\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2005(2005), No. 56, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2005 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2005/56\hfil On the $\Psi $-stability] {On the $\Psi $-stability of a nonlinear Volterra integro-differential system} \author[A. Diamandescu\hfil EJDE-2005/56\hfilneg] {Aurel Diamandescu} \address{Aurel Diamandescu \hfill\break University of Craiova \\ Department of Applied Mathematics\\ 13, ``Al. I. Cuza'' st.\\ 200585, Craiova, Romania} \email{adiamandescu@central.ucv.ro} \date{} \thanks{Submitted March 29, 2005. Published May 31, 2005.} \subjclass[2000]{45M10, 45J05} \keywords{$\Psi$-stability; $\Psi$-uniform stability} \begin{abstract} In this paper we prove sufficient conditions for $\Psi$-stability of the zero solution of a nonlinear Volterra integro-differential system. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{corollary}[theorem]{Corollary} \newtheorem{example}[theorem]{Example} \section{Introduction} Akinyele \cite{a1} introduced the notion of $\Psi$-stability of degree $k$ with respect to a function $\Psi \in C(\mathbb{R}_{+},\mathbb{R}_{+})$, increasing and differentiable on $\mathbb{R}_{+}$ and such that $\Psi (t)\geq 1$ for $t\geq 0$ and $\lim_{t\to \infty} \Psi (t) =b$, $b\in [1,\infty )$. The fact that the function $\Psi $ is bounded does not enable a deeper analysis, of the asymptotic properties of the solutions of a differential equations, than the notion of stability in sense Lyapunov. Constantin \cite{c3} introduced the notions of degree of stability and degree of boundedness of solutions of an ordinary differential equation, with respect to a continuous positive and nondecreasing function $\Psi:\mathbb{R}_{+}\to\mathbb{R}_{+}$. Some criteria for these notions are proved there too. Morchalo \cite{m2} introduced the notions of $\Psi$-stability, $\Psi$-uniform stability, and $\Psi$-asymptotic stability of trivial solution of the nonlinear system $x'= f(t,x)$. Several new and sufficient conditions for mentioned types of stability are proved for the linear system $x'= A(t)x$. Furthermore, sufficient conditions are given for the uniform Lipschitz stability of the system $x'=f(t,x) + g(t,x)$. In this paper, the function $\Psi$ is a scalar continuous function. The purpose of our paper is to prove sufficient conditions for $\Psi$-(uniform) stability of trivial solution of the nonlinear Volterra integro-differential system \begin{equation} x'= A(t)x + \int_0^t F(t,s,x(s))\,ds \label{e1} \end{equation} which can be seen as a perturbed system of \begin{equation} y'= A(t)y \label{e2} \end{equation} We investigate conditions on the fundamental matrix $Y(t)$ for the linear system \eqref{e2} and on the function $F(t,s,x)$ under which the trivial solution of \eqref{e1} or \eqref{e2} is $\Psi$-(uniformly) stable on $% \mathbb{R}_{+}$. Here, $\Psi $ is a matrix function whose introduction permits us obtaining a mixed asymptotic behavior for the components of solutions. Recent works for stability of solutions of \eqref{e1} have been given by Mahfoud \cite{m1} who used Lyapunov functionals; Lakshmikantham and Rama Mohana Rao \cite{l1} who used the comparison method; Hara, Yoneyama and Itoh \cite{h1} who used ``variation of parameters'' formula; in other words, the solution of equation \eqref{e1} with the initial function $\varphi $ on $[0, t_0]$ - namely $x(t) = \varphi (t)$ for t $\in [0, t_0]$ - is written \begin{equation*} x(t;t_0,\varphi ) = Y( t) Y^{-1}( {t}_0) \varphi (t_0) + \int_0^t{Y(t)Y}^{-1} {(s)}\int_0^{s}{F(s,u,x(u;t}_0 ,\varphi ))\,du\,ds\,; \end{equation*} and by Avramescu \cite{a2} who used the method of admissibility of a pair of subspaces with respect to an operator. \section{Definitions, notation and hypotheses} Let $\mathbb{R}^n$ denote the Euclidean $n$-space. For $x = (x_{1},x_{2}, x_{3},\dots, x_{n})^T$ in $\mathbb{R}^n$, let $\| x\| =\max\{ | x_{1}| , |x_{2}|, \dots , | x_{{n}}| \}$ be the norm of $x$. For an $n \times n$ matrix $A = ( a_{ij})$, we define the norm $|A| = \sup_{\| x\| \leq 1}\|Ax\| $. In the system \eqref{e1} we assume that $A$ is a continuous $n \times n$ matrix on $\mathbb{R}_{+} = [0,\infty )$ and $F : D \times \mathbb{R}^n \to \mathbb{R}^n$, $D = \{ (t,s)\in \mathbb{R}^2 : 0\leq s\leq t<\infty \}$, is a continuous $n$-vector such that $F(t,s,0) = 0$ for $(t,s)\in D$. Let $\Psi _{{i}}:\mathbb{R}_{+}\to (0,\infty )$, $i =1,2\dots n$, be continuous functions and \begin{equation*} \Psi = \mathop{\rm diag} [\Psi _{1},\Psi _{2},\dots \Psi _{n}]. \end{equation*} Now, we give definitions of various types of $\Psi$-stability. \subsection*{Definitions} The trivial solution of \eqref{e1} is said to be $\Psi$-stable on $\mathbb{R}_{+}$ if for every $\varepsilon >0$ and every $t_0$ in $\mathbb{R}_{+}$, there exists $\delta =\delta(\varepsilon ,t_0) > 0$ such that any solution $x(t)$ of \eqref{e1} which satisfies the inequality $\|\Psi (t_0)x(t_0)\| <\delta $, also satisfies the inequality $\| \Psi (t)x(t) \| < \varepsilon $ for all $t\geq t_0$. The trivial solution of \eqref{e1} is said to be $\Psi$-uniformly stable on $\mathbb{R}_{+}$ if it is $\Psi$-stable on $\mathbb{R}_{+}$ and the above $\delta $ is independent of $t_0$. \subsection*{Remarks} 1. For $\Psi _{i}=1$, $i=1,2\dots n$, we obtain the notions of classical stability and uniform-stability. 2. If in the definitions above, we replace $\Psi $ with $\Psi ^{k}$, $k\in \mathbb{Z}\setminus \{0,1\}$, we obtain stability and uniform-stability of degree $k$ with respect to a scalar function $\Psi $ \cite{c3}. \section{$\Psi$-stability of linear systems} The purpose of this section is to study conditions for $\Psi$-(uniform) stability of trivial solution of linear systems. These conditions can be expressed in terms of a fundamental matrix for \eqref{e2}. \begin{theorem} \label{thm1} Let $Y(t)$ be a fundamental matrix for \eqref{e2}. Then \begin{itemize} \item[(a)] The trivial solution of \eqref{e2} is $\Psi$-stable on $\mathbb{R}_{+}$ if and only if there exists a positive constant $K$ such that $|\Psi(t)Y(t)| \leq K$ for all $t\geq 0$. \item[(b)] The trivial solution of \eqref{e2} is $\Psi$-uniformly stable on $\mathbb{R}_{+}$ if and only if there exists a positive constant $K$ such that $|\Psi(t)Y(t)Y^{-1}(s)\Psi ^{-1}(s)|\leq K$ for all $0 \leq s \leq t < \infty $. \end{itemize} \end{theorem} \begin{proof} The solution of \eqref{e2} which takes the value $y $ in $\mathbb{R}^n$ at $a \geq 0$ is $y(t) = Y(t)Y^{-1}(a)y $ for $t \geq 0$. Suppose first that the trivial solution of \eqref{e2} is $\Psi $-stable on $\mathbb{R}_{+}$. Then, for $\varepsilon = 1$ and $t_0 =0$, there exists $\delta > 0$ such that any solution $y(t)$ of \eqref{e2} which satisfies the inequality $\|\Psi (0)y(0) \| < \delta $, there exists and satisfies the inequality \[ \| \Psi (t)Y(t)(\Psi (0)Y(0))^{-1}\Psi (0)y(0) \| < 1 \quad\text{for } t \geq 0. \] Let u $\in \mathbb{R}^n$ be such that $\| u \|\leq 1$. If we take $y(0) = \frac{\delta }{2}\Psi ^{-1}(0)u$, then we have $\| \Psi (0)y(0) \| < \delta $. Hence, $\|\Psi (t)Y(t)(\Psi (0)Y(0))^{-1}\frac{\delta }{2}u \| < 1$ for $t \geq 0$. Therefore, $| \Psi (t)Y(t)(\Psi(0)Y(0))^{-1}| \leq 2/\delta $ for $t \geq 0$. Hence, $|\Psi (t)Y(t) |\leq K$, a constant, for $t \geq 0$. Suppose next that $| \Psi (t)Y(t) | \leq K$ for $t \geq 0$. For $\varepsilon > 0$ and $t_0 \in \mathbb{R}_{+}$, let $\delta (\varepsilon ,t_0) = \varepsilon K^{-1}| (\Psi (t_0)Y(t_0))^{-1}| ^{-1}$. For $\| \Psi (t_0)y(t_0)\| < \delta $ and $t \geq t_0$, we have \[ \| \Psi (t)y(t)\| = \| \Psi (t)Y(t)(\Psi (t_0)Y(t_0)^{-1}\Psi (t_0)y(t_0)\| < \varepsilon . \] Thus, the trivial solution of \eqref{e2} is $\Psi $-stable on $\mathbb{R}_{+}$. Part (b) is proved similarly and omit its proof. The proof is complete. \end{proof} \subsection*{Remarks} 1. It is easy to see that if $|\Psi (t)|$ and $|\Psi ^{-1}(t)|$ are bounded on $\mathbb{R}_{+}$, then the $\Psi$-stability is equivalent with the classical stability. \noindent 2. Theorem \ref{thm1} generalizes a similar result for classical stability \cite{c5}. \noindent 3. In the same manner as in classical stability, we can speak about $\Psi$-(uniform) stability of a linear system \eqref{e2}. \begin{example} \label{ex1} \rm Consider the linear system \eqref{e2} with \[ A(t)=\begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}. \] Then \[ {Y(t)}=\begin{pmatrix} {e}^t\sin {t} & {e}^t\cos {t} & 0 \\ -{e}^t\cos {t} & {e}^t\sin {t} & 0 \\ 0 & 0 & {e}^{-2{t}} \end{pmatrix} \] is a fundamental matrix for the system \eqref{e2}. Because $Y(t$) is unbounded on $\mathbb{R}_{+}$, it follows that the system \eqref{e2} is not stable on $\mathbb{R}_{+}$. Consider \[ \Psi (t) = \begin{pmatrix} {e}^{-{ t}} & 0 & 0 \\ 0 & {e}^{-{ t}} & 0 \\ 0 & 0 & e^{2t} \end{pmatrix}. \] Then, for all $0 \leq s \leq t < \infty $, we have \[ \Psi (t)Y(t)Y^{-1}(s)\Psi ^{-1}(s) = \begin{pmatrix} \cos {(t - s)} & -\sin {(t - s)} & 0 \\ \sin {(t - s)} & \cos {(t - s)} & 0 \\ 0 & 0 & {1} \end{pmatrix}. \] Thus, the system \eqref{e2} is $\Psi$-uniformly stable on $\mathbb{R}_{+}$. \end{example} \subsection*{Remark} The introduction of the matrix function $\Psi$ permits us obtain a mixed asymptotic behavior of the components of the solutions. \begin{theorem} \label{thm2} Let $Y(t)$ be a fundamental matrix for \eqref{e2}. If there exist a continuous function $\varphi :\mathbb{R}_{+}\to (0,\infty )$ and the constants $p\geq 1$ and $M > 0$ which fulfil one of the following conditions: \begin{itemize} \item[(i)] $\int_0^t\varphi (s)| \Psi (t)Y(t)Y^{-1}(s)\Psi^{-1} (s)| ^{{p}}\,ds \leq M$, for all t $\geq 0$ \item[(ii)] $\int_0^t\varphi (s)| Y^{-1}(s)\Psi ^{-1}(s)\Psi (t)Y(t)| ^{{p}}\,ds \leq M$, for all $t \geq 0$, \end{itemize} then, the system \eqref{e2} is $\Psi$-stable on $\mathbb{R}_{+}$. \end{theorem} \begin{proof} For the case (i), first, we consider $p = 1$. Let q(t) = $| \Psi (t)Y(t) | ^{-1}$ for $t \geq 0$. From the identity \[ \Big( \int_0^t\varphi {(s)q(s)\,ds}\Big) \Psi (t)Y(t) = \int_0^t\varphi {(s)}\Psi {(t)Y(t)Y}^{-1}{(s)} \Psi ^{-1}{(s)}\Psi {(s)Y(s)q(s)\,ds,} \] it follows that \begin{align*} &\Big( \int_0^t\varphi {(s)q(s)\,ds}\Big) | \Psi {(t)Y(t)}| \\ &\leq \int_0^t\varphi {(s)}| \Psi {(t)Y(t)Y}^{-1} {(s)}\Psi ^{-1}{(s)}| | \Psi {(s)Y(s)}| q(s)\,ds. \end{align*} Thus, the scalar function $h(t) = \int_0^t\varphi (s)q(s)\,ds$ satisfies the inequality \[ {h(t)q}^{-1}{(t)}\leq {M, for t}\geq 0\,. \] We have $h'( {t}) =\varphi (t)q(t) \geq M^{-1}\varphi (t)h(t)$ for $t \geq 0$. It follows that \[ h(t)\geq {h(t}_{1}{)e}^{M^{-1}\int_{t_{1}}^t\varphi (s)\,ds} , \quad\text{for } t \geq { t}_{1}> 0 \] and hence \[ | \Psi {(t)Y(t)}| ={ q}^{-1}({t}) \leq { Mh}^{-1}(t_{1}{)e}^{-M^{-1}\int_{t_{1}}^t\varphi (s)\,ds}, \quad\text{for } t\geq t_{1}> 0\,. \] Because $|\Psi (t)Y(t) |$ is a continuous function on $[0,t_{1}]$, it follows that there exists a positive constant $K$ such that $|\Psi (t)Y(t) | \leq K$ for $t\geq 0$. Hence, the theorem follows immediately from the Theorem \ref{thm1}. Next, suppose that $p > 1$. Let $r(t) = | \Psi (t)Y(t) | ^{-{p}}$ for $t \geq 0$. In the same manner as above, we have \[ \Big( \int_0^t\varphi {(s)r(s)\,ds}\Big) | \Psi {(t)Y(t)}| \leq \int_0^t\varphi {(s)}| \Psi {(t)Y(t)Y}^{-1} (s)\Psi ^{-1}{(s)}| | \Psi {(s)Y(s)}| r(s)\,ds. \] Because $\varphi (s)| \Psi (s)Y(s)| r(s) = ( \varphi {(s)}) ^{1/p}( \varphi {(s)r(s)}) ^{1/q}$, where $\frac{1}{{p}} + \frac{1}{{q}} = 1$, we have \begin{align*} &\Big( \int_0^t\varphi {(s)r(s)\,ds}\Big) | \Psi (t)Y(t)|\\ &\leq \int_0^t( \varphi {(s)}) ^{1/p}| \Psi {(t)Y(t)Y}^{-1}{(s)}\Psi ^{-1}{(s)}| (\varphi {(s)r(s)}) ^{1/q} \,ds\,. \end{align*} Using the H\"{o}lder inequality, we obtain \begin{align*} &\Big( \int_0^t\varphi {(s)r(s)\,ds}\Big) | \Psi (t)Y(t)|\\ & \leq \Big(\int_0^t\varphi {(s)}| \Psi {(t)Y(t)Y}^{-1}{(s)} \Psi ^{-1}{(s)}| ^{{p}}{\,ds}\Big)^{1/p} \Big( \int_0^t\varphi {(s)r(s)\,ds}\Big) ^{1/q}, \quad t \geq 0; \end{align*} or \[ \Big( \int_0^t\varphi {(s)r(s)\,ds}\Big) | \Psi {(t)Y(t)}| \leq { M}^{1/p} \Big( \int_0^t\varphi {(s)r(s)\,ds}\Big) ^{1/q}, \quad t \geq 0\,. \] Thus, the matrix $\Psi $(t)Y(t) satisfies the inequality \[ | \Psi (t)Y(t)| \leq M^{1/p} \Big( \int_0^t\varphi (s)r(s)\,ds\Big) ^{-1/p},\quad \forall t \geq 0\,. \] Denoting $Q(t) = \int_0^t\varphi (s)r(s)\,ds$ for $t \geq 0$, we obtain \[ | \Psi {(t)Y(t)}| \leq { M}^{\frac{1}{{p}} }( {Q(t)}) ^{-1/p},\quad \forall t \geq 0. \] Because $Q'(t) = \varphi (t)r(t) = \varphi (t)| \Psi (t)Y(t) | ^{-{p}} \geq M^{-1}\varphi (t)Q(t)$, we have \[ {Q(t) }\geq { Q(1)e}^{{M}^{-1}\int_{1}^t\varphi (s)\,ds},\quad t \geq 1\,. \] It follows that \[ | \Psi {(t)Y(t)}| \leq { M}^{1/p}( {Q(1)}) ^{-1/p}{e}^{-{p}^{-1} {M}^{-1}\int_{1}^t\varphi {(s)\,ds}}, \quad t \geq 1. \] Because $|\Psi (t)Y(t) |$ is a continuous function on $[0,1]$, it follows that there exists a positive constant $K$ such that $|\Psi (t)Y(t) | \leq K$ for $t \geq 0$. Hence, the theorem follows immediately from the Theorem \ref{thm1}. For case (ii), the proof is similar and we omit it. The proof is complete. \end{proof} \subsection*{Remarks} 1. The function $\varphi $ can serve to weaken the required hypotheses on the fundamental matrix $Y$. \noindent 2. Theorem \ref{thm2} generalizes a result of Dannan and Elaydi \cite{d1}. \noindent 3. In the conditions of the Theorem, the linear system \eqref{e2} can not be $\Psi$-uniformly stable on $\mathbb{R}_{+}$. This is shown in \cite[Example 2]{d2}. \smallskip Finally, we consider various $\Psi$-stability problems connected with the linear system \begin{equation} x'= ( {A(t) + B(t)}) {x} \label{e3} \end{equation} as a perturbed system of \eqref{e2}. We seek conditions under which the $% \Psi $-(uniform) stability of \eqref{e2} implies the $\Psi$-(uniform) stability of \eqref{e3}. \begin{theorem} \label{thm3} Suppose that $B$ is a continuous $n \times n$ matrix function for $ t \geq 0$. If the linear system \eqref{e2} is $\Psi$-uniformly stable on $\mathbb{R}_{+}$ and \[ \int_0^{\infty }| \Psi {(t)B(t)}\Psi ^{-1}{(t)}| \,dt < +\infty , \] then the linear system \eqref{e3} is also $\Psi$-uniformly stable on $\mathbb{R}_{+}$. \end{theorem} \begin{proof} Let $Y(t)$ be a fundamental matrix for the homogeneous system \eqref{e2}. Because the system \eqref{e2} is $\Psi$-uniformly stable on $\mathbb{R}_{+}$, there exists a positive constant $K$ such that \[ | \Psi {(t)Y(t)Y}^{-1}{(s)}\Psi ^{-1}{(s)}| \leq K \quad\text{for } 0 \leq s \leq t < +\infty . \] The solution of \eqref{e3} with initial condition $x(t_0) = x_0$ is unique and defined for all $t \geq 0$. Then it is also a solution of the problem \[ x' = A(t)x + B(t)x, x(t_0) = x_0. \] Therefore, by the variation of constants formula, \[ {x(t) = Y(t)Y}^{-1}(t_0{)x}_0+\int_{t_0}^t {Y(t)Y}^{-1}{(s)B(s)x(s)\,ds} \] or, for $t, t_0\geq 0$, \begin{align*} \Psi (t)x(t) &= \Psi (t)Y(t)Y^{-1}(t_0)\Psi^{-1}(t_0)\Psi (t_0)x_0 \\ &\quad+ \int_{t_0}^t\Psi (t)Y(t)Y^{-1}(s)\Psi ^{-1} (s)\Psi (s)B(s)\Psi ^{-1}(s)\Psi (s)x(s)\,ds\,. \end{align*} From the above conditions, it results that \[ \|\Psi (t)x(t)\| \leq K\|\Psi (t_0)x(t_0)\| + K \int_{t_0}^t | \Psi (s)B(s)\Psi ^{-1}{(s)}| \| \Psi (s)x(s)\| \,ds, \] for $t \geq t_0 \geq 0$. Therefore, by Gronwall's inequality, \[ \| \Psi {(t)x(t)}\| \leq K\| \Psi (t_0{)x(t}_0)\| {e}^{K \int_{t_0}^t| \Psi {(s)B(s)}\Psi ^{-1}{(s)}| \,ds}, \quad\text{for } t \geq t_0\,. \] Thus, putting $L = \int_0^{\infty }| \Psi (t)B(t)\Psi ^{-1}(t)| \,dt$, we have \[ \| \Psi {(t)x(t)}\| \leq K \| \Psi (t_0{)x(t}_0)\| {e}^{{KL}},\quad\text{for all } t \geq t_0\geq 0. \] This inequality shows that the system \eqref{e3} is $\Psi$-uniformly stable on $\mathbb{R}_{+}$. The proof is complete. \end{proof} \subsection*{Remark} The above theorem generalizes a results of Caligo \cite{c1}, Conti \cite{c4} in connection with uniform stability. \smallskip If the linear system \eqref{e2} is only $\Psi$-stable, then the linear system \eqref{e3} can not be $\Psi$-stable. This is shown by the next example transformed after an example due to Perron \cite{p1}. \begin{example} \label{ex2} \rm Let $a \in\mathbb{R}$ be such that $1 \leq 2a < 1 + e^{-\pi }$ and let \[ {A(t)}=\begin{pmatrix} -{ a} & 0 \\ 0 & \sin \ln ({t + 1})+\cos \ln ({t + 1})-2{a} \end{pmatrix} \] Then \[ {Y(t)}=\begin{pmatrix} e^{-{a}({t+1})} & 0 \\ 0 & e^{({t+1})[ \sin \ln ({t+1})-2{a}] } \end{pmatrix}. \] is a fundamental matrix for the homogeneous system \eqref{e2}. Let $\Psi (t)= \begin{pmatrix} e^{{a}({t+1})} & 0 \\ 0 & 1 \end{pmatrix}$. We have \[ \Psi {(t)Y(t)}=\begin{pmatrix} 1 & 0 \\ 0 & e^{{(t+1})[ \sin \ln ({t+1})-2{a}] } \end{pmatrix}. \] Because $|\Psi (t)Y(t) |$ is bounded on $\mathbb{R}_{+}$, it follows that the system \eqref{e2} is $\Psi$-stable on $\mathbb{R}_{+}$. For 0 $\leq $ s $\leq $ t < $\infty $, we have \[ | \Psi {(t)Y(t)Y}^{-1}{(s)}\Psi ^{-1}{(s)}| =\begin{pmatrix} 1 & 0 \\ 0 & e^{{f(t) - f(s)}} \end{pmatrix}, \] where $f(t) = (t+1)\sin\ln(t+1) - 2at$. It is easy to see that $\lim_{n\to \infty }[f(t_{n}e^{\alpha }-1) - f(t_{n}-1)] = \infty $, where $t_{n}=e^{(8n+1)\frac{\pi }{4}}$ and $\alpha =\arccos \frac{1+e^{-\pi }}{\sqrt{2}}$. Thus, $| \Psi (t)Y(t)Y^{-1}(s)\Psi ^{-1}(s)| $ is not bounded for $0 \leq s \leq t < \infty $. From Theorem 1, it follows that the system \eqref{e2} is not $\Psi$-uniformly stable on $\mathbb{R}_{+}$. \end{example} If we take \begin{equation*} {B(t)}= \begin{pmatrix} 0 & 0 \\ e^{-a({t+1})} & 0 \end{pmatrix} , \end{equation*} then \begin{equation*} {Y}_{1}{(t)}= \begin{pmatrix} e^{-a({t+1})} & 0 \\ e^{({t+1})[ \sin \ln ({t+1})-2{a}] }\int_{1}^{{t+1}}e^{-s\sin \ln s}{\,ds} & e^{({t+1})[ \sin \ln ({\ t+1})-2{a}] } \end{pmatrix} \end{equation*} is a fundamental matrix for the perturbed system \eqref{e3}. We have \begin{equation*} \Psi {(t)Y}_{1}{(t)}= \begin{pmatrix} 1 & 0 \\ e^{({t+1})[ \sin \ln ({t+1})-2{a}] }\int_{1}^{{t+1}}e^{-s\sin \ln s}{\,ds} & e^{({t+1})[ \sin \ln ({\ t+1})-2{a}] } \end{pmatrix} . \end{equation*} Let $\alpha \in (0,\pi /2)$ be such that $\cos \alpha > (2a-1)e^{\pi }$. Let $t_{n}=e^{(2n-\frac{1}{2})\pi }$ for $n = 1,2\dots $. For $t_{n}\leq s \leq t_{n}e^{\alpha }$ we have $s \cos \alpha \leq -s \sin \ln s \leq s$ and hence \begin{align*} &e^{t_{n}e^{\pi }(\sin \ln t_{n}e^{\pi }-2a)}\int_{1}^{t_{n}e^{\pi}} e^{-s\sin \ln s}\,ds \\ &> e^{t_{n}e^{\pi }(\sin \ln t_{n}e^{\pi }-2a)} \int_{t_{n}}^{t_{n}e^{\alpha }}e^{-s\sin \ln s}\,ds \\ &> e^{t_{n}e^{\pi }(1-2a)}\int_{t_{n}}^{t_{n}e^{\alpha }} e^{s\cos \alpha }\,ds \\ &= e^{t_{n}[ (1-2a)e^{\pi }+\cos \alpha] }\big( {e} ^{t_{n}(e^{\alpha }-1)\cos \alpha }{\ - 1}\big) \cos ^{-1}\alpha \to \infty \end{align*} This shows that $| \Psi (t)Y_{1}(t) |$ is unbounded on $\mathbb{R}_{+}$. It follows that the equation \eqref{e3} is not $\Psi$-stable on $\mathbb{R}_{+}$. Finally, we have $\int_0^{\infty }| \Psi (s)B(s)\Psi ^{-1}(s) | \,ds <+\infty $. Also, the Theorem 3 is no longer true if we require that $\Psi (t)B(t)\Psi ^{-1}(t) \to 0$ as $t \to \infty$, instead of the condition \begin{equation*} \int_0^{\infty }| \Psi {(s)B(s)}\Psi ^{-1}{(s)}| \,ds < +\infty . \end{equation*} This is shown by the next example, adapted from an example in Cesari \cite {c2}. \begin{example} \label{ex3}\rm Consider the system \eqref{e2} with \[ A(t) = \begin{pmatrix} 0 & 1 \\ -1 & -\frac{2}{{t+1}} \end{pmatrix}. \] Then \[ Y(t) = \begin{pmatrix} \frac{{\sin(t+1)}}{{t+1}} & \frac{{\cos(t+1)}}{{t+1}} \\ \frac{{(t+1)\cos(t+1) - \sin(t+1)}}{{(t+1)}^{2}} & -\frac{{(t+1)\sin(t+1) + \cos(t+1)}}{{(t+1)}^{2}} \end{pmatrix}. \] is a fundamental matrix for the homogeneous system \eqref{e2}. Let $\Psi {(t) = }\begin{pmatrix} {t+1} & 0 \\ 0 & {t+1} \end{pmatrix}$. We have \begin{align*} &\Psi {(t)Y(t)Y}^{-1}{(s)}\Psi ^{-1}(s)\\ & =\begin{pmatrix} \frac{{(s+1)\cos(t-s) + \sin(t-s)}}{{s+1}} & \sin {(t-s)} \\ \frac{{(t-s)\cos(t-s) - (ts+t+s+2)\sin(t-s)}}{{(t+1)(s+1)}} & \frac{{(t+1)\cos(t-s) - \sin(t-s)}}{{t+1}} \end{pmatrix}, \end{align*} for $0 \leq s \leq t < \infty $. It is easy to see that the system \eqref{e2} is $\Psi$-uniformly stable on $\mathbb{R}_{+}$. \end{example} Now, we consider the system \eqref{e3} with \begin{equation*} B(t) = \begin{pmatrix} 0 & 0 \\ 0 & \frac{2}{{t+1}} \end{pmatrix} . \end{equation*} Then \begin{equation*} \widetilde{{Y}}(t) = \begin{pmatrix} \sin {t} & \cos {t} \\ \cos {t} & -\sin {t} \end{pmatrix} . \end{equation*} is a fundamental matrix for the perturbed system \eqref{e3}. We have \begin{equation*} \Psi (t)\widetilde{{Y}}(t) = (t+1) \begin{pmatrix} \sin {t} & \cos {t} \\ \cos {t} & -\sin {t} \end{pmatrix} . \end{equation*} It follows that the system \eqref{e3} is not $\Psi$-(uniformly) stable on $\mathbb{R}_{+}$. Finally, we have \begin{equation*} \int_0^{\infty }| \Psi (s)B(s)\Psi ^{-1}(s)| \,ds = +\infty \quad \text{and}% \quad \lim_{t\to \infty }| \Psi (t)B(t)\Psi ^{-1}(t)| = 0. \end{equation*} \begin{theorem} \label{thm4} Suppose that: \begin{enumerate} \item There exist a continuous function $\varphi : \mathbb{R}_{+}\to (0,\infty )$ and a positive constant $M$ such that the fundamental matrix $Y(t)$ of the system \eqref{e2} satisfies the condition \[ \int_0^t\varphi {(s)}| \Psi {(t)Y(t)Y}^{-1}{(s)} \Psi ^{-1}{(s)}| \,ds \leq M, \quad \forall t \geq 0 \] \item $B(t)$ is a continuous $n \times n$ matrix function on $\mathbb{R}_{+}$ such that \[ \sup_{{t}\geq 0} \varphi ^{-1}{(t)}| \Psi{(t)B(t)}\Psi ^{-1}{(t)}| \] is a sufficiently small number. \end{enumerate} Then the linear system \eqref{e3} is $\Psi$-stable on $\mathbb{R}_{+}$. \end{theorem} \begin{proof} From the first assumption of theorem it follows that there exists a positive constant $N$ such that \[ | \Psi {(t)Y(t)}| \leq N, \quad \forall t \geq 0. \] The solution of \eqref{e3} with initial condition $x(t_0) = x_0$ is unique and defined for all $t \geq 0$. Then it is also a solution of the problem \[ x' = A(t)x + B(t)x, \quad x(t_0) = x_0. \] Therefore, by the variation of constants formula, \[ {x(t) = Y(t)Y}^{-1}(t_0{)x}_0+\int_{{t} _0}^t{Y(t)Y}^{-1}(s)B(s)x(s)\,ds, \quad t \geq 0\,. \] Hence, \begin{align*} \| \Psi {(t)x(t)}\| &\leq \| \Psi {(t)Y(t)Y}^{-1}(t_0)\Psi ^{-1}(t_0)\Psi (t_0{)x}_0\| \\ &\quad + \int_{{t}_0}^t\| \Psi {(t)Y(t)Y}^{-1} {(s)}\Psi ^{-1}{(s)}\Psi {(s)B(s)}\Psi ^{-1}{(s)}\Psi {(s)x(s)}\| \,ds, \end{align*} for all $t \geq t_0$. If we put \[ b = \sup_{t\geq 0}\varphi ^{-1}(t)| \Psi (t)B(t)\Psi ^{-1}(t)| < M^{-1}, \] then, for $T > t_0$ and $t \in [t_0, T]$, we have \[ \| \Psi {(t)x(t)}\| \leq | \Psi {(t)Y(t)}| | {Y}^{-1}(t_0)\Psi ^{-1}(t_0 )| \| \Psi (t_0{)x}_0\| + Mb\sup_{{t}_0\leq {t}\leq {T}}\| \Psi {(t)x(t)}\| . \] Therefore, \[ \sup_{{t}_0\leq {t}\leq {T}}\| \Psi {(t)x(t)}\| \leq { ( 1 - Mb )}^{-1}{N}| {Y} ^{-1}(t_0)\Psi ^{-1}(t_0)| \| \Psi (t_0{)x}_0\| . \] It follows that the system \eqref{e3} is $\Psi$-stable on $\mathbb{R}_{+}$. The proof is complete. \end{proof} \subsection*{Remark} We can show that the conclusion of Theorem 4 is valid if the condition \begin{equation*} \underset{{t}\geq 0}{\sup } \varphi ^{-1}{(t)}| \Psi {(t)B(t)}\Psi ^{-1}{(t)}% | {\ < M}^{-1} \end{equation*} is replaced with the condition \begin{equation*} \lim_{{t}\to \infty } \varphi ^{-1}{(t)}| \Psi {(t)B(t)}\Psi ^{-1}{(t)}| = 0\,. \end{equation*} Theorem \ref{thm4} is no longer true if we require that the system \eqref{e2} be $\Psi$-(uniformly) stable on $\mathbb{R}_{+}$ instead of the condition \begin{equation*} \int_0^t\varphi {(s)}| \Psi {(t)Y(t)Y}^{-1}{(s)}\Psi ^{-1}{(s)}| \,ds \leq M,\quad \forall t \geq 0\,. \end{equation*} This is shown by the next example. \begin{example} \label{ex4} \rm Consider the system \eqref{e2} with $A(t) = O_{2}$. Then, a fundamental matrix for the system \eqref{e2} is $Y(t) = I_{2}$. Consider \[ \Psi (t) = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{{t+1}} \end{pmatrix}. \] Because \[ \Psi {(t)Y(t)Y}^{-1}{(s)}\Psi ^{-1}{(s)}=\begin{pmatrix} 1 & 0 \\ 0 & \frac{{s + 1}}{{t + 1}} \end{pmatrix} \] is bounded for 0 $\leq s \leq t < +\infty$, it follows that the system \eqref{e2} is $\Psi$-uniformly stable on $\mathbb{R}_{+}$. If we take \[ B(t) = \begin{pmatrix} 0 & 0 \\ 0 & \frac{{a}}{\sqrt{{t+1}}} \end{pmatrix}, \] where $a > 0$, then \[ \widetilde{{Y}}(t) = \begin{pmatrix} 1 & 0 \\ 0 & {e}^{{2a}\sqrt{{t+1}}} \end{pmatrix} . \] is a fundamental matrix for the perturbed system \eqref{e3}. Because \[ \Psi (t)\widetilde{{Y}} (t) = \begin{pmatrix} {1} & {0} \\ {0} & \frac{{e}^{{2a}\sqrt{{t+1}}}}{{t+1}} \end{pmatrix} \] is unbounded on $\mathbb{R}_{+}$, it follows that the perturbed system \eqref{e3} is not $\Psi$-stable on $\mathbb{R}_{+}$. Finally, we have $\sup_{{t}\geq 0}| \Psi (t)B(t)\Psi ^{-1}(t)| = a$ and $\lim_{{t}\to \infty }|\Psi (t)B(t)\Psi ^{-1}(t)|= 0$. \end{example} \section{$\Psi$-stability of the nonlinear system \eqref{e1}} The purpose of this section is to study the $\Psi$-(uniform) stability of trivial solution of \eqref{e1}. Now, we state a hypothesis which we shall use in various places. \begin{itemize} \item[(H0)] For all $t_0\geq 0$, $x_0\in \mathbb{R}^n$ and $\rho > 0$, if $% \| \Psi (t_0)x_0\| < \rho $, then there exists a unique solution $x(t)$ on $% \mathbb{R}_{+}$ of \eqref{e1} such that $x(t_0)=x_0$ and $\| \Psi (t)x(t) \|\leq \rho $ for all $t $ in $[0,t_0]$. \end{itemize} This is a natural hypothesis in studying $\Psi$-stability of system % \eqref{e1}. In \cite{h1}, this hypothesis is tacitly used in particular case $\Psi = I_{n}$. \begin{theorem} \label{thm5} Assume that Hypothesis (H0) is satisfied. Assume that there exist a continuous function $\varphi :\mathbb{R}_{+}\to (0,\infty)$ and a positive constant $M$ such that the fundamental matrix $Y(t)$ of the system \eqref{e2} satisfies the condition \[ \int_0^t\varphi {(s)}| \Psi {(t)Y(t)Y}^{-1}{(s)} \Psi ^{-1}{(s)}| { \,ds }\leq M,\quad \forall t \geq 0. \] Also assume that function $F$ satisfies the condition \[ \| \Psi {(t)F(t,s,x)}\| \leq f(t,s)\| \Psi {(s)x}\| , \] for 0 $\leq s \leq t < \infty $ and for all $x$ in $\mathbb{R}^n$, where $f$ is a continuous nonnegative function on $D$ such that \[ \sup_{t\geq 0} \int_0^t\frac{{f(t,s)}}{\varphi {(t)}}\,ds < \frac{1}{M}. \] Then, the trivial solution of the system \eqref{e1} is $\Psi$-stable on $\mathbb{R}_{+}$. \end{theorem} \begin{proof} From the second assumption of the theorem, it follows that there exists a positive constant $N$ such that \[ | \Psi {(t)Y(t)}| \leq N, \quad\mbox{for all }t \geq 0\,. \] From the third assumption of the theorem, there exists $q$ such that \[ \int_0^t\frac{{f(t,s)}}{\varphi {(t)}}\,ds \leq q < \frac{{1}}{{M}},\quad \mbox{for all }t \geq 0\,. \] For a given $\varepsilon > 0$ and $t_0\geq 0$, we choose \[ \delta = \min\{\frac{\varepsilon }{{2}}, \frac{{(1 -qM)}\varepsilon }{{2N}| {Y}^{-1}(t_0)\Psi ^{-1} (t_0)| }\}. \] Let $x_0\in \mathbb{R}^n$ be such that $\|\Psi (t_0)x_0\| < \delta $. From the first assumption of the theorem , there exists a unique solution $x(t)$ on $\mathbb{R}_{+}$ of the system \eqref{e1} such that $x(t_0) = x_0$ and $\| \Psi (t)x(t) \| \leq \delta $ for all $t \in [0, t_0$]. Suppose that there exists $\tau > t_0$ such that \[ \| \Psi (\tau )x(\tau )\| = \varepsilon \quad\mbox{and}\quad \| \Psi (t)x(t)\| < \varepsilon \quad\mbox{for }t \in [t_0,\tau ). \] By the classical formula of variation of constants, we have \begin{align*} \| \Psi (\tau)x(\tau )\| &\leq \| \Psi (\tau )Y(\tau )Y^{-1}(t_0)\Psi ^{-1}(t_0)\Psi (t_0{)x} _0\| \\ &\quad +\int_{{t}_0}^{\tau }| \Psi (\tau {)Y(}\tau {)Y}^{-1}{(s)}\Psi ^{-1}{(s)}| \int_0^{{s} }\| \Psi {(s)F(s,u,x(u))}\| {\,du\,ds }\\ &\leq N| {Y}^{-1}(t_0)\Psi ^{-1}(t_0)| \delta \\ &\quad + \int_{{t}_0}^{\tau }\varphi {(s)}| \Psi (\tau {)Y(}\tau {)Y}^{-1}{(s)}\Psi ^{-1}{(s)}| \int_0^{ {s}}\frac{{f(s,u)}}{\varphi {(s)}}\| \Psi {(u)x(u) }\| {\,du\,ds }\\ &\leq {N}| {Y}^{-1}(t_0)\Psi ^{-1}(t_0)| \delta \\ &\quad + \varepsilon \int_{{t}_0}^{\tau }\varphi {(s)}| \Psi (\tau {)Y(}\tau {)Y}^{-1}{(s)}\Psi ^{-1}{(s)}| \int_0^{{s}}\frac{{f(s,u)}}{\varphi {(s)}}{\,du\,ds}\\ &\leq { N}| {Y}^{-1}(t_0)\Psi ^{-1}{ (t}_0)| \delta +\varepsilon {q}\int_{{t} _0}^{\tau }\varphi {(s)}| \Psi (\tau {)Y(}\tau {)Y }^{-1}{(s)}\Psi ^{-1}{(s)}| {\,ds }\\ &\leq { N}| {Y}^{-1}(t_0)\Psi ^{-1}{ (t}_0)| \delta +\varepsilon qM \\ &< \varepsilon {(1 - qM) + }\varepsilon qM = \varepsilon , \end{align*} which is a contradiction. Therefore, the trivial solution of system \eqref{e1} is $\Psi$-stable on $\mathbb{R}_{+}$. The proof is complete. \end{proof} \begin{corollary} \label{coro1} Suppose that $g$ and $h$ are continuous nonnegative functions on $\mathbb{R}_{+}$ such that \[ \sup_{{t}\geq {0}} \frac{{g(t)}}{\varphi {(t)}}\int_0^t h(s)\,ds < \frac{{1}}{{M}}. \] Then in Theorem \ref{thm5} we can consider $f(t,s) = g(t)h(s)$. \end{corollary} \begin{corollary} \label{coro2} Suppose that $k$ is a continuous nonnegative function on $\mathbb{R}_{+}$ such that \[ \sup_{{t}\geq {0}} \frac{{1}}{\varphi {(t)}}\int_0^t k(u)\,du < \frac{{1}}{{M}}. \] Then in Theorem \ref{thm5} we can consider $f(t,s) = k(t - s)$. \end{corollary} \begin{corollary} \label{coro3} If in Theorem \ref{thm5}, the third condition is replaced by the condition: The function $F$ satisfies: For all $\varepsilon >0$ there exists $\delta(\varepsilon )>0$ such that for all $x$in \[ B_{\delta (\varepsilon )} = \{x \in C_{c}: \sup_{t\geq 0}\| \Psi (t)x(t)\| \leq \delta (\varepsilon )\} \] we have \[ \| \Psi {(t)F(t,s,x(s))}\| { }\leq \varepsilon {f(t,s)}\| \Psi {(s)x(s)} \| \quad {for } 0 \leq s \leq t < +\infty, \] where $f$ is a continuous nonnegative function on $D$ such that \[ \sup_{{t}\geq {0}} \int_0^t\frac{{f(t,s)}}{\varphi {(t)}}{\,ds < +}\infty , \] then the trivial solution of system \eqref{e1} is $\Psi$-stable on $\mathbb{R}_{+}$. \end{corollary} The proof of the above corollary is similar to that of Theorem \ref{thm5}. \begin{theorem} \label{thm6} Assume hypothesis (H0) is satisfied. Assume the function $F$ satisfies \[ \| \Psi {(t)F(t,s,x)}\| \leq { f(t,s)} \| \Psi {(s)x}\| , \quad\mbox{for } 0\leq {s}\leq t< \infty \] and for every $x \in \mathbb{R}^n$, where $f$ is a continuous nonnegative function on $D$ such that \[ M= \int_0^{\infty}\int_0^t{f(t,s)\,ds\,dt < }\infty . \] Also assume the fundamental matrix $Y(t)$ of the system \eqref{e2} is such that \[ | \Psi {(t)Y(t)Y}^{-1}{(s)}\Psi ^{-1}{(s)}| \leq K \] for all $0\leq s \leq t < +\infty $, where $K$ is a positive constant. Then, the trivial solution of \eqref{e1} is $\Psi$-uniformly stable on $\mathbb{R}_{+}$. \end{theorem} \begin{proof} Let $\varepsilon > 0$ and $\delta ( \varepsilon )=0.5\varepsilon K^{-1}(1+M)^{-1}e^{-KM}$. Let $t_0\geq 0$ and $x_0\in \mathbb{R}^n$ be such that $\| \Psi (t_0)x_0\| < \delta ( \varepsilon )$. There exists a unique solution $x(t)$ on $\mathbb{R}_{+}$ of \eqref{e1} such that $x(t_0)=x_0$ and $\|\Psi (t)x(t)\| \leq \delta( \varepsilon ) $ for all $t \in [0,t_0]$. For $t \geq t_0$, we have \begin{align*} &\| \Psi {(t)x(t)}\| \\ &=\| \Psi {(t)Y(t)Y}^{-1}(t_0)\Psi ^{-1}(t_0)\Psi (t_0{)x}_0 \\ &\quad + \int_{t_0}^t\Psi {(t)Y(t)Y}^{-1}{(s)}\Psi ^{-1}{ (s)}\int_0^{s}\Psi {(s)F(s,u,x(u))\,du\,ds}\| \\ &\leq K \| \Psi (t_0{)x}_0\| + K \int_{t_0}^t\int_0^{s}{f(s,u)}\| \Psi {(u)x(u)} \| {\,du\,ds = K}\| \Psi (t_0{)x}_0\|\\ &\quad + K\int_{t_0}^t\int_0^{t_0}{f(s,u)}\| \Psi { (u)x(u)}\| {\,du\,ds + K}\int_{t_0}^t\int_{t_0}^{s}{f(s,u) }\| \Psi {(u)x(u)}\| {\,du\,ds }\\ &\leq K\delta ( \varepsilon ) (1 + M) + K \int_{t_0}^t\int_{t_0}^{s}{f(s,u)}\| \Psi {(u)x(u)} \| \,du\,ds. \end{align*} It is easy to see that the function $Q(t) = \int_{t_0}^t\int_{t_0}^{s}f(s,u)\| \Psi (u)x(u) \| \,du\,ds$ is continuously differentiable and increasing on $[t_0, \infty )$. For $t \geq t_0$, we have \begin{align*} Q'(t) &=\int_{{t}_0}^t{f(t,u)}\| \Psi {(u)x(u)}\| \,du\\ &\leq \int_{{t}_0}^{{t}}{f(t,u)[K}\delta (\varepsilon )(1+M) + KQ(u)]\,du\\ &= K\delta (\varepsilon ){(1 + M)}\int_{{t}_0}^t {f(t,u)\,du + K}\int_{{t}_0}^t{f(t,u)Q(u)\,du.} \end{align*} Then \begin{align*} &\big[ Q(t)\exp\big(-K\int_{t_0}^t \int_{{t}_0}^{{s}} f(s,u)\,du\,ds\big) \big] '\\ &= \exp\big(- K\int_{{t}_0}^t\int_{{t}_0}^{{s}} f(s,u)\,du\,ds\big) \big[ Q'{(t) - KQ(t)}\int_{{t}_0}^t{f(t,u)\,du}\big] \\ &\leq \exp\big(- K\int_{{t}_0}^t\int_{{t}_0}^{{s}}f(s,u)\,du\,ds\big)\\ &\quad\times \big[ {K}\delta (\varepsilon ){(1+M)} \int_{{t}_0}^t{f(t,u)\,du+K}\int_{{t}_0}^t {f(t,u)(Q(u)-Q(t))\,du}\big] \\ &\leq \exp\big(- K\int_{{t}_0}^t\int_{{t}_0}^{{s}}f(s,u)\,du\,ds\big) \big[K\delta (\varepsilon ){(1 + M)}\int_{{t}_0}^t{f(t,u)\,du}\big] \\ &=\big[ - \delta (\varepsilon ){(1 + M)e}^{-{ K} \int_{{t}_0}^t\int_{{t}_0}^{{s}}{f(s,u)\,du\,ds} }\big] '. \end{align*} Integrating from $t_0$ to $t$ ($t \geq t_0$), we have \[ {Q(t)e}^{-{K}\int_{{t}_0}^t\int_{{t}_0}^{ {s}}{f(s,u)\,du\,ds}} \leq \delta (\varepsilon ){ (1 + M)}\left[ { 1 }-{ e}^{-{ K}\int_{{t}_0}^{{t} }\int_{{t}_0}^{{s}}{f(s,u)\,du\,ds}}\right] . \] We deduce that \[ \| \Psi {(t)x(t)}\| \leq \delta ( \varepsilon ) {K(1 + M)e}^{{KM}} < \varepsilon ,\quad \mbox{for all } t \geq t_0. \] This proves that the trivial solution of \eqref{e1} is $\Psi$-uniformly stable on $R_{+}$. The proof is complete. \end{proof} \begin{corollary} \label{coro4} Suppose that $g$ and $h$ are continuous nonnegative functions on $R_{+}$ such that \[ \int_0^{\infty }{g(t)}\int_0^t h(s)\,ds\,dt < +\infty . \] Then in Theorem \ref{thm6} we can consider $f(t,s) = g(t)h(s)$. \end{corollary} \subsection*{Remark} Theorem \ref{thm6} generalizes a result of Hara, Yoneyama and Itoh \cite{h1}. \begin{thebibliography}{99} \bibitem{a1} Akinyele, O.; \emph{On partial stability and boundedness of degree k}; Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.,(8), 65(1978), 259-264. \bibitem{a2} Avramescu, C.; \emph{Asupra comport\~{a}rii asimptotice a solu% \c{t}iilor unor ecua\c{t}ii func\c{t}ionale}; Analele Universit\~{a}\c{t} ii din Timi\c{s}oara, Seria \c{S}tiin\c{t}e Matematice-Fizice, vol. VI, 1968, 41-55. \bibitem{c1} Caligo, D.; \emph{Un criterio sufficiente di stabilit\`{a} per le soluzioni dei sistemi di equazioni integrali lineari e sue applicazioni ai sistemi di equazioni differenziali lineari}; Atti 2 Congresso Un. Mat. Ital. (Bologna; 1940)pp. 177-185. \bibitem{c2} Cesari, L.; \emph{Un nuovo criterio di stabilita per le soluzioni delle equazioni differenziali lineari}, Ann. Scuola Norm. Sup. Pisa (2) 9 (1940) 163 - 186. \bibitem{c3} Constantin, A.; \emph{Asymptotic properties of solutions of differential equations}; Analele Universit\~{a}\c{t}ii din Timi\c{s}oara, Seria \c{S}tiin\c{t}e Matematice, vol. XXX, fasc. 2-3, 1992, 183-225. \bibitem{c4} Conti, R.; \emph{Sulla stabilit\`{a} dei sistemi di equazioni differenziali lineari}; Riv. Mat. Univ. Parma, 6(1955) 3-35. \bibitem{c5} Coppel, W.A.; \emph{Stability and Asymptotic Behaviour of Differential Equations}, Health, Boston, 1965. \bibitem{d1} Dannan, F.M., and Elaydi, S.; \emph{Lipschitz stability of nonlinear systems of differential equations}; J. Math. Appl. 113(1986), 562-577. \bibitem{d2} Diamandescu, A.; \emph{On the $\Psi$- Asymptotic Stability of a Nonlinear Volterra Integro-Differential System}; Bull. Math. Soc. Sc. Math. Roumanie, Tome 46(94) No. 1-2, 2003, 39-60. \bibitem{h1} Hara, T., Yoneyama, T. and Itoh, T.; \emph{Asymptotic Stability Criteria for Nonlinear Volterra Integro - Differential Equations}; Funkcialaj Ecvacioj, 33(1990), 39-57. \bibitem{l1} Lakshmikantham, V. and Rama Mohana Rao, M.; \emph{Stability in variation for nonlinear integro-differential equations}; Appl. Anal. 24(1987), 165-173. \bibitem{m1} Mahfoud, W.E.; \emph{Boundedness properties in Volterra integro-differential systems}; Proc. Amer. Math. Soc., 100(1987), 37-45. \bibitem{m2} Morchalo, J.; \emph{On ($\Psi-L_{p}$) - stability of nonlinear systems of differential equations}, Analele \c{S}tiin\c{t}ifice ale Universit\~{a}\c{t}ii ''Al. I. Cuza'' Ia\c{s}i, Tomul XXXVI, s. I - a, Matematic\~{a},1990, f. 4, 353-360. \bibitem{p1} Perron, O.; \emph{Die Stabilit\"{a}tsfrage bei Differentialgleichungen}, Math. Z., 32(1930), 703-728. \end{thebibliography} \end{document}