn), Y = C1+δ(R →
Rn) and consider a function f ∈ X.

Theorem 3.10. Let system (3.1) be almost dichotomic on R, and the matrix P (x)
be bounded in Cδ(R → Rn2

). Then for any f ∈ X the system

u′ = P (x)u+ f(x) (3.9)

has a solution υ(x) ∈ Y if and only if

sup
x∈R

∣∣ ∫ x

0

〈ϕ(s), f(s)〉 ds
∣∣ < +∞ (3.10)

for every bounded solution ϕ(s) of system (3.8).

Proof. Transformation (3.2), which exists due to Lemma 3.6, reduces system (3.9)
to the form

v′ = P̃ (x)v + g(x) (3.11)

where P̃ (x) satisfies (3.7), and g(x) = L−1(x)f(x). If f(x) ∈ X, then g(x) ∈ X
and vice versa. System (3.11) splits into three subsystems

vS
′ = PS(x)vS + gS(x), (3.12)

vU
′ = PU (x)vU + gU (x), (3.13)

vB
′ = PB(x)vB + gB(x). (3.14)

Here g(x) = (gS(x), gU (x), gB(x)). Systems (3.9) and (3.11) have bounded solutions
if and only if each system (3.12), (3.13), and (3.14) has a bounded solution.

Let Ψ(x, t) be the Cauchy matrix of system (3.3). It can be written in the form

Ψ(x, t) = diag (ΨS(x, t),ΨU (x, t),ΨB(x, t))

where ΨS(x, t), ΨU (x, t) and ΨB(x, t) are the Cauchy matrices for systems (3.4),
(3.5) and (3.6), respectively. Since systems (3.4) and (3.5) are dichotomic, the
nonhomogeneous systems (3.12) and (3.13) have for every g bounded solutions of
the form

vS(x) =
∫ x

−∞
ΨS(x, t)gS(t) dt; vU (x) = −

∫ ∞

x

ΨU (x, t)gU (t) dt.

All solutions of the system (3.14) have the form

ΨB(x)C +
∫ x

0

ΨB(x, t)gB(t) dt.
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Here ΨB(x) = ΨB(x, 0). Every solution of system (3.6) is bounded. Therefore the
matrix ΨB(x) is also bounded. Hence, it is sufficient to verify that the solution

vB(x) =
∫ x

0

ΨB(x, t)gB(t) dt = ΨB(x)
∫ x

0

Ψ−1
B (t)gB(t) dt

is bounded. Let c be the constant from Definition 3.1 for system (3.1), andK > 0 be
such that max(‖L(x)‖C1+δ , ‖L−1(x)‖C1+δ) < K. Then every column of the matrices
ΨB(x) and Ψ−1

B (x) is bounded by cK. Hence max(‖ΨB(x)‖C1+δ , ‖Ψ−1
B (x)‖C1+δ) ≤√

ncK.
Thus, vB(x) is bounded if and only if the integral

I(x) =
∫ x

0

Ψ−1
B (t)gB(t) dt

is bounded. Consider the matrix Ξ(x) which is obtained from Ψ−1
B by adding

nU +nS zero rows. It follows from Lemmas 3.8 and 3.9 that every bounded solution
of the system

v′ = −P̃T (x)v (3.15)
is a linear combination of columns of Ξ(x). Hence I(x) is bounded if and only if
the condition

sup
x∈R

∣∣ ∫ x

0

〈η(t), g(t)〉 dt
∣∣ < +∞ (3.16)

is satisfied for every bounded solution η(x) of (3.15).
On the other hand, Φ(x) = L(x)Ψ(x) is a fundamental matrix of system (3.1).

Then Ψ−1(x) = Φ−1(x)L(x). Hence every bounded solution η(x) of system (3.15)
can be written in the form η(x) = LT (x)ϕ(x), where ϕ(x) is a bounded solution
of (3.8). It is easy to see that this correspondence is one to one. Consequently, we
can rewrite the integral in (3.16) in the form∫ x

0

〈LT (t)ϕ(t), L−1(t)f(t)〉 dt =
∫ x

0

〈ϕ(t), f(t)〉 dt. (3.17)

Thus, there exists a bounded solution of system (3.9) if and only if expression (3.17)
is uniformly bounded. The theorem is proved. �

Remark 3.11. Condition (3.10) is not a Fredholm type solvability condition.

Bounded solutions of system (3.8) form a linear space H of the dimension

nB = dimMB(x).

Therefore, it is sufficient to verify (3.10) for some basis in H, that is for solutions
of (3.8) with initial data in a basis of MB(0).

For every function f ∈ X, satisfying (3.10), a bounded solution may be found
by the formula

Lf(x) =
∫ x

−∞
Φ(x, s)ΠS(s)f(s) ds+

∫ x

0

Φ(x, s)ΠB(s)f(s) ds

−
∫ +∞

x

Φ(t, s)ΠU (s)f(s) ds.
(3.18)

If the integral ∫ x

0

Φ(x, s)ΠB(s)f(s) ds
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is not bounded, it increases polynomially. On the other hand, any function Φ(x, 0)C
for any C ∈ Rn is bounded or increases exponentially (this follows from Definition
3.1). Hence, if the expression (3.18) is not bounded, then system (3.9) has no
bounded solutions at all. If (3.18) is bounded, then all solutions of the form

u(x) = Lf(x) + Φ(x, 0)C, (3.19)

where C ∈MB(0), are also bounded.
Define the operator TP : Y → X by the formula TPu = u′−P (x)u. If the space

MB(x) is not trivial, then the operator TP is not Fredholm but it can satisfy the
Fredholm property in other function spaces.

Assume that system (3.1) is almost dichotomic on all the line. Denote by B the
set of all bounded solutions of this system and by B∗ the set of bounded solutions
of the adjoint system (3.8). Define the space

XP,δ =
{
f ∈ Cδ(R → Rn) :

∥∥∫ x

0

〈f(s), ϕ(s)〉 ds
∥∥

C0 < +∞ for all ϕ(x) ∈ B∗
}
.

It follows from [14, Theorem 3.10] that the codimension of the space XP,δ in X is
infinite if the space MB(x) is not trivial (otherwise XP,δ = X).

Let ϕ1(x), . . . , ϕnB
(x) be a basis in B∗. The space XP,δ with the norm

‖f‖P,δ = ‖f‖Cδ +
nB∑
k=1

∥∥∫ x

0

〈f(s), ϕk(s)〉 ds
∥∥

C0

is a Banach space. We have TPY = XP,δ since every bounded solution of the system
(3.9) is of the form (3.19). Taking into consideration the space Y ′ = LXP,δ ∈ Y ,
we obtain Y = B ⊕ Y ′. Thus, TP considered as an operator from Y to XP,δ is
Fredholm, and indTP = nB .

4. Systems on half-lines

Similarly to the previous section we can consider systems (3.1) almost dichotomic
on half-axis R− and R+. Let system (3.1) be almost dichotomic on R+. Denote
the corresponding spaces by M+

S (x), M+
U (x) and M+

B (x) and their dimensions by
n+

S , n+
U and n+

B , respectively.
System (3.1) has a bounded solution on the half-axis R+ if and only if

sup
x≥0

∣∣ ∫ x

0

〈ϕ+(s), f(s)〉 ds
∣∣ < +∞ (4.1)

for any solution ϕ+(x) of the adjoint system (3.8) such that ϕ+(x) is bounded on
R+. Note that if ϕ+(x) is exponentially decaying, then condition (4.1) is satisfied
for any bounded f . If (4.1) is satisfied, the there exists a bounded on R+ solution
of (3.9) given by the formula

L+f(x) =
∫ x

0

Φ(x, s)(Π+
S (s) + Π+

B(s))f(s) ds−
∫ +∞

x

Φ(x, s)Π+
U (s)f(s) ds.

Here Π+
S , Π+

U and Π+
B are projectors on the corresponding spaces. All other solutions

bounded for positive x have the form u+(x) = L+f(x)+Φ(x, 0)C+, where C+ is an
arbitrary vector of the space M+ = M+

S (0)⊕M+
B (0). Similarly, if the system (3.1)

is almost dichotomic on R−, denote the corresponding spaces by M+
S (x), M+

U (x)
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and M+
B (x) and their dimensions by n+

S , n+
U and n+

B , respectively. Consider Π−S ,
Π+

U and Π+
B as projectors on M−

S , M+
U and M−

B . The solvability conditions are

sup
x≤0

∣∣∣∣∫ x

0

〈ϕ−(s), f(s)〉 ds
∣∣∣∣ < +∞ (4.2)

for any solution ϕ−(x) of (3.8), bounded for x ≤ 0. If this condition is satisfied,
there is a bounded solution of the form

L−f(x) =
∫ x

−∞
Φ(x, s)Π−S (s)f(s) ds+

∫ x

0

Φ(x, s)(Π−U (s) + Π−B(s))f(s) ds.

All other bounded solutions are given by the expression

u−(x) = L−f(x) + Φ(x, 0)C−,

where C− is an arbitrary vector of the space M− = M−
U (0)⊕M−

B (0).
Assume that system (3.1) is almost dichotomic both for x ≥ 0 and for x ≤ 0. If

the function f satisfies conditions (4.1) and (4.2), then the existence of a solution
u(x) ∈ Y of system (3.9) is provided by the following condition

u+(0) = u−(0) (4.3)

for certain values C+ ∈M+ and C− ∈M−. We can rewrite (4.3) in the form

L+f(0)− L−f(0) ∈M+ +M−.

This Fredholm condition provides the existence of an affine space of bounded solu-
tions of the dimension m0 = dim(M+

⋂
M−).

Now we change the space X in order to make TP Fredholm. Denote by ϕ+(x)
an arbitrary solution of the system (3.8) bounded for x ≥ 0. By ϕ−(x) we denote
an arbitrary solution of the system (3.8) bounded for x ≤ 0. Consider the minimal
linear space A containing all functions of the form

ϕ(x) =

{
0 for x < 0,
ϕ+(x) for x ≥ 0

and

ψ(x) =

{
ϕ−(x) for x ≤ 0,
0 for x > 0.

Denote by m+ and m− dimensions of spaces M+ and M− respectively. Then the
dimension of A equals to m+ +m−. Define the space

XP,δ =
{
f ∈ Cδ(R → Rn) :

∥∥∫ x

0

〈f(s), ϕ(s)〉 ds
∥∥

C0 < +∞ for all ϕ(x) ∈ A
}
.

with the norm

‖f‖P,δ = ‖f‖Cδ +
m++m−∑

k=1

∥∥∫ x

0

〈f(s), ϕk(s)〉 ds
∥∥

C0 .

Here ϕ1(x), . . . , ϕm++m−(x) is a basis in A.
Since the system (3.9) is solvable in Y only if f ∈ XP,δ, one may consider TP

as an operator from Y to XP,δ. This operator is Fredholm. The dimension of the
space M+ +M− is m+ +m− −m0, so

indTP = m0 − (n−m+ −m− +m0) = m+ +m− − n. (4.4)
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Taking into consideration the facts that m+ = n+
S + n+

B , that m− = n−U + n−B and
that n±S + n±U + n±B = n, we obtain from (4.4) other formulae for index:

indTP = n+
S + n+

B − n−S = n−U + n−B − n+
U . (4.5)

5. Weakly hyperbolic systems

Suppose, that the linear system (3.1) is defined on the half-line R+.

Definition 5.1 ([12, 13]). Let λ > 0, and ε ≥ 0. We call the system (3.1) weakly
hyperbolic with constants λ and ε, if there exists such K > 0, that for every con-
tinuous vector function g : [0,∞) → Rn, satisfying for x ≥ 0 the estimate

|g(x)| ≤ exp(−λ(1 + ε)x), (5.1)

there is a solution ϕ(x) of the nonhomogeneous system

u′ = P (x)u+ g(x), (5.2)

such that
|ϕ(x)| ≤ K exp(−λx) for x ≥ 0. (5.3)

Assume that the matrix P (x) in (3.1) is bounded. Denote the class, introduced
by this definition by WH+(λ, ε) (we shall write P ∈ WH+(λ, ε)). Here the super-
script + underlines the fact that the solution ϕ(x) exponentially decays on the right
half-line.

Remark 5.2. If λ1,2 > 0 and ε1,2 ≥ 0 are such that λ1(1 + ε1) ≤ λ2(1 + ε2) and
λ1 ≥ λ2, then WH+(λ1, ε1) ⊆ WH+(λ2, ε2).

Lemma 5.3. Let λ > 0, ε ≥ 0 and let Φ(x) be a fundamental matrix of the system
(3.1). Suppose that there exist such continuous matrices Πs(x) and Πu(x), that

Πs(x) + Πu(x) ≡ E

is a n× n unit matrix and for a certain K > 0 the following inequality is satisfied∫ x

0

|Φ(x)Φ−1(t)Πs(t)| exp(−λ(1 + ε)t) dt

+
∫ ∞

x

|Φ(x)Φ−1(t)Πu(t)| exp(−λ(1 + ε)t) dt ≤ K exp(−λx).
(5.4)

Then P ∈ WH+(λ, ε).

Proof. Denote Φ(x, t) = Φ(x)Φ−1(t),

Φs(x, t) = Φ(x)Φ−1(t)Πs(t), Φu(x, t) = Φ(x)Φ−1(t)Πu(t).

Fix a vector function g(x), satisfying (5.1), and define

ϕ(x) =
∫ x

0

Φs(x, t)g(t) dt−
∫ ∞

x

Φu(x, t)g(t) dt. (5.5)

It follows from (5.4) that integrals in the right-hand side of (5.5) converge and the
solution ϕ(x) satisfies (5.3). The lemma is proved. �

Theorem 5.4. If the system (3.1) is dichotomic on the real line, then there exists
such a value λ0 > 0 that P ∈ WH+(λ, 0) for all 0 < λ < λ0.
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Proof. Consider constants c and λ from Definition 1.1 for the system (3.1), and take
as Πs(x) and Πu(x) projectors on the stable and the unstable space of the system
considered. It is well-known [20, Chapter 1] that max(|Πs(x)|, |Πu(x)|) ≤ M for a
certain M > 0 and all x ≥ 0. Fix a value 0 < µ < λ. Thus, we obtain∫ x

0

|Φs(x, t)| exp(−µt) dt+
∫ ∞

x

|Φu(x, t)| exp(−µt) dt

≤
∫ x

0

Mc exp(−λ(x− t)) exp(−µt) dt+
∫ ∞

x

Mc exp(λ(x− t)) exp(−µt) dt

= Mc
(

exp(−λx)
∫ x

0

exp((λ− µ)t) dt+ exp(λx)
∫ ∞

x

exp(−(λ+ µ)t) dt
)

≤ K exp(−µx).

The theorem is proved. �

Let f(x) be a function (vector function, matrix function) defined on the interval
[0,+∞).

Definition 5.5 ([1, 18]). The number (or the symbol ±∞), defined as

χ+[f ] = lim sup
x→+∞

1
x

ln |f(x)|

is called the Lyapunov exponent of the function f(x).
For a function f(x), defined on R− one can define the Lyapunov exponent in

negative direction

χ−[f ] = lim sup
x→−∞

1
x

ln |f(x)|.

Let Φ(x) = (ϕ1(x), . . . , ϕn(x)) be a fundamental matrix of system (3.1) and let
χ+[ϕj ] = λj (j = 1, . . . , n). Further, let Ψ(x) = [Φ−1(x)]∗ = (ψ1(x), . . . , ψn(x))
and χ+[ψj ] = µj (j = 1, . . . , n). Denote by γ(Φ) = max(λi +µi) the so-called defect
of reciprocal bases {ϕj} and {ψj}.

Definition 5.6 ([1, p. 67]). The system (3.1) is regular if there is such a funda-
mental matrix Φ(x) of this system that γ(Φ) = 0.

It was shown by Grobmann [10], that this definition was equivalent to one, given
by Lyapunov [18]. The class of regular systems is very wide. At least, it includes all
systems with constant and periodic matrices of coefficients [1]. Note that regularity
in positive direction does not imply the regularity in negative direction and vice
versa.

Theorem 5.7. If system (3.1) is regular, then for all λ, ε > 0 this system belongs
to the class WH+(λ, ε).

Proof. Fix positive numbers λ and ε. Choose Φ(x), a fundamental matrix of system
(3.1), which exists due to the Definition 5.6, and consider an n × n matrix Ψs(x)
which consists of those rows of the matrix Φ−1(x), whose Lyapunov exponents are
not less than λ(1+ε), and zero strings. Without loss of generality, one may assume
that first k rows of the matrix Ψs(x) coincide with first k ones of the matrix Φ−1(x),
for a certain 0 ≤ k ≤ n and all other rows of the matrix Ψs(x) are zero. Denote

Πs(x) = Φ(x)Ψs(x), Πu(x) = E −Πs(x) = Φ(x)Ψu(x),
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where the matrix Ψu(x) consists of k zero rows and n − k last rows of the matrix
Φ−1(x).

Now we check inequality (5.4). Denote the elements of the matrix Φs(x, t) by
us

ij(x, t), and the elements of matrices Φ(x) and Φ−1(x) by uij(x) and ηij(x), re-
spectively. Since Φ−1(x)Πs(x) = Ψs(x), we have∫ x

0

|us
ij(x, t)| exp(−λ(1 + ε)t) dt

=
∫ x

0

∣∣ k∑
r=1

uir(x)ηrj(t)
∣∣ exp(−λ(1 + ε)t) dt

≤
k∑

r=1

|uir(x)|
∫ x

0

|ηrj(t)| exp(−λ(1 + ε)t) dt.

(5.6)

Let ηr(x) be the r-th row of the matrix Φ−1(x). Due to the choice of k it is clear
that χ+(|ηr(x)| exp(−λ(1 + ε)x)) ≥ 0 for such r that 1 ≤ r ≤ k. Thus,

χ+
( ∫ x

0

|ηrj(τ)| exp(−λ(1 + ε)τ) dτ
)
≤ χ+(ηr(x))− λ(1 + ε).

Since system (3.1) is regular, for all i, r = 1, . . . , n we have

χ+(uir(x)) + χ+(ηr(x))− λε < 0.

Therefore, the Lyapunov exponent of the right-hand side of (5.6) is less than −λ
and this function could be estimated by cij exp(−λt). Thus,∫ x

0

|Φs(x, t)| exp(−λ(1 + ε)t) dt =
∫ x

0

max
i

n∑
j=1

|us
ij(x, t)| exp(−λ(1 + ε)t) dt

≤ K exp(−λx)
2

(5.7)

for a certain K > 0. A similar estimate can be obtained for the second integral in
(5.4). Together with (5.7) it gives (5.4). This proves the theorem. �

The following results allow us to obtain new weakly hyperbolic systems.

Theorem 5.8. Let the matrix P (x) be of the form

P (x) =
(
P1(x) 0

0 P2(x)

)
,

and let the systems u′1 = P1(x)u1 and u′2 = P2(x)u2 of k and n − k equations,
respectively, belong to the class WH+(λ, ε). Then system (3.1) also belongs to the
same class.

The proof of the above theorem is evident; se we omit it.
Let us denote by exp(−µx)L∞ for any µ > 0 the space of vector functions

obtained as a product of exp(−µx) and a vector function, bounded for x ≥ 0. The
norm in this space is defined by the formula ‖h‖µ = supx≥0(exp(µx)|h(x)|).

Theorem 5.9. Let system (3.1) belong to the class WH+(λ, ε). Then there exists
such a continuous linear mapping

L+ : exp(−λ(1 + ε)x)L∞ → exp(−λx)L∞
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that for any vector function g ∈ exp(−λ(1 + ε)x)L∞ the function L+g(x) is a
solution of system (5.2) for the given g.

Proof. Let k be the dimension of the space of all solutions of equation (3.1), which
belongs to the space exp(−λx)L∞. Denote by Φ(x) the fundamental matrix of
system (3.1), whose first k columns belong to the space exp(−λx)L∞ and no
nontrivial combination of other columns does. We consider an arbitrary function
g ∈ exp(−λ(1 + ε)x)L∞. Provided ‖g‖λ(1+ε) = K, it follows from the conditions
of the theorem that there exists the solution ϕ(x) of system (5.2) satisfying the
inequality

|ϕ(x)| ≤ cK exp(−λx) for x ≥ 0. (5.8)

Obviously, there exists such a constant vector Cϕ that

ϕ(x) = Φ(x)
(
Cϕ +

∫ x

0

Φ−1(τ)g(τ) dτ
)
.

One may split the vector Cϕ into a sum Cϕ = C
(1)
ϕ +C

(2)
ϕ where the first k compo-

nents of the vector C(1)
ϕ and the last n− k ones of the vector C(2)

ϕ equal zero. We
show that the vector C(1)

ϕ does not depend on ϕ for a fixed g. Then we can write
C

(1)
g instead of C(1)

ϕ . Assume that for the same g there exist two solutions ϕ1(x)
and ϕ2(x) of system (5.2) satisfying (5.8). So the solution ϕ1(x)−ϕ2(x) of system
(3.1) belongs to the space exp(−λx)L∞. On the other hand,

ϕ1(x)−ϕ2(x) = Φ(x)(Cϕ1 −Cϕ2) = Φ(x)(C(1)
ϕ1

−C(1)
ϕ2

) + Φ(x)(C(2)
ϕ1

−C(2)
ϕ2

). (5.9)

The second term in the right-hand side of equality (5.9) belongs to the space
exp(−λx)L∞. Therefore the whole sum does. So the equality C

(1)
ϕ1 = C

(1)
ϕ2 fol-

lows from the choice of the matrix Φ(x). Let us define

L+g(x) = Φ(x)
(
C(1)

g +
∫ x

0

Φ−1(τ)g(τ) dτ
)
.

We check now the properties of the mapping L+.
Linearity. Let a, b ∈ R, g1,2 ∈ exp(−λ(1 + ε)x)L∞. By virtue of the definition of
the operator L+

L+(ag1 + bg2)(x) = Φ(x)C(1)
ag1+bg2

+
∫ x

0

Φ(t, τ)(ag1(τ) + bg2(τ)) dτ. (5.10)

The right-hand side of (5.10) belongs to the space exp(−λ(1 + ε)x)L∞. It is a
solution of system (5.2) with g(x) = ag1(x)+bg2(x). Hence C(1)

ag1+bg2
= aC

(1)
g1 +bC(1)

g2

because of the uniqueness of C(1)
g . This proves the linearity of the mapping L+.

Continuity. We will prove that there exists a constant H > 0 such that for every
vector-function g,

‖g‖λ(1+ε) = 1 (5.11)

the inequality
‖L+g‖λ ≤ H (5.12)

is true. We choose an arbitrary solution ϕ(x) of system (5.2) such that

|ϕ(x)| ≤ c exp(−λx) (5.13)
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for every x ≥ 0. According to the definition of the mapping L+,

ϕ(x)− L+g(x) = Φ(x)C(2)
ϕ =

k∑
i=1

ciXi(x),

where Xi(x) are columns of the matrix Φ(x) and C
(2)
ϕ = (c1, . . . , ck, 0, . . . , 0)T .

Assuming that the numbers M and l are such that max(|X1(x)|, . . . , |Xk(x)|) <
M exp(−λx) for any x ≥ 0 and |c1|+ · · ·+ |ck| < l|Cϕ|, we obtain

|ϕ(x)− L+g(x)| ≤
k∑

i=1

|ci|max
i≤k

|Xi(x)| ≤ lM |Cϕ| exp(−λx). (5.14)

On the other hand, ϕ(0) = Φ(0)Cϕ and

|Cϕ| ≤ |Φ−1(0)||ϕ(0)| ≤ c|Φ−1(0)|.

Substituting this estimate into (5.14), we obtain

‖ϕ− L+g‖λ ≤ LMc|Φ−1(0)|. (5.15)

Suppose H = c(1 + LM |Φ−1(0)|). The inequality (5.12) follows from (5.13) and
(5.15). The theorem is proved. �

Theorem 5.10. Let system (3.1) belong to the class WH+(λ, ε) and let the invert-
ible matrix L(x) be such that

L(x) ∈ C1([0,∞)),

χ+(|L(x)|+ |L−1(x)|) = 0.
(5.16)

Then for any λ1 and ε1 such that λ1 < λ, λ1(1 + ε1) > λ(1 + ε) the system

v′ = P̃ (x)v, (5.17)

with the matrix P̃ (x) = L−1(x)P (x)L(x)− L−1(x)L̇(x) obtained from (3.1) by the
transformation

u = L(x)v, (5.18)

belongs to the class WH+(λ1, ε1).

Proof. Let us choose a constant c1 > 0 such that

|L(x)| ≤ c1 exp((λ1(1 + ε1)− λ(1 + ε))x), |L−1(x)| ≤ c1 exp((λ− λ1)x)

for all x ≥ 0. Consider a vector function

g(x) ∈ exp(−λ1(1 + ε1)x)L∞

and the system
v′ = P̃ (x)v + g(x). (5.19)

The transformation inverse to (5.18) reduces this system to the form

u′ = P (x)u+ L(x)g(x). (5.20)

Since −λ1(1 + ε1) < −λ(1 + ε), the vector function L(x)g(x) belongs to the space
exp(−λ(1 + ε)x)L∞. Hence system (5.19) has a solution ϕ(x) ∈ exp(−λx)L∞, and
system (5.20) has a solution

ψ(x) = L−1(x)ϕ(x) ∈ exp(−λ1x)L∞.
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Let c = ‖L+‖, where L+ is the operator which corresponds to the weakly hyperbolic
system (3.1). Clearly,

‖ψ‖λ1 ≤ cc21‖g‖λ1(1+ε1).

Therefore, system (5.17) is weakly hyperbolic with constants λ1 and ε1. The theo-
rem is proved. �

Remark 5.11. Linear transformations (5.18) satisfying (5.16) are called general-
ized Lyapunov transformations. It is proved in [4], see also [1], that system (3.1)
is regular if and only if it can be reduced to a system with a constant matrix by a
generalized Lyapunov transformation.

One can also consider weakly hyperbolic systems in the negative direction, that
is on a half-axis R−. All results similar to theorems of this section may be proved.
Denote the corresponding classes by WH−(λ, ε) and corresponding operators by
L−.

Consider the class WH0(λ, ε) which consists of systems (3.1), defined on R which
are weakly hyperbolic both on the left and the right half-axis with constants λ and
ε. Let Φ(t) be such a fundamental matrix of (3.1) that Φ(0) = E. Consider the
following two spaces

M+ = {u0 ∈ Rn : |Φ(t)u0| ≤ c exp(−λt) for all t ≥ 0},
M− = {u0 ∈ Rn : |Φ(t)u0| ≤ c exp(λt) for all t ≤ 0}.

Let dimM+ = m+, dimM− = m−, M0 = M+
⋂
M−, M̃ = M+ +M−.

Fix nonnegative parameters δ and µ and take into consideration two sets of
functional spaces

Uδ,µ = {u(x) : R → Rn : exp(µ
√

1 + x2)u(x) ∈ C1+δ(R → Rn)};

Xδ,µ = {f(x) : R → Rn : exp(µ
√

1 + x2)f(x) ∈ Cδ(R → Rn)}.

One can define norms in the space Xδ,µ by the formula

‖f‖δ,µ = ‖ exp(µ
√

1 + x2)f(x)‖Cδ .

The norm in Uδ,µ can be defined similarly.

Theorem 5.12. If system (3.1) belongs to the class WH0(λ, 0), then the operator

TP : Uδ,λ → Xδ,λ,

defined by the formula TPu = u′−P (x)u is Fredholm and indTP = m++m−−2n.
If M0 = {0} and M̃ = Rn, the operator TP is invertible.

The proof of this statement is similar to the reasonings presented in Section 4.
The following statement is a corollary of the theory of Fredholm operators [11, 3,
§19.1].

Theorem 5.13. If system (3.1) belongs to the class WH0(λ, 0) and M̃ = Rn, then
there is an operator

LP ∈ C(Xδ,λ → Uδ,λ),

which transforms the function f ∈ Xδ,µ to a solution LP f of system (3.9), that is
TPLP f = f for any f ∈ Xδ,µ.
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These results can be used in the following theorem. To simplify its formulation
we will assume that there exist bounded solutions of systems (5.16) and will not
present the existence conditions.

Theorem 5.14. Let λ0 > 0 be a number such that the system (3.1) belongs to all
classes WH0(λ, ε) for any λ ∈ (0, λ0) and ε > 0. Consider a function f ∈ Cδ(R →
Rn), where δ ∈ (0, 1). Suppose that P (x) ∈ Cδ and that there are two sequences λk

and εk of positive numbers and a sequence of functions fk satisfying the following
conditions:

(1) λk → 0 as k →∞,
(2) λkεk → 0 as k →∞,
(3) the norms ‖fk‖Cδ are uniformly bounded and for every compact set K ⊂ R

the sequence fk converges to f in C(K → Rn),
(4) There is a sequence ϕk of solutions of systems

u′ = P (x)u+ fk(x) (5.21)

such that supk ‖ϕk‖C0 < +∞.
Then system (3.9) is solvable in C1+δ(R → Rn).

Proof. Since the functions ϕk are uniformly bounded in C(R → Rn), then by
virtue of the conditions on the matrix P (x) and on the functions fk they are also
uniformly bounded in C1+δ(R → Rn). Therefore we can choose a subsequence ϕkl

that converges to ϕ0 ∈ C1+δ(R → Rn) uniformly on every compact set K ⊂ R.
The function ϕ0 satisfies equation (3.9). The theorem is proved. �

6. Applications to elliptic partial differential operators

The results of the previous sections will be applied to obtain solvability conditions
for elliptic operators in unbounded cylinders considered in Section 1. Let L be the
operator defined by (1.2). The following lemma is essential for what follows.

Lemma 6.1. There exists a number N ∈ N such that for k > N every system (1.6)
is dichotomic on R with constants c = 2 and λ = 1/2. Furthermore, the norms of
the projectors Πs,u do not exceed 2.

Proof. Consider the change of the independent variable t = λkx. It reduces system
(1.6) to

ẇi
k = Qk(t)wi

k. (6.1)

Here

Qk(t) =
(

0 Em(B(t/λk)
ωk

+ Em

)
−A(t/λk)

λk

)
.

Evidently, the system

ẇ =
(

0 Em

Em 0

)
w (6.2)

is dichotomic with constants c = 1, λ = 1. Moreover, the stable and the unstable
subspace are always orthogonal. Therefore, the norms of the projectors on these
subspaces equal 1. Due to the Perron theorem [7, Proposition 1, p.34] there is such
a value ε > 0 that if

‖B(x)‖/|ωk| < ε and ‖A(x)‖/λk < ε, (6.3)
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then system (6.1) is dichotomic with constants c = 2 and λ = 1/2. We can take
this ε so small that the angle between stable spaces of systems (6.1) and (6.2) for
every x is less then π/100. Then the norms of the corresponding projectors are less
than 2. Hence system (1.6) is dichotomic with constants c = 2 and λ = λk/2. The
norms of the projectors rest the same because they do not depend on the scaling
of the independent variable.

Thus, we can choose the number N big enough in order to obtain the estimate
|λN | > max(1,M/ε). The lemma is proved. �

Remark 6.2. The dichotomicity constants for systems (1.6) can be chosen inde-
pendently of k.

Assume that the operator L and the function f satisfy the condition.

Condition 6.3. Every system (1.7) is solvable in C0(R → Rn).

This condition implies that system (1.7) is solvable in the space C1+δ(R → Rn)
because the coefficients of this system belong to the space Cδ(R → Rn).

Note that if system (3.1) is dichotomic then for every bounded g the corre-
sponding system (5.2) has a bounded solution, which can be found by the following
formula [7, p.22]:

ϕ(x) =
∫ x

−∞
Φ(x, t)ΠS(t)g(t) dt−

∫ ∞

x

Φ(x, t)ΠU (t)g(t) dt.

This solution depends linearly on the right-hand side g and satisfies the inequality

|ϕ(x)| ≤ 2cH/λ.

Here c and λ are the constants of dichotomicity for system (3.1) andH is a constant,
which bounds norms of projectors on the stable and unstable subspaces. Thus,
due to Lemma 6.1 it is sufficient to verify Condition 6.3 for systems (1.7) with
k = 1, . . . , N . To check the solvability of these systems one can either use the
results on almost dichotomic systems (Sections 3 and 4) or use the the theorems
on weakly hyperbolic systems (Section 5). The last approach is applicable if the
right-hand sides F i

k decay exponentially or satisfy conditions of Theorem 5.14.

Theorem 6.4. Let the operator L defined by (1.1) and the function f satisfy Con-
dition 6.3. Then problem (1.4) is solvable in U .

Proof. We will prove convergence of the series (1.5). We take a number N , which
exists due to Lemma 6.1 and consider the spectral decomposition of the operator
L developed in [9]. Consider first the projector P ′N acting in the space Cδ(Ω̄′) and
corresponding to the first N eigenvalues of the Laplace operator ∆′ in the section
of the cylinder,

P ′Nv =
1

2iπ

∫
Γ

(∆′ − λ)−1vdλ.

Here Γ is the contour in the complex plane containing the first N eigenvalues.
Consider the operator Q′N acting in the same space and defined by the equality

Q′Nu = u− P ′Nu.

Denote
E′N = P ′N (Cδ(Ω̄′)), Ẽ′N = Q′N (Cδ(Ω̄′)).

Then
Cδ(Ω̄′) = E′N ⊕ Ẽ′N .
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Let us set

EN = {u ∈ Cδ(Ω̄) : ∀x ∈ R, u(x, ·) ∈ E′N},

ẼN = {u ∈ Cδ(Ω̄) : ∀x ∈ R, u(x, ·) ∈ Ẽ′N}.
We define now the operators

(PNu)(x, ·) = P ′N (u(x, ·)), (QNu)(x, ·) = Q′N (u(x, ·)).
It is shown in [9] that PN and QN are bounded projectors in Cδ(Ω̄) that commute
with the operator L. The subspace EN is invariant with respect to PN , and ẼN is
invariant with respect to QN .

The operator L can be considered as an unbounded operator acting in Cδ(Ω̄′)
with the domain

D(L) = {u ∈ C2+δ(Ω̄), u|∂Ω = 0}.
Denote by LI and LII the restrictions of the operator L to the subspaces EN and
Ẽ′N , respectively. The domains of these operators are the intersections of the cor-
responding subspaces with the domain of the operator L.

It is proved in [9] that for N sufficiently large LI is a Fredholm operator with
the zero index. Note that this result remains valid without the assumption that
the coefficients have limits at infinity.

Since its kernel is empty, then it is invertible. We can represent a function
f ∈ Cδ(Ω̄) as a sum, f = fI + fII, where fI ∈ EN and fII ∈ ẼN . Then the equation
LIu = fI is solvable in EN . Denote its solution by uI. Then LuI = LIuI = fI. On
the other hand, if we look for the solution of the equation Lu = fI in the form of
the Fourier series with respect to the eigenfunctions of the Laplace operator in the
section of the cylinder,

uI(x, y) =
∞∑

k=N+1

pk∑
j=1

uj
k(x)ϕj

k(y), fI(x, y) =
∞∑

k=N+1

pk∑
j=1

f j
k(x)ϕj

k(y),

then by virtue of the condition of the theorem we find unique solutions uj
k of the

corresponding ordinary differential systems of equations. Hence for k > N

uj
k(x) =

∫
Ω′
uI(x, y)ϕ

j
k(y)dy,

and the Fourier series converges to uI(x). It remains to note that (1.5) differs from
the Fourier representation for uI by a finite number of terms and, consequently,
converges. The theorem is proved. �

In the remaining part of this section we will consider almost dichotomic systems
on half-lines.

Condition 6.5. Every system (1.6) is almost dichotomic both on the left- and on
the right-half axis.

Let M±
S,k(x), M±

U,k(x) and M±
B,k(x) be respectively stable, unstable and bounded

subspaces of systems (1.6) in positive and negative direction. Let n±S,k, n±U,k and
n±B,k be corresponding dimensions. Denote byMB,k the space of solutions of system
(1.6) bounded on all the axis. Let dB,k = dimMB,k(x),

NB =
∞∑

k=1

pkdB,k.
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Since there is only finite number of nonzero values dB,k (see Lemma 6.1), the number
NB is finite. Let us select a basis ηk1(x), . . . , ηdB,k

k (x) in every space MB,k(x) such
that every ηj

k(x) is a solution of the corresponding system (1.6). Consider the
problem

L∗u = 0, (6.4)
adjoint to (1.3). It is described by operator L∗u = uxx + ∆yu−A(x)ux +B(x)u.

Then the space B of bounded solutions of the problem (6.4) has a finite basis

{ηl
k(x)ϕj

k(y) : k = 1, . . .N, j = 1, . . . pk, l = 1, . . . dB,k}

and dimB = NB . For every F ∈ X × X and η ∈ B we consider a continuous
function R[F, η] : R → R2n defined by the formula

R[F, η](x) =
∫ x

0

dt

∫
Ω′
〈F (t, y), η(t, y)〉dy.

This function depends linearly both on F and on η.
Consider the following condition

sup
x∈R

|R[F, η](x)| < +∞ ∀η ∈ B. (6.5)

It can be also written in the form

sup
x∈R

|R[F, ηl
kϕ

j
k](x)| < +∞ ∀k = 1, . . .N, j = 1, . . . pk, l = 1, . . . , dB,k.

For every f ∈ X we take the corresponding F (f) = (0, f) ∈ X ×X. We shall say
that f satisfies (6.5) if it is true for F (f).

Denote by X̃ ⊂ X the subspace of functions f satisfying (6.5). It becomes a
Banach space with the norm

‖f‖ eX = ‖f‖X + max
j,k,l

‖R[f, ηl
kϕ

j
k](x)‖C0 .

If every system (1.6) is dichotomic both on the left- and the right-half axis, we may
consider the corresponding operators L±k and spaces M±

k introduced in Section 4.

Theorem 6.6. If conditions (6.5) and

L+
k f

i
k(0)− L−k f

i
k(0) ∈M+

k +M−
k

are satisfied for all k ∈ N, then problem (1.4) is solvable. Moreover, the operator
L : U → X̃ is Fredholm with the index

indL =
∞∑

k=1

(n+
S,k + n+

B,k − n−S,k)pk =
∞∑

k=1

(n−U,k + n−B,k − n+
U,k)pk. (6.6)

Both sums in (6.6) are finite.

Proof. Split the space X̃ into the direct sum X̃ = X̃1 ⊕ X̃2, where

X̃1 = {f ∈ X̃ : f(x, y) =
N∑

k=1

pk∑
i=1

f i
k(x)ϕi

k(y)},

X̃2 = {f ∈ X̃ : f i
k(x) = 0, k = 1, . . . , N, i = 1, . . . , pk},

the number N ∈ N is the same as in Lemma 6.1. As it was mentioned above, one
may consider the splitting U = U1 ⊕ U2 and the restrictions Li : Ui → X̃i of the



22 S. G. KRYZHEVICH, V. A. VOLPERT EJDE-2006/100

corresponding operators to these subspaces. It is shown in the proof of Theorem
6.4 that the operator L2 is invertible.

The space X̃1 splits into the direct sum

X̃1 = p1X
(1) ⊕ p2X

(2) ⊕ · · · ⊕ pNX
(N).

Every term in this sum corresponds to an eigenfunction ϕi
k. Similarly, we may

present the space U . The operator L1 is the sum of operators L(k) : U (k) → X(k),

L(k) =
d2

dx2
+A(x)

d

dx
+B(x) + ωkEn.

and the operators

Tk =
d

dx
− Pk(x) : Y (k) → X(k) ×X(k),

where the matrices Pk are defined in Section 1 and Y (k) is the subspace in C1+δ(R →
R2n), containing functions F = (f1, f2), which satisfy the condition

sup
x≥0

∣∣ ∫ x

0

〈F (t), η(t)〉 dt
∣∣ < +∞

for every η(x) ∈M+
B,k(x) and

sup
x≤0

∣∣ ∫ x

0

〈F (t), η(t)〉 dt
∣∣ < +∞

for every η(x) ∈ M−
B,k(x). It has been shown that all operators Tk are Fredholm

and their indices satisfy (4.5). On the other hand, it is proved in [9] that

indL =
N∑

k=1

pk indL(k).

Therefore it remains to prove the following lemma. �

Lemma 6.7. If the operator Tk is Fredholm, then the operator L(k) is also Fredholm
and their indices are equal to each other.

Proof. The substitution v(x) = u′(x)/λk defines an isomorphism of the spaces
kerL(k) and kerTk. We shall show that numbers of solvability conditions are also
equal. Consider the system

u′ = λkv + f1(x),

v′ =
(
− B(x)

λk
+ λkEm

)
u−A(x)v + f2(x),

(6.7)

where f1(x) ∈ C1+δ(R → Rm) and f2(x) ∈ Cδ(R → Rm).
The transformation q = v + f1(x)/λk reduces system (6.7) to

u′ = λkq,

q′ =
(
−B(x)

λk
+ λkEm

)
u−A(x)q + g(x),

(6.8)

where

g(x) =
f ′1(x) +A(t)f1(x)

λk
+ f2(x) =: π(f1, f2)(x) ∈ Cδ(R → Rm).
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System (6.8) has a bounded solution if and only if system (6.7) has one. If αk =
dim kerTk, then there exist βk = αk+2n−m+

k −m
−
k linearly independent functions

f (j) = (f (j)
1 , f

(j)
2 )T , j = 1, . . . , N such that for every

0 6= f = (f1, f2)T ∈ Lin{f (1), . . . , f (βk)}

system (6.7) has no bounded solutions. Without loss of generality we can assume
that all components f (j)

1 , (j = 1, . . . , βk) belong to C1+δ(R).
Denote g(j) = π(f (j)

1 , f
(j)
2 ). Then for every nontrivial linear combination

g(x) = c1g
(1) + · · ·+ cβk

g(βk)

the corresponding system (6.8) has no bounded solutions. In particular this means
that all functions g(k) are linearly independent. This system of linearly indepen-
dent functions is complete, otherwise the number of solvability conditions for the
operator Tk would exceed βk.

On the other hand, system (6.8) has a solution bounded in C2+δ(R → Rm) if
and only if it is true for the system

u′′ +A(x)u′ + (B(x) + ωkEm)u = g(x).

Therefore, the numbers of solvability conditions for the corresponding operators
are equal to each other. Due to Lemma 6.1 the operator L2 is invertible, so that
indL2 = 0. Hence,

indL = indL1 =
N∑

k=1

(n+
S,k + n+

B,k − n−S,k)pk =
N∑

k=1

(n−U,k + n−B,k − n+
U,k)pk.

This completes the proof of Lemma 6.7 and of Theorem 6.6. �

Corollary 6.8. If M+
k +M−

k = Rn and M+
k

⋂
M−

k = 0 for k = 1, . . . , N , then the
operator L : U → X̃ is continuously invertible.
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