\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2006(2006), No. 08, pp. 1--19.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2006/08\hfil A necessary and sufficient condition] {A necessary and sufficient condition for the existence of positive solutions to singular boundary-value problems of higher order differential equations} \author[C. L. Zhao, Y. Y. Yuan, Y. S. Liu \hfil EJDE-2006/08\hfilneg] {Chenglong Zhao, Yanyan Yuan, Yansheng Liu} \address{Chenglong Zhao\hfill\break Department of Mathematics, Shandong Normal University, Jinan, 250014, China} \email{jnzhchl@sohu.com} \address{Yanyan Yuan \hfill\break Department of Mathematics, Shandong Normal University, Jinan, 250014, China} \email{yanyanyuan0311@163.com} \address{Yansheng Liu \hfill\break Department of Mathematics, Shandong Normal University, Jinan, 250014, China} \email{ysliu6668@sohu.com} \date{} \thanks{Submitted September 8, 2005. Published January 19, 2006.} \thanks{Supported by grants 10571111 from the National Science Foundation of China and \hfill\break\indent Y2005A07 from Natural Science Foundation, Shandong Province, China} \subjclass[2000]{34B16} \keywords{Singular sublinear boundary-value problem; positive solution; \hfill\break\indent fixed point theorem; cone; higher order differential equation} \begin{abstract} By constructing some special cones and using fixed point theorem of cone expansion and compression, this paper presents some necessary and sufficient conditions for the existence of $C^{4n-2}$ positive solutions to a class of singular boundary-value problems. Some examples are presented to illustrate our main results. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction and Preliminary} Singular boundary-value problems (SBVP) for ordinary differential equations arise in the field of gas dynamics, fluid mechanics, theory of boundary layer, and so on. These problems are also an important branch in the field of differential equations \cite{a1,a2,a3,a4,a5,l1,o1,s1,t1,w1,w2,w3,w4,y1,z1}. In recent years, the positive solutions of singular boundary-value problems for higher order nonlinear differential equations have been studied extensively; see for example \cite{a3,l1,o1,s1,w1,w2,w3,w4,y1,z1}. For instance, in the superlinear case, Shi \cite{s1} obtained some necessary and sufficient conditions for the existence of $C^2[0,1]$ or $C^3[0,1]$ positive solutions of differential equations under some conditions. In the sublinear case, Wei \cite{w2} gave a necessary and sufficient condition for the existence of $C^2$ and $C^3$ positive solutions by means of the method of lower and upper solutions with the maximum principle for \begin{gather*} x^{(4)}(t)= f(t,x(t)),\quad \mbox{for all } 00$, and $f\in C[(0,1)\times(0,+\infty)\times(-\infty,0)$, $[0,+\infty)]$ is quasi-homogeneous with respect to the last two variables, that is, there are constants $\lambda$, $\mu$, $\alpha$, $\beta$; $N_1$, $M_1$, $N_2$, $M_2$ with $-\infty<\lambda\leq 0\leq \mu<\infty$, $0\leq \alpha\leq\beta<1$, $\mu+\beta<1$; $00$, $v\leq0$ satisfying \begin{equation} \label{H} \begin{gathered} \bar{c}^\mu f(t,u,v)\leq f(t,\bar{c} u,v)\leq \bar{c} ^\lambda f(t,u,v),\quad 0<\bar{c} \leq N_1,\\ \bar{c}^\lambda f(t,u,v)\leq f(t,\bar{c}u,v)\leq \bar{c}^\mu f(t,u,v),\quad \bar{c}\geq M_1;\\ \bar{c}^\beta f(t,u,v)\leq f(t,u,\bar{c} v)\leq \bar{c}^\alpha f(t,u,v),\quad 0<\bar{c} \leq N_2,\\ \bar{c}^\alpha f(t,u,v)\leq f(t,u,\bar{c} v)\leq \bar{c}^\beta f(t,u,v),\quad \bar{c} \geq M_2. \end{gathered} \end{equation} A typical function satisfying the above hipothesis is $$ f(t,u,v)=\sum_{i=1}^np_i(t)u^{\alpha_i}(-v)^{\beta_i}, $$ where $p_i(t)\in C[(0,1), R^+]$, $\lambda=\alpha_1\leq\alpha_2\leq\dots\leq\alpha_k<0<\alpha_{k+1} \leq\dots\leq\alpha_n=\mu$, $0\leq\beta_i<1$, $k=1, 2, \dots, n-1$, $i=1, 2, \dots, n$. To the best of our knowledge, there is no paper that considers \eqref{e1.1} with general boundary-value conditions. As a result, the goal of present paper discusses and treats the extension of focal boundary- value problems to more general n-th order boundary value problems and hence fill the gap in this area. The main features here are as follows. Firstly, the nonlinear term $f$ include $u^{(4n-2)}$. Secondly, the boundary- value conditions are more extensive. Thirdly, the singularity of $f$ on $u$ is arbitrary. The main techniques used in this paper are some new constructed construct cones and cone expansion and compression fixed point theorems. Comparing with previous literature to study the singular problems, neither the approximation method nor upper-lower solution approach is applied. In this paper, we obtain some necessary and sufficient conditions for the existence of $C^{4n-2}$ positive solutions. We say $u \in C^{4n-2}[0,1]\cap C^{4n}(0,1)$ is a $C^{4n-2}[0,1]$ positive solution of \eqref{e1.1} if $u(t)$ satisfies \eqref{e1.1} and $u(t)>0$ for $t\in (0,1)$. Now we state the following lemma from the literature which will be used in section 2. \begin{lemma}[\cite{g1}] \label{lem1.1} Let $K$ be a cone of real Banach space $E$, $\Omega_1$, $\Omega_2$ be bounded open sets of $E$, $0\in \overline{\Omega}_1\subset\Omega_2$. Suppose that $A: K\cap(\overline{\Omega}_2\setminus\Omega_1)\rightarrow K$ is completely continuous such that one of the following two conditions is satisfied: \begin{itemize} \item[(i)] $\|Ax\|\leq\|x\|$ for $x\in K\cap\partial\Omega_1$; $\|Ax\|\geq\|x\|$ for $x\in K\cap\partial\Omega_2$, \item[(ii)] $\|Ax\|\leq\|x\|$ for $x\in K\cap\partial\Omega_2$; $\|Ax\|\geq\|x\|$ for $x\in K\cap\partial\Omega_1$. \end{itemize} Then $A$ has a fixed point in $K\cap(\overline{\Omega}_2\setminus\Omega_1)$. \end{lemma} \section{Main Results} \begin{theorem} \label{thm2.1} Suppose \eqref{H} holds and $b=d=0$. Then \eqref{e1.1} has a $C^{4n-2}[0,1]$ positive solution if and only if \begin{gather} 0<\int_0^1t(1-t)f(t,t(1-t),-1)dt<+\infty;\label{e2.1} \\ \lim_{t \to {0+}}t\int_{t}^{1}(1-s)f(s,s(1-s),-1)ds=0; \label{e2.2} \\ \lim_{t \to {1-}}t\int_{t}^{1}(1-s)f(s,s(1-s),-1)ds=0. \label{e2.3} \end{gather} \end{theorem} \begin{theorem} \label{thm2.2} Suppose \eqref{H} holds and $b=0, d> 0$. Then \eqref{e1.1} has a $C^{4n-2}[0,1]\cap C^{4n-1}(0,1]$ positive solution if and only if \begin{gather} 0<\int_0^1tf(t,t(1-t),-1)dt<+\infty,\label{e2.4} \\ \lim_{t \to {0+}}t\int_{t}^{1}f(s,s(1-s),-1)ds=0. \label{e2.5} \end{gather} \end{theorem} \begin{theorem} \label{thm2.3} Suppose \eqref{H} holds and $b>0, d= 0$. Then \eqref{e1.1} has a $C^{4n-2}[0,1]\cap C^{4n-1}[0,1)$ positive solution if and only if \begin{gather} 0<\int_0^1(1-t)f(t,t(1-t),-1)dt<+\infty,\label{e2.6} \\ \lim_{t \to {1^-}}(1-t)\int_{0}^{t}f(s,s(1-s),-1)ds=0. \label{e2.7} \end{gather} \end{theorem} It is well known that \begin{equation} G(t, s)= \frac{1}{\Delta}\begin{cases} (b+as)[d+c(1-t)],& s< t;\\ (b+at)[d+c(1-s)],& t\leq s, \end{cases} \label{e2.8} \end{equation} is the Green function of homogeneous boundary-value problem \begin{equation} \begin{gathered} -u''(t)= 0\quad 0\leq t \leq 1,\\ au(0)-bu'(0)=0,\\ cu(1)+du'(1)=0. \end{gathered} \label{e2.9} \end{equation} It is easy to see that \begin{equation} \begin{gathered} G(t,s)\geq \frac{[c(1-s)(b+as)+ads][c(1-t)(b+at)+adt]}{\Delta^2},\\ G(t,s)\leq G(t,t),\quad G(t,s)\leq G(s,s). \end{gathered} \label{e2.10} \end{equation} Since $$ \frac{G(t,s)}{G(\tau,s)}=\begin{cases} \frac{(b+as)[d+c(1-t)]}{(b+a \tau)[d+c(1-s)]},& \tau< s< t;\\ \frac{d+c(1-t)}{d+c(1-\tau)},& s\leq t, \tau;\\ \frac{b+at}{b+a \tau},& t, \tau\leq s;\\ \frac{(b+at)[d+c(1-s)]}{(b+as)[d+c(1-\tau)]},& t< s< \tau, \end{cases} $$ we know that \begin{equation} G(t,s)\geq e(t)G(\tau,s),\label{e2.11}\end{equation} where \begin{equation}e(t)=\frac{(b+at)[d+c(1-t)]}{(b+a)(c+d)}. \label{e2.12} \end{equation} It follows from \eqref{e2.8} that some special Green function of different homogeneous boundary-value problems corresponding to \eqref{e2.9} are \begin{equation} G_1(t,s)=\begin{cases} s(1-t),\ s< t;\\ t(1-s),\ t\leq s, \end{cases}\quad (b=0,\; d=0) \label{e2.13} \end{equation} \begin{equation} G_2(t,s)=\frac{1}{c+d}\begin{cases} s[d+c(1-t)],\ s< t;\\ t[d+c(1-s)],\ t\leq s, \end{cases}\quad (b=0,\ d> 0) \label{e2.14} \end{equation} \begin{equation} G_3(t,s)=\frac{1}{a+b} \begin{cases} (b+as)(1-t),\ s< t;\\ (b+at)(1-s),\ t\leq s. \end{cases} \quad ( b> 0,\ d= 0) \label{e2.15} \end{equation} Let $E=\{u\in C^{4n-2}[0,1]: u(0)=u(1)=0\}$, and define the norm $\|u\|=\max\{\|u\|_0, \|u\|_{4n-2}\}$, for all $u \in E$, where $$ \|u\|_0=\sup_{0\leq t\leq1}|u(t)|,\quad \|u\|_{4n-2}=\sup_{0\leq t\leq1}|u^{(4n-2)}(t)|,\quad \forall u\in E. $$ Then $(E,\|\cdot\|)$ is a Banach space. Define \begin{equation} \begin{aligned} P=\big\{&u\in E :R_1(u)= R_2(u)=0,\; u(t)\geq 0,\; u^{(4n-2)}(t)\leq e(t)u^{(4n-2)}(s)\leq 0,\\ & u(t)\geq -kt(1-t)u^{(4n-2)}(s), \forall t, s\in [0,1] \big\}. \end{aligned}\label{e2.16} \end{equation} where $e(t)$ is given by \eqref{e2.12}, $R_1(u)$ and $R_2(u)$ are defined by \eqref{e1.1}, and \begin{equation} \begin{aligned} k=&\Big(2ac+5bc+5ad)(15abcd+15b^2cd+15abd^2+10b^2c^2+5abc^2\\ & +5a^2cd+a^2c^2+10a^2d^2\Big)/\big(1800(a+b)(c+d))\\ &\times \Big(\frac{5abc^2+10b^2c^2+10abcd+a^2c^2+10a^2d^2+5a^2cd}{30} \Big)^{2n-3}\frac{1}{\Delta^{4n-4}}. \end{aligned}\label{e2.17} \end{equation} It is easy to see that $P$ is a cone of $E$. From \begin{equation} \begin{aligned} u(t) &=\int_0^1\dots \int_0^1 G_1(t,s_{2n-1})G(s_{2n-1},s_{2n-2})\dots G(s_2,s_1)(-u^{(4n-2)}(s_1))\\ &\quad\times ds_1 \dots ds_{2n-1}\\ &\leq\int_0^1G_1(t,s_{2n-1})ds_{2n-1}\int_0^1\frac{(b+a s_{2n-2})[d+c(1-s_{2n-2})]} {\Delta}ds_{2n-2}\\ &\quad\times \dots \int_0^1\frac{(b+a s_1)[d+c(1-s_1)]}{\Delta}ds_1\cdot \|u\|_{4n-2}\\ &=\frac{l^{2n-2}}{2}t(1-t)\|u\|_{4n-2}, \end{aligned}\label{e2.18} \end{equation} where \begin{equation} l=\frac{ac+3ad+3bc+6bd}{6\Delta}, \label{e2.19} \end{equation} for fixed $u \in P$, we have \begin{equation} kt(1-t)\|u\|_{4n-2}\leq u(t)\leq \frac{l^{2n-2}}{2} t(1-t)\|u\|_{4n-2}. \label{e2.20} \end{equation} Moreover, for $u \in P$, $t\in J_0=[\tau,\gamma]$, $0<\tau< \gamma< 1$, we get $\tau(1-\gamma)\leq t(1-t)\leq 1/4$, $(t,s)\in J_0\times J_0$. The inequality \eqref{e2.20} together with \eqref{e2.16} yields \begin{equation} k\tau (1-\gamma)\|u\|_{4n-2}\leq \|u\|_0 \leq \frac{l^{2n-2}}{8}\|u\|_{4n-2},\label{e2.21} \end{equation} where $k$ and $l$ are defined by \eqref{e2.17} and \eqref{e2.19}, respectively. Also, for $e(t), l, k$ corresponding to different settings of boundary-value problem \eqref{e1.1}, we have: (1) For $b=d=0$, \begin{equation} e_1(t)=t(1-t),\quad l_1=\frac{1}{6},\quad k_1=\frac{1}{30^{2n-1}}.\label{e2.22} \end{equation} (2) For $b=0, d> 0$, \begin{equation} \begin{gathered} e_2(t)=\frac{t[d+c(1-t)]}{c+d},\quad l_2=\frac{c+3d}{6(c+d)},\\ k_2=\frac{(2c+5d)(5a^2cd+a^2c^2+10a^2d^2)}{1800(c+d)} \Big(\frac{a^2c^2+10a^2d^2+5a^2cd}{30}\Big)^{2n-3}\\ \times \frac{1}{(ac+ad)^{4n-4}}. \end{gathered} \label{e2.23} \end{equation} (3) For $b> 0, d=0$, \begin{equation} \begin{gathered} e_3(t)=\frac{(b+at)(1-t)}{b+a},\quad l_3=\frac{a+3b}{6(a+b)},\\ k_3=\frac{(2a+5b)(10b^2c^2+5abc^2+a^2c^2)}{1800(a+b)} \Big(\frac{5abc^2+10b^2c^2+a^2c^2}{30}\Big)^{2n-3}\\ \times \frac {1}{(ac+bc)^{4n-4}}. \end{gathered}\label{e2.24} \end{equation} In the following, we give the proof of Theorems \ref{thm2.1}, \ref{thm2.2}, and \ref{thm2.3}. \begin{proof}[Proof of Theorem \ref{thm2.1}] \textbf{Sufficiency.} In this theorem, the cone $P$ is \begin{equation} \begin{aligned} P_1=\big\{&u\in E :R_1(u)= R_2(u)=0,\; u(t)\geq 0,\; u^{(4n-2)}(t)\leq e_1(t)u^{(4n-2)}(s)\leq 0,\\ & u(t)\geq -k_1t(1-t)u^{(4n-2)}(s), \forall t, s\in [0,1] \big\}. \end{aligned}\label{e2.25} \end{equation} where $e_1(t), k_1$ are given by \eqref{e2.23}, $R_1(u)=u^{(2k)}(0)$, $R_2(u)=u^{(2k)}(1)$, $k=1, 2, \dots,2n-1$. By \eqref{e2.21} and \eqref{e2.22}, we get \begin{equation} \|u\|=\|u\|_{4n-2},\quad \forall u \in P_{1}. \label{e2.26} \end{equation} Furthermore, from \eqref{e2.16},\eqref{e2.20} and \eqref{e2.26}, we have \begin{equation} \begin{gathered} \frac{1}{30^{2n-1}}t(1-t)\|u\|\leq u(t)\leq \frac{1}{2\times 6^{2n-2}}t(1-t)\|u\|,\\ t(1-t)\|u\| \leq -u^{(4n-2)}(t)\leq \|u\|.\label{e2.27} \end{gathered} \end{equation} Define an operator $A$ on $P_1\setminus \{0\}$ by \begin{equation}(Au)(t)=\int_0^1 h_1(t,s)f(s,u(s),u^{(4n-2)}(s))ds,\quad \forall\ u \in P_1\setminus \{0\}, \label{e2.28} \end{equation} where $$ h_1(t,s)= \int_0^1\dots \int_0^1 G_1(t,s_{2n-1})G_1(s_{2n-1}),s_{2n-2})\dots G_1(s_1,s)ds_1 \dots ds_{2n-1}; $$ and $ G_1(t,s)$ is defined by \eqref{e2.13}. Clearly, $$ G_1(t,s)\leq G_1(s,s),\quad G_1(t,s)\leq G_1(t,t),\quad G_1(t,s)\geq t(1-t)s(1-s), $$ for all $t,\ s\in [0,1]$. Then \begin{equation} \begin{aligned} & h_1(t,s) \\ &\leq \int_0^1t(1-t)ds_{2n-1}\int_0^1s_{2n-1}(1-s_{2n-1})ds_{2n-2}\dots \int_0^1s_2(1-s_2)s(1-s)ds_1\\ &\leq t(1-t)\int_0^1 \dots \int_0^1 s_{2n-1}(1-s_{2n-1})\dots s_2(1-s_2)s(1-s)ds_{2n-1} \dots ds_2\\ &\leq t(1-t)s(1-s)\\ &\leq s(1-s),\quad \forall\ t,s\in [0,1]. \end{aligned}\label{e2.29} \end{equation} Now we claim that $Au$ is well defined on $P_1\setminus \{0\}$. First, for $\forall u\in P_1\setminus \{0\},$\ we can see that $\|u\|\neq 0.$\ At the same time, notice that $G_1(t,s)\leq G_1(s,s),\ \forall\ t,\ s\in [0,1]$. This together with \eqref{e2.1} yields that $ \int_0^1 G_1(s_1,s)f(s,u(s),u^{(4n-2)}(s))ds$ is convergent. In fact, for $\forall\ u\in P_1\setminus \{0\}$, choose positive numbers $c_1\leq \min\{N_1,\ \frac{\|u\|}{30^{2n-1}M_1}\}$ and $c_2\geq \max \{M_2,\ \frac{\|u\|}{N_2}\}$.\ By (1.4) and \eqref{e2.27}, we obtain \begin{equation} \begin{aligned} &\int_0^1 G_1(s_1,s)f(s,u(s),u^{(4n-2)}(s))ds \leq \int_0^1 s(1-s)f(s,u(_s),u^{(4n-2)}(s))ds\\ &\leq \int_0^1 s(1-s)f(s,c_1\frac{u(s)}{c_1s(1-s)}s(1-s),(-1)c_2 \frac{-u^{(4n-2)}(s)}{c_2})ds\\ &\leq \int_0^1 s(1-s)c_1^\lambda (\frac{u(s)}{c_1s(1-s)})^\mu c_2^\beta (\frac{-u^{(4n-2)}(s)}{c_2})^\alpha f(s,s(1-s),-1)ds\\ &\leq \int_0^1 s(1-s)c_1^{\lambda-\mu} (\frac{\|u\|}{2\times6^{2n-2}})^\mu c_2^\beta (\frac{\|u\|}{c_2})^\alpha f(s,s(1-s),-1)ds\\ &\leq (\frac{1}{2\times6^{2n-2}})^\mu c_1^{\lambda-\mu}c_2^{\beta-\alpha} \|u\|^{\mu+\alpha}\int_0^1 s(1-s)f(s,s(1-s),-1)ds\\ &= c_3\|u\|^{\mu+\alpha}\int_0^1 s(1-s)f(s,s(1-s),-1)ds <\infty, \end{aligned}\label{e2.30} \end{equation} where \begin{equation}c_3=(\frac{1}{2\times6^{2n-2}})^\mu c_1^{\lambda-\mu}c_2^{\beta-\alpha}. \label{e2.31} \end{equation} Also, by \eqref{e2.29} and the process similar to the proof of \eqref{e2.30}, for $\forall\ u\in P_1\setminus \{0\}$, there exist positive constants $c_1$ and $c_2$ such that \begin{equation} \begin{aligned} Au(t)&=\int_0^1 h_1(t,s)f(s,u(s),u^{(4n-2)}(s))ds\\ &\leq \int_0^1s(1-s)f(s,u(s),u^{(4n-2)}(s))ds\\ &\leq c_3\|u\|^{\mu+\alpha}\int_0^1 s(1-s)f(s,s(1-s),-1)ds <\infty, \end{aligned}\label{e2.32} \end{equation} where $c_3$ is the same as \eqref{e2.31}. This together with \eqref{e2.1} yields that $A$ is well defined on $P_1\setminus \{0\}$. Obviously, if \eqref{e2.1}-\eqref{e2.3} hold, then \eqref{e1.1}$(b=d=0)$ has a positive solution $u$ if and only if $A$ has a fixed point in $P_1\setminus \{0\}$. So we need to prove only that $A$ has a fixed point in $P_1\setminus \{0\}$. Now we show that $A:\ P_1\setminus \{0\}\to P_1$ is completely continuous. Firstly, we show that $A(P_1\setminus\{0\})\subset P_1$. To see this, for all $u \in P_1\setminus \{0\}$, notice that \begin{align*} (Au)^{(4n-2)}(t)&=-\int_0^1G_1(t,\tau) f(\tau,u(\tau),u^{(4n-2)}(\tau))d\tau\\ &\leq -t(1-t)\int_0^1G_1(s,\tau)f(\tau,u(\tau),u^{(4n-2)}(\tau))d\tau\\ &=t(1-t) (Au)^{(4n-2)}(s)\leq 0,\quad \forall\ t,\ s \in [0,1], \end{align*} and \begin{align*} (Au)(t)&=\int_0^1 \dots \int_0^1 G_1(t,s_{2n-1})G_1(s_{2n-1},s_{2n-2}) \dots G_1(s_2,s_1)\\ &\quad\times (-(Au)^{(4n-2)}(s_1))ds_1ds_2\dots ds_{2n-1}\\ &\geq -t(1-t)\int_0^1 \dots \int_0^1 s_{2n-1}^2(1-s_{2n-1}))^2\dots s_2^2(1-s_2)^2\\ &\quad\times s_1^2(1-s_1)^2 (Au)^{(4n-2)}(s)ds_1 \dots ds_{2n-1}\\ &\geq -\frac{t(1-t)}{30^{2n-1}}(Au)^{(4n-2)}(s). \end{align*} Then we have $A(P_1\setminus\{0\})\subset P_1$. Secondly, we show that $A$ is bounded. In fact, let $V\subset P_1\setminus \{0\}$ be a bounded set. There exists a positive constant $L$ satisfying $\|u\|\leq L$, for all $u \in V$. Choose $ c_1\leq\min\{N_1, \frac{L}{30^{2n-1}M_1}\}$ and $ c_2\geq \max\{M_2, \frac{L}{N_2}\}$. By \eqref{e2.1}, \eqref{e2.30}, and \eqref{e2.31}, we get \begin{align*} |(Au)^{(4n-2)}(t)|&=\int_0^1G_1(t,s)f(s,u(s),u^{(4n-2)}(s))ds\\ &\leq \int_0^1s(1-s)f(s,c_1\frac{u(s)}{c_1s(1-s)}s(1-s),(-1)c_2 \frac{-u^{(4n-2)}(s)}{c_2})ds\\ &\leq c_3 L^{\mu+\alpha} \int_0^1s(1-s)f(s,s(1-s),-1)ds\\ &<+\infty,\quad \forall t\in [0,1], \quad\forall u\in P_1\setminus \{0\}. \end{align*} Therefore, this together with \eqref{e2.26} implies \begin{equation} \|Au\|\leq c_3 L^{\mu+\alpha} \int_0^1 s(1-s)f(s,s(1-s),-1)ds <+\infty, \label{e2.33} \end{equation} where $c_3$ is defined by \eqref{e2.31}. Namely, $AV$ is uniformly bounded. Thirdly, by \eqref{e2.33} and the Ascoli-Arzela theorem, we need to show only that $AV$ is equicontinuous on $[0,1]$. Therefore, we need to prove only that ($Au)^{(4n-2)}(t) \to 0$ as $t\to 0^+$ and $t\to 1^-$ uniformly with respect to $u\in V$ and $AV$ are equicontinuous on any closed subinterval of (0,1). In fact, notice that \begin{align*} & -(Au)^{(4n-2)}(t)\\ &=\int_0^1 G_1(t,s) f(s,u(s),u^{(4n-2)}(s))ds\\ &=(1-t)\int_0^t sf(s,u(s),u^{(4n-2)}(s))ds +t\int_t^1(1-s)f(s,u(s),u^{(4n-2)}(s))ds, \end{align*} Then this together with \eqref{e2.1} and \eqref{e2.2} guarantees $(Au)^{(4n-2)}(t)\to 0$, as $t\to 0^+$ or $t\to 1^-$, uniformly with respect to $u\in V$. Now, we are in position to show that for $\forall\ a\in (0,\frac{1}{2}),\ AV$ are equicontinuous on $[a,1-a]$. For all $t_1,\ t_2 \in [a,1-a]$, $t_1< t_2$, for all $u \in V$, by \eqref{e2.31}, we get \begin{align*} & |(Au)^{(4n-2)}(t_2)-(Au)^{(4n-2)}(t_1)|\\ & =\Big|\int_0^{t_1} (t_1-t_2)sf(s,u(s),u^{(4n-2)}(s))ds +\int_{t_1}^{t_2} (1-t_2) sf(s,u(s),u^{(4n-2)}(s))ds\\ &\quad +\int_{t_2}^1 (t_2-t_1) (1-s)f(s,u(s),u^{(4n-2)}(s))ds\\ &\quad -\int_{t_1}^{t_2} t_1(1-s) f(s,u(s),u^{(4n-2)}(s))ds\Big|\\ & \leq c_3 L^{\mu+\alpha}[(t_2-t_1)\int_0^{1-(t_2-t_1)} sf(s,s(1-s),-1)ds \\ &\quad +(t_2-t_1)\int_{t_2-t_1}^1(1-s) f(s,s(1-s),-1)ds +2\int_{t_1}^{t_2} s(1-s)f(s,s(1-s),-1)ds]. \end{align*} %\label{e2.34} Also, as $|t_1-t_2|\to 0$, \eqref{e2.1}-\eqref{e2.3} imply \begin{gather*} (t_2-t_1)\int_0^{1-(t_2-t_1)} sf(s,s(1-s),-1)ds\to 0,\\ (t_2-t_1)\int_{t_2-t_1}^1(1-s)f(s,s(1-s),-1)ds\to 0,\\ \int_{t_1}^{t_2} s(1-s)f(s,s(1-s),-1)ds\to 0. \end{gather*} This guarantees $|(Au)^{(4n-2)}(t_2)-(Au)^{(4n-2)}(t_1)|\to 0 (|t_1-t_2|\to 0)$. Similar to the above proof, we can get $ (Au)(t)\to 0$, as $t\to 0^+$ or $t\to 1^-$ uniformly with respect to $u\in V$ and for all $t_1, t_2 \in [a,1-a]$, $t_1< t_2$, for all $u \in V$, we have $|(Au)(t_2)-(Au)(t_1)|\to 0 (|t_1-t_2|\to 0)$. Therefore, $AV$ is relatively compact. Finally, it remains to show $A$ is continuous. Suppose $u_n, u_0\in P$, and $\|u_n-u_0\|\to 0\ (n\to \infty)$. Then $\{u_n\}$ is a bounded set and $$ \|u_n-u_0\|_0\to 0,\quad \|u_n-u_0\|_{4n-2}\to 0\quad (n\to \infty). $$ Let $M=\sup\{\|u_n\|,\ n=0,\ 1,\ 2,\ \dots\}$. Then we may still choose positive constants $ c_1\leq\min\{N_1, \frac{M}{30^{2n-1}M_1}\}$ and $ c_2\geq \max\{M_2, \frac{M}{N_2}\}$. Similar to the proof of \eqref{e2.30}, we get \begin{equation} f(t,u_n(t),u_n^{(4n-2)}(t))\leq c_3 M^{\mu+\alpha} f(t,t(1-t),-1),\quad t\in (0,1), \label{e2.35} \end{equation} \begin{equation} \begin{aligned} &|(Au_n)^{(4n-2)}(t)-(Au_0)^{(4n-2)}(t)|\\ & \leq \int_0^1 s(1-s) |f(s,u_n (s),u_n^{(4n-2)}(s)) -f(s,u_0(s),{u_0}^{(4n-2)}(s))|ds, \end{aligned}\label{e2.36} \end{equation} and \begin{align*} &|(Au_n)(t)-(Au_0)(t)|\\ &\leq \int_0^1 s(1-s) |f(s,u_n (s),u_n^{(4n-2)}(s)) -f(s,u_0(s),{u_0}^{(4n-2)}(s))|ds. \end{align*} The above inequality, \eqref{e2.1}, \eqref{e2.35}, \eqref{e2.36}, the Lebesgue dominated convergence theorem, and Ascoli-Arzela theorem guarantee that $$\|Au_n-Au_0\|\to 0\quad (n\to \infty), $$ that is, $A$ is continuous. Summing up, $A: P_1\setminus {0} \to P_1$ is completely continuous. For $0< r<1 < R$, let $$ P_{1,r}=\big\{u\in P_1: \|u\|\leq r\big\},\quad P_{1,R}=\big\{u\in P_1:\|u\|\leq R\big\}. $$ Choose $r$ such that \begin{align*} 0 0$. Since $u^{(4n)}(t)\geq 0, t\in (0,1)$, we find $$ u^{(4n-1)}(t)\leq 0,\quad t \in (0,t_0);\quad u^{(4n-1)}(t)\geq 0,\quad t\in (t_0,1), $$ and hence $u^{(4n-2)}(t)\leq 0,\ t\in [0,1]$. By the same way, we know $u''(t)\leq 0$ for $t\in [0,1]$. Therefore, this implies \eqref{e2.39}-\eqref{e2.42}, \eqref{e2.45}, \eqref{e2.46}, and \begin{align*} \int_{t_0}^1f(t,t(1-t),-1)dt &\leq \int_{t_0}^1 c_1^{\lambda-\mu}c_2^{\beta-\alpha}m_1^{-\mu} (-u^{(4n-2)}(t))^{-\beta} f(t,u(t),u^{(4n-2)}(t))dt\\ &\leq c_1^{\lambda-\mu}c_2^{\beta-\alpha}m_1^{-\mu} (-u^{(4n-2)}(1))^{-\beta}u^{(4n-1)}(1)<\infty. \end{align*} Clearly, it follows from the above inequality and \eqref{e2.42} that \eqref{e2.4} holds. Moreover, by virtue of \eqref{e2.45}, \eqref{e2.5} is satisfied. \noindent Case (2). If $t_0=1$. Then $ u^{(4n-1)}(1)= 0, u^{(4n-2)}(1)< 0$, and \eqref{e2.39}- \eqref{e2.41} hold. Also, by \eqref{e2.40}, we have \begin{align*} 0 &< \int_0^1 t f(t,t(1-t),-1)dt=\int_0^1 dt\int_t^1 f(s,s(1-s),-1)ds\\ &\leq \int_0^1 dt\int_t^1 c_1^{\lambda-\mu}c_2^{\beta-\alpha}m_1^{-\mu}(-u^{(4n-2)}(s))^{-\beta} f(s,u(s),u^{(4n-2)}(s))ds. \end{align*} Notice that $-u^{(4n-2)}(s)$ is nondecreasing in $s$ on $(0,1)$. Then we have \begin{align*} 0&<\int_0^1 t f(t,t(1-t),-1)dt\\ &\leq c_1^{\lambda-\mu}c_2^{\beta-\alpha}m_1^{-\mu} \int_0^1(-u^{(4n-2)}(t))^{-\beta} (-u^{(4n-1)}(t))dt\\ &= c_1^{\lambda-\mu}c_2^{\beta-\alpha}m_1^{-\mu} \frac{(-u^{(4n-2)}(1))^{1-\beta} }{1-\beta} < \infty,\ t\in (0,1). \end{align*} Namely, \eqref{e2.4} holds. By \eqref{e2.41}, and integrating \eqref{e2.40}, we obtain \begin{equation} \begin{aligned} &t\int_t^1 f(s,s(1-s),-1)ds\\ &\leq \int_0^t d\xi \int_\xi^1 f(s,s(1-s),-1)ds\\ &\leq c_1^{\lambda-\mu}c_2^{\beta-\alpha}m_1^{-\mu}\int_0^t d\xi \int_\xi^1(-u^{(4n-2)}(s))^{-\beta} f(s,u(s),u^{(4n-2)}(s))ds\\ &\leq c_1^{\lambda-\mu}c_2^{\beta-\alpha}m_1^{-\mu}\frac{(-u^{(4n-2)}(t))^{1-\beta} }{1-\beta}. \end{aligned}\label{e2.53} \end{equation} Noting $u^{(4n-2)}(0)=0,\ \beta<1$, and letting $t\to 0^+$ in \eqref{e2.53}, we have $$\lim_{t \to {0+}}t\int_{t}^1 f(s,s(1-s),-1)ds=0. $$ This implies \eqref{e2.5}. \end{proof} \begin{proof}[Proof of Theorem \ref{thm2.3}] {\bf Sufficiency}. In this theorem, the cone $P$ is \begin{align*} P_3=\big\{&u\in E :R_1(u)=R_2(u)=0,\; u(t)\geq 0,\; u^{(4n-2)}(t)\leq e_3(t)u^{(4n-2)}(s)\leq 0,\\ &u(t)\geq -k_3 t(1-t)u^{(4n-2)}(s), \forall t, s\in [0,\ 1]\big\}, \end{align*} where $e_3(t), k_3$ are given by \eqref{e2.24}, $R_1(u)=au^{(2k)}(0)-bu^{(2k+1)}(0)$, $R_2(u)=u^{(2k)}(1)$, $k= 1, 2, \dots, 2n-1$. According to \eqref{e2.21} and \eqref{e2.24}, we show \begin{gather*} \|u\|=\|u\|_{4n-2},\quad \forall\ u \in P_3, \\ k_3t(1-t)\|u\|\leq u(t)\leq \frac{l_3^{2n-2}}{2} t(1-t)\|u\|,\quad e_3(t) \|u\|\leq -u^{(4n-2)}(t)\leq \|u\|, \end{gather*} where $l_3$ is defined by \eqref{e2.24}. Assume \eqref{e2.6} and \eqref{e2.7} hold. Then \eqref{e1.1} has a $C^{4n-2}[0,1]\cap C^{4n-1}[0,1)$ positive solution $u$ if and only if $u$ is a positive solution of the following integral equation $$ u(t)=(A u)(t)=\int_0^1 h_3(t,s)f(s,u(s),u^{(4n-2)}(s))ds,\quad \forall\ u \in P_3\setminus \{0\}, $$ where \begin{align*} &h_3(t,s)\\ &= \int_0^1\dots \int_0^1 G_1(t,s_{2n-1})G_3(s_{2n-1},s_{2n-2})\dots G_3(s_2,s_1)G_3(s_1,s)ds_1 \dots ds_{2n-1}; \end{align*} and $G_1(t,s)$, $G_3(t,s)$ are defined by \eqref{e2.13} and \eqref{e2.15}, respectively. The rest of the proof is very similar to Theorem \ref{thm2.1} and Theorem \ref{thm2.2}. So it is omitted. \smallskip \noindent\textbf{\bf Necessity.} Let $u(t)$ be a $C^{4n-2}[0,1]\cap C^{4n-1}[0,1)\cap C^{4n}(0,1)$ positive solution of \eqref{e1.1}. Then we claim that there is a constant $t_0\in [0,1)$ satisfying $$ u^{(4n-1)}(t_0)=0,\quad u^{(4n-1)}(0)=-\frac{a}{b}u^{(4n-2)}(0)\leq 0. $$ Similar to the proof of necessity of Theorem \ref{thm2.2}, the argument can be broken into two cases: $t_0<0$ and $t_0=0$. \noindent Case (1): Assume $t_0<0$. Then $ u^{(4n-1)}(0)< 0$. This implies \eqref{e2.39}-\eqref{e2.40}, \eqref{e2.43}, \eqref{e2.44}, \eqref{e2.46}, and $$ \int_0^{t_0}f(t,t(1-t),-1)dt \leq c_1^{\lambda-\mu}c_2^{\beta-\alpha}m_1^{-\mu}(-u^{(4n-2)}(0))^{-\beta} (-u^{(4n-1)}(0))<\infty . $$ Therefore, the above inequality and \eqref{e2.44} guarantee \eqref{e2.6}. Also, by \eqref{e2.46}, we can deduce \eqref{e2.7}. \noindent Case (2). If $t_0=0$, then $u^{(4n-1)}(0)= 0$, $u^{(4n-2)}(0)< 0$, and \eqref{e2.39}-\eqref{e2.40}, \eqref{e2.43} hold. Notice that $-u^{(4n-2)}(s)$ is decreasing in $s$ on (0,1). Similar to the case (2) of Theorem \ref{thm2.2}, by \eqref{e2.40}, we have \begin{align*} 0 &< \int_0^1(1- t)f(t,t(1-t),-1)dt=\int_0^1 dt\int_0^t f(s,s(1-s),-1)ds\\ &\leq c_1^{\lambda-\mu}c_2^{\beta-\alpha}m_1^{-\mu} \frac{(-u^{(4n-2)}(0))^{1-\beta}}{1-\beta} < \infty,\ t\in (0,1). \end{align*} Namely, \eqref{e2.6} holds. By \eqref{e2.43}, integrating \eqref{e2.40}, we get \begin{equation} \begin{aligned} &(1-t)\int_0^t f(s,s(1-s),-1)ds\\ &\leq \int_t^1 d\xi \int_0^\xi f(s,s(1-s),-1)ds\\ &\leq c_1^{\lambda-\mu}c_2^{\beta-\alpha}m_1^{-\mu}\int_0^t d\xi \int_\xi^1(-u^{(4n-2)}(s))^{-\beta} f(s,u(s),u^{(4n-2)}(s))ds\\ &\leq c_1^{\lambda-\mu}c_2^{\beta-\alpha}m_1^{-\mu}\frac{(-u^{(4n-2)}(t))^{1-\beta} }{1-\beta}. \end{aligned}\label{e2.54} \end{equation} By $u^{(4n-2)}(1)=0,\ $ and letting $t\to 1^-$ in \eqref{e2.54}, we obtain $$\lim_{t \to {1^-}}(1-t)\int_0^t f(s,s(1-s),-1)ds=0. $$ This implies \eqref{e2.7}. \end{proof} \section{Examples} \begin{example} \label{ex1} \rm Consider \eqref{e1.1} with $(b=d=0)$ and $$ f(t,u,v)=p_1(t)u^{-20}(-v)^{1/6}+p_2(t)u^{1/5}(-v)^{\frac{1}{5}}, $$ where $p_i\in C[(0,1),R^+]$ $(i=1,2)$. It is easy to see, by Theorem \ref{thm2.1}, that \eqref{e1.1} with $(b=d=0)$ has a $C^{4n-2}$ positive solution if and only if \begin{gather*} 0<\int_0^1[p_1(t)(t(1-t))^{-19}+p_2(t)(t(1-t))^{6/5}]dt<+\infty,\\ \lim_{t \to {0+}}t\int_{t}^{1}[p_1(s)s^{-20}(1-s)^{-19}+p_2(s) s^{\frac{1}{5}}(1-s)^{6/5}]ds=0,\\ \lim_{t \to {1-}}t\int_{t}^{1}[p_1(s)s^{-20}(1-s)^{-19} +p_2(s)s^{\frac{1}{5}}(1-s)^{6/5}]ds=0. \end{gather*} \end{example} \begin{example} \label{ex2} \rm Consider \eqref{e1.1} with $(b=0,d>0)$ and $$ f(t,u,v)=q_1(t)u^{-18}(-v)^{\frac{1}{3}}+q_2(t)u^{\frac{1}{17}} (-v)^{\frac{1}{13}}, $$ where $q_i\in C[(0,1),R^+](i=1,2)$. Obviously, by Theorem \ref{thm2.2} , one can see that \eqref{e1.1} with $(b=0,d>0)$ has a $C^{4n-2}[0,1]\cap C^{4n-1}(0,1]$ positive solution if and only if \begin{gather*} 0<\int_0^1[q_1(t)t^{-17}(1-t)^{-18}+q_2(t)t^{\frac{18}{17}}(1-t) ^{1/17}]dt<+\infty.\\ \lim_{t \to {0+}}t\int_{t}^{1}[q_1(s)(s(1-s))^{-18}+q_2(s)(s(1-s) )^{1/17}]ds=0. \end{gather*} \end{example} \begin{example} \label{ex3} \rm Consider \eqref{e1.1} with $(b>0,d=0)$ and $$ f(t,u,v)=m_1(t)u^{-\frac{1}{2}}(-v)^{\frac{1}{21}} +m_2(t)u^{\frac{1}{81}}(-v)^{\frac{18}{73}}, $$ where $m_i\in C[(0,1),R^+](i=1,2)$. Clearly, according to Theorem \ref{thm2.3}, \eqref{e1.1} with $(b>0,d=0)$ has a $C^{4n-2}[0,1]\cap C^{4n-1}[0,1)$ positive solution if and only if \begin{gather*} 0<\int_0^1[m_1(t)t^{-\frac{1}{2}}(1-t)^{\frac{1}{2}} +m_2(t)t^{\frac{1}{81}}(1-t)^{\frac{82}{81}}]dt<+\infty,\\ \lim_{t \to {1^-}}(1-t)\int_{0}^{t}[m_1(s)(s(1-s))^{-\frac{1}{2}} +m_2(s)(s(1-s))^{\frac{1}{81}}]ds=0. \end{gather*} \end{example} \subsection*{Acknowledgements} The authors are grateful to the anonymous referee for his or her helpful comments on original manuscript. \begin{thebibliography}{00} \bibitem{a1} R. P. Agarwal, F. Wong and W. Lian, \emph{Positive solutions for nonlinear singular boundary value problems}, Applied Mathematics Letters, 12(1999), 115-120. \bibitem{a2} R. P. Agarwal and D. O'Regan, \emph{Twin solutions to singular Dirichlet problems}, J. Math. Anal. Appl., 240(1999), 433-445. \bibitem{a3} R. P. Agarwal and P. J. Y. Wong, \emph{ Existence of solutions for singular boundary value problems for higher order differential equations}, Rendiconti del Seminario Matematico e Fisico di Milano 55(1995), 249-264. \bibitem{a4} R. P. Agarwal, D. O'Regan and P. J. Y. Wong, \emph{Constant-sign solutions of a system of integral equations: The semipositone and singular case}, Asymptotic Analysis 43(2005), 47-74. \bibitem{a5}R. P. Agarwal, D. O'Regan and P. J. Y. Wong, \emph{Existence of constant- sign solutions to a system of difference equations: The semipositone and singular case}, Journal of Difference Equations and Applications 11(2005), 151 - 171. \bibitem{g1} D. Guo, V. Lakshmikansham, X. Liu, \emph{Nonlinear Integral Equations in Abstract Spaces}, Kluwer Academic Publishers, Dordrecht, 1996. \bibitem{l1} Y. S. Liu, \emph{Multiple positive solutions of nonlinear singular boundary value problem for fourth-oder equations}, Applied Mathematics Letters, 17(2004), 747-757. \bibitem{o1} D. O'Regan, \emph{Solvability of some fourth (and higher) order singular boundary value problems}, J. Math. Anal. Appl., 161(1991), 78-116. \bibitem{s1} G. Shi, S. Chen, \emph{Existence of positive solutions of fourth-order singular superlinear boundary value problems}, Indian J. Pure Appl. Math., 34(2003), 997-1012. \bibitem{t1} S. D. Taliaferro, \emph{A nonlinear singular boundary value problems}, Nonlinear Anal T.M.A., 3(1979), 897-904. \bibitem{w1} J. Y. Wang, \emph{A singular nonlinear boundary value problem for a higher order ordinary differential equation}, Nonlinear Anal (TMA), 22(8)(1994), 1051-1056. \bibitem{w2} Z. L. Wei, \emph{Positive solutions of singular boundary value problems of fourth order differential equations}, Acta Mathematica Sinica, 42 (4)1999, 715-722 (in Chinese). \bibitem{w3} P. J. Y. Wong and R. P. Agarwal, \emph{On the existence of solutions of singular boundary value problems for higher order difference equations}, Nonlinear Analysis: Theory, Methods and Applications 28(1997), 277-287. \bibitem{w4} P. J. Y. Wong and R. P. Agarwal, \emph{ Singular differential equations with (n, p) boundary conditions}, Mathematical and Computer Modelling 28 (1)(1998), 37-44. \bibitem{y1} X. J. Yang, \emph{Positive solutions of a class of singular boundary value problems of higher order differential equations}, Acta Mathematica Sinica 45 (2)(2002), 379-382 (in Chinese). \bibitem{z1}G. W. Zhang, J. X. Sun. \emph{A necessary and sufficient condition for the existence of positive solutions of a class of singular boundary value problems of higher order differential equations}, Acta Analysis Functionalis Appliccata, 6(3)(2004), 250-255. \end{thebibliography} \end{document}