\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2005(2005), No. 29, pp. 1--7.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2005 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2005/29\hfil An Orlicz-Sobolev space setting] {An Orlicz-Sobolev space setting for quasilinear elliptic problems } \author[N. Halidias\hfil EJDE-2005/29\hfilneg] {Nikolaos Halidias} \address{Nikolaos Halidias \hfill\break University of the Aegean \\ Department of Statistics and Actuarial Science\\ Karlovassi, 83200, Samos, Greece} \email{nick@aegean.gr} \date{} \thanks{Submitted October 14, 2004. Published March 8, 2005.} \subjclass[2000]{32J15, 34J89, 35J60} \keywords{Landesman-Laser conditions; critical point theory; nontrivial solution; \hfill\break\indent Cerami (PS) condition; Mountain-Pass Theorem; interpolation inequality} \begin{abstract} In this paper we give two existence theorems for a class of elliptic problems in an Orlicz-Sobolev space setting concerning both the sublinear and the superlinear case with Neumann boundary conditions. We use the classical critical point theory with the Cerami (PS)-condition. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \section{Introduction} In this paper we consider the following elliptic problem with Neumann boundary conditions, \begin{equation} \label{e1} \begin{gathered} -\mathop{\rm div}(\alpha (|\nabla u(x)|)\nabla u(x)) = g(x,u) \quad \mbox{ a.e. on }\Omega \\ \frac{\partial u}{\partial v} = 0, \mbox{ a.e. on } \partial \Omega. \end{gathered} \end{equation} We assume that $\Omega$ is a bounded domain with smooth boundary $\partial \Omega$. By $\frac{\partial}{\partial v}$ we denote the outward normal derivative. As in \cite{Clement} we assume that the function $\alpha$ is such that $\phi:\mathbb{R} \to \mathbb{R}$ defined by $\phi(s) = \alpha (|s|)s$ if $s \neq 0$ and $0$ otherwise, is an increasing homeomorphism from $\mathbb{R}$ to $\mathbb{R}$. In \cite{Clement}, the authors study a Dirichlet problem when the right-hand side is superlinear. They show the existence of a nontrivial solution and show that it is important to use an Orlicz-Sobolev space setting. Here, we consider a Neumann problem when the right-hand side is sublinear. Also we consider the superlinear case using the ideas in \cite{CostaMag}. Assuming Landesman-Laser conditions for the sublinear case and using the interpolation inequality for the superlinear case, we prove the existence of a nontrivial solution. Let us recall the Cerami (PS) condition \cite{BBF}. Let $X$ be a Banach space. We say that a functional $I:X \to \mathbb{R}$ satisfies the $(PS)_c$ condition if for any sequence such that $|I(u_n)|\leq M$ and $(1+\| u_n \|)\langle I'(u_n),\phi\rangle \to 0$ for all $\phi \in X$ we can show that there exists a convergent subsequence. Let \[ \Phi (s) = \int_0^s \phi(t)dt, \quad \Phi^* (s) =\int_0^s \phi^{-1} (t) dt, \quad s \in \mathbb{R}, \] it is well-known that $\Phi$ and $\Phi^*$ are complementary $N$ functions which define the Orlicz spaces $L_{\Phi}, L_{\Phi^*}$ respectively. We use the well-known Luxenburg norm, \[ \| u \|_{\Phi} = \inf \{ k> 0: \int_{\Omega} \Phi (\frac{|u(x)|}{k}) dx \leq 1 \}. \] As in \cite{Clement} we denote by $W^1L_{\Phi}$ the corresponding Orlicz-Sobolev space with the norm $\| u \|_{1,\Phi} = \| u \|_{\Phi} + \| |\nabla u| \|_{\Phi}$. Now we introduce the Orlicz-Sobolev conjugate $\Phi_*$ of $\Phi$, defined as \[ \Phi_*^{-1} (t) = \int_0^t \frac{\Phi^{-1} (\tau)}{\tau^{\frac{N+1}{N}}},d \tau, \] and as in \cite{Clement}, we suppose that \[ \lim_{t \to 0}\int_t^1 \frac{\Phi^{-1} (\tau)}{\tau^{\frac{N+1}{N}}},d \tau < +\infty\,, \quad \lim_{t \to \infty} \int_1^t \frac{\Phi^{-1} (\tau)}{\tau^{\frac{N+1}{N}}},d \tau = + \infty. \] To state our hypotheses on $\phi,g$, we need the following three numbers, \[ p^1 = \inf_{t > 0} \frac{t \phi(t)}{\Phi(t)}, \quad p_{\Phi} = \liminf_{t \to \infty} \frac{t\phi(t)}{\Phi(t)}, \quad p^0 = \sup_{t>0} \frac{t \phi(t)}{\Phi(t)} \,. \] \begin{itemize} \item[(H1)] The function $\phi$ is such that \begin{enumerate} \item[(i)] For every $\varepsilon>0$, there is $k_{\varepsilon} > 1$ such that $\Phi'((1+\varepsilon)x) \geq k_{\varepsilon} \Phi'(x)$, $x \geq x_o(\varepsilon) \geq 0$ and that $\Phi$ is strictly convex. \item[(ii)] Both $\Phi,\Phi^*$ satisfy a $\Delta_2$ condition, namely \[ 1 < \liminf_{s \to \infty} \frac{s \phi (s)}{\Phi (s)} \leq \limsup_{s \to \infty} \frac{s \phi (s)}{\Phi (s)} < + \infty. \] \end{enumerate} \end{itemize} \begin{remark} \label{rmk1} \rm Under hypotheses (H1), $L_{\Phi}$ is uniformly convex \cite[p.288]{Rao}. \end{remark} We assume the following conditions on $g$. \begin{itemize} \item[(H2)] The function $g:\Omega \times \mathbb{R} \to \mathbb{R}$ is a continuous and satisfies the following hypotheses: \begin{enumerate} \item[(i)] There exists nonnegative constants $a_1,a_2$ such that $|g(x,s)| \leq a_1 + a_2 |s|^{a-1}$, for all $(x,s) \in \Omega \times \mathbb{R}$, with $p^0\leq a < \frac{N p^1}{N-p^1}$. \item[(ii)] For all $x \in \Omega$, \[ \limsup_{u \to 0} \frac{G(x,u)}{\Phi(u)} \leq -\mu < 0, \quad \lim_{u \to \infty} \frac{G(x,u)}{|u|^{p^1}} = 0\,. \] \item[(iii)] There is a function $h : \mathbb{R}^{+} \to \mathbb{R}^{+}$ with the property $\liminf \frac{h(a_nb_n)}{h(b_n)} > 0$, $h(b_n) \to\infty$ when $a_n \to a>0$ and $b_n \to +\infty$ such that \[ \liminf_{|u| \to \infty} \frac{p^1 G(x,u)-g(x,u)u}{h(|u|)} \geq k (x)>0, \] with $k \in L^{1}(\Omega)$, \end{enumerate} with $G(x,u) = \int_0^u g(x,r)dr$. \end{itemize} \begin{remark} \label{rmk2} \rm Using the definition of $p^1$ we can prove that $\Phi (t) \geq ct^{p^1}$ for $t\geq 1$. From this we obtain that $W^1L_{\Phi} \hookrightarrow L^{\frac{Np^1}{N-p^1}}$ (see \cite{Clement}). \end{remark} Our energy functional $I:W^1L_{\Phi} \to \mathbb{R}$ is defined as \[ I(u) = \int_{\Omega} \Phi(|\nabla u(x)|)dx - \int_{\Omega} G(x,u(x))dx. \] From the arguments of \cite{Clement,Garcia} we know that this functional is well defined and $C^1$. \begin{lemma} \label{lem1} If (H1), (H2) hold, then the energy functional satisfies the $(PS)_c$ condition. \end{lemma} \begin{proof} Let $X = W^1L_{\Phi}(\Omega)$. Suppose that there exists a sequence $\{ u_n \} \subseteq X$ such that $|I(u_n)| \leq M$ and \begin{equation} \label{e2} |\langle I'(u_n),\phi\rangle | \leq \varepsilon_n \frac{\| \phi \|_{1,\Phi}}{1 +\| u_n \|_{1,\Phi}}. \end{equation} Suppose that $\| u_n \|_{1,\Phi} \to \infty$. Let $y_n(x) = \frac{u_n(x)}{\| u_n \|_{1,\Phi}}$. It is easy to see that $y_n \to y$ weakly in $X$ and $y_n \to y$ strongly in $L_{\Phi}(\Omega)$. From the first inequality we have \begin{equation} \label{e3} \big| \int_{\Omega} \Phi(|\nabla u_n(x)|)dx - \int_{\Omega} G(x,u_n(x))dx \big| \leq M. \end{equation} We can prove that $\Phi(t) \geq \rho^{p^1} \Phi(\frac{t}{\rho})$. Indeed, we have that $\Phi(t) p^1 \leq t \phi(t)$ for $t>0$. Then we obtain \[ \int_{t/\rho}^{t} \frac{p^1}{s}ds \leq \int_{t/\rho}^{t} \frac{\phi(s)}{\Phi(s)}ds, \] for all $t>0$ and for $\rho > 1$. Calculating the above integrals we arrive at the fact that $\Phi(t) \geq \rho^{p^1} \Phi(\frac{t}{\rho})$ for all $t>0$ and all $\rho > 1$. When we divide the above inequality by $\| u_n\|_{1,\Phi}^{p^1} > 1$, we obtain \[ \int_{\Omega}\Phi(|\nabla y_n(x)|dx \leq \int_{\Omega}\frac{G(x,u_n(x))}{\| u_n \|_{1,\Phi}^{p^1}}dx\,. \] Next, we prove that $\int_{\Omega}\frac{G(x,u_n(x))}{\| u_n \|_{1,\Phi}^{p^1}}dx \to 0$. Indeed, from $(H2)(ii)$ we have that for every $\varepsilon>0$ there exists some $M>0$ such that for $|u| > M$ we have $\frac{G(x,u)}{|u|^{p^1}} \leq \varepsilon$ for all $x \in \Omega$. Thus, \begin{align*} &\int_{\Omega}\frac{G(x,u_n(x))}{\| u_n \|_{1,\Phi}^{p^1}}dx \\ &\leq \int_{\{x \in \Omega:|u_n(x)| \leq M\}}\frac{G(x,u_n(x))}{\| u_n \|_{1,\Phi}^{p^1}}dx + \int_{\{x \in \Omega:|u_n(x)| \geq M\}} \varepsilon |y_n(x)|^{p^1}dx. \end{align*} Note that $p^1 \leq p^0 \leq a$ so we have that $W^1L_{\Phi} \hookrightarrow L^{p^1}$. From that we obtain \[ \int_{\Omega}\frac{G(x,u_n(x))}{\| u_n \|_{1,\Phi}^{p^1}}dx \leq \int_{\{x \in \Omega:|u_n(x)| \leq M\}}\frac{G(x,u_n(x))}{\| u_n \|_{1,\Phi}^{p^1}}dx +\varepsilon c \| y_n \|_{1,\Phi}^{p^1}. \] Finally, note that $\| y_n \|_{1,\Phi} =1$ so we have proved our claim. Now $\int_{\Omega} \Phi(|\nabla y_n(x)|dx \to 0$ thus, $\| \nabla y_n \|_{\Phi} \to 0$. Since \[ \| \nabla y \|_{\Phi} \leq \liminf_{n \to \infty} \| \nabla y_n \|_{\Phi} \to 0, \] so $\| \nabla y_n \|_{\Phi} \to \| \nabla y \|_{\Phi}$ and moreover $y_n \to y$ weakly in $X$, thus from the uniform convexity of $X$ we deduce that $y_n \to y$ strongly in $X$. Note that $\| y_n \|_{1,\Phi} =1$ so, $y \neq 0$ and from the fact that $\| \nabla y \|_{\Phi} = 0$ we have that $y = c \in \mathbb{R}$ with $c \neq 0$. From this we obtain that $|u_n(x)| \to \infty$. Choosing now $\phi = u_n$ in \eqref{e2} and substituting with \eqref{e3}, we arrive at \begin{align*} &\int_{\Omega} p^1 G(x,u_n(x)) - g(x,u_n(x))u_n(x)dx + \int_{\Omega}\phi(|\nabla u_n|)|\nabla u_n|-p^1 \Phi(|\nabla u_n|)dx \\ &\leq M +\varepsilon_n \frac{\| u_n \|_{1,\Phi}}{1 + \| u_n \|_{1,\Phi}}. \end{align*} From the definition of $p^1$ we have $p^{1} \Phi(t) \leq t \phi(t)$. Using this fact and dividing the last inequality with $h(\| u_n \|_{1,\Phi})$ we obtain \begin{align*} & \int_{\Omega} \frac{p^1 G(x,u_n(x)) - g(x,u_n(x))u_n(x)}{h(|u_n(x)|)} \frac{h(|y_n(x)| \| u_n \|_{1,\Phi})}{h(\| u_n \|_{1,\Phi})} dx \\ &\leq \frac{M +\varepsilon_n \frac{\| u_n \|_{1,\Phi}}{1 + \| u_n \|_{1,\Phi}}}{h(\| u_n \|_{1,\Phi})}. \end{align*} From this we can see that \[ \liminf_{n \to \infty}\int_{\Omega} \frac{p^1 G(x,u_n(x)) - g(x,u_n(x))u_n(x)}{h(|u_n(x)|)} \frac{h(|y_n(x)| \| u_n \|_{1,\Phi})}{h(\| u_n \|_{1,\Phi})} dx \leq 0. \] Using Fatou's lemma and $(H2)(iii)$ we obtain the contradiction. That is $u_n$ is bounded. So, we can say, at least for a subsequence, that $u_n \to u$ weakly in $X$ and $u_n \to u$ strongly in $L_a(\Omega)$. To show the strong convergence we going back to \eqref{e2} and choose $\phi = u_n-u$. Thus, we obtain \begin{align*} &\big|\int_{\Omega} {\Big ( } \alpha (| \nabla u_n|)\nabla u_n - \alpha(| \nabla u|)\nabla u {\Big ) }{\Big (} \nabla u_n-\nabla u{\Big )} dx\big| \\ &\leq \int_{\Omega} g(x,u_n)(u_n-u)dx +\varepsilon_n \| u_n -u \|_{1,\Phi} -\int_{\Omega} \alpha(| \nabla u|)\nabla u (\nabla u_n-\nabla u)dx . \end{align*} Using the compact imbedding $X \hookrightarrow L^{a}(\Omega)$ and the fact that $u_n \to u$ weakly in $X$ we arrive at $\int_{\Omega} \big( a(|\nabla u_n|)\nabla u_n - a(| \nabla u|)\nabla u \big) \big(\nabla u_n-\nabla u\big ) dx \to 0$ and using \cite[Theorem 4]{Le1} we obtain the strong convergence of $u_n$. \end{proof} \begin{lemma} \label{lem2} If hypotheses $(H1)(ii),(H2)$ holds, then there exists some $e \in X$ with $I(e) \leq 0$. \end{lemma} \begin{proof} We will show that there exists some $a \in \mathbb{R}$ such that $I(a) \leq 0$. Suppose that this is not the case. Then there exists a sequence $a_n \in \mathbb{R}$ with $a_n \to \infty$ and $I(a_n) \geq c >0$. We can easily see that \begin{align*} (-\frac{G(x,u)}{u^{p^1}})' &= \frac{p^1 G(x,u)- g(x,u)u}{u^{p^1+1}} \\ &= \frac{p^1 G(x,u) - g(x,u) u}{h(|u|)}\frac{h(|u|)}{u^{p^1+1}} \\ &\geq (k (x)-\varepsilon) \frac{1}{u^{p^1+1}} = \frac{k(x)-\varepsilon}{p^1} (-\frac{1}{u^{p^1}})', \end{align*} for a large enough $u \in \mathbb{R}$. We can say then \[ \int_t^s \big(-\frac{G(x,u)}{u^{p^1}}\big)'du \geq \int_t^s \frac{k (x)-\varepsilon}{p^1} \big(-\frac{1}{u^{p^1}}\big)'du. \] Take now $s \to \infty$ and using (H2)(iii), we obtain \[ G(x,t) \geq \frac{k (x)}{p^1}, \] for large enough $t \in \mathbb{R}$. From this we obtain \[ \limsup_{a_n \to \infty} I(a_n) \geq \liminf_{a_n \to \infty} I(a_n) \geq 0 \] implies \[ \limsup_{a_n \to \infty}\int_{\Omega} -G(x,a_n)d x \geq 0 \] which implies $\int_{\Omega}\frac{-k (x)}{p^1}d x \geq 0$. Then using (H2)(iii) we obtain the contradiction. \end{proof} \begin{lemma} \label{lem3} If (H1)(ii) and (H2) hold, then there exists some $\rho > 0$ such that for all $u \in X$ with $\| u \|_{\Phi} = \rho$ we have that $I(u) > \eta >0$. \end{lemma} \begin{proof} >From (H2)(ii) we have that for every $\varepsilon>0$ there exists some $u^* \leq 1$ such that for every $|u| \leq u^*$ we have $G(x,u) \leq (-\mu +\varepsilon)\Phi (|u|) \leq k(-\mu+\varepsilon)|u|^{p^0}$ with $k > 0$. On the other hand there exists $c_1,c_2>0$ such that $|G(x,u)| \leq c_1 |u|^{\frac{Np^1}{N-p^1}}+c_2$ for every $u \in \mathbb{R}$. Recall that $p^0 < \frac{Np^1}{N-p^1}$ so we can find some $\gamma > 0$ such that $G(x,u) \leq k (-\mu +\varepsilon)|u|^{p^0} + \gamma |u|^{\frac{Np^1}{N-p^1}}$. Indeed, we can choose \[ \gamma \geq c_1+ \frac{c_2}{|u^*|^{\frac{Np^1}{N-p^1}}} + k(\mu - \varepsilon) \frac{|u^*|^{p^0}}{|u^*|^{\frac{Np^1}{N-p^1}}}. \] Take now a sequence $\{ u_n \} \in X$ such that $\| u_n \|_{1,\Phi} \to 0$. Thus, we can see that \[ I(u_n) \geq \int_{\Omega} \Phi(| \nabla u_n |)dx +k (\mu - \varepsilon) \| u_n \|_{p^0}^{p^0} - \gamma \| u_n \|_{\frac{Np^1}{N-p^1}}^{\frac{Np^1}{N-p^1}} \] implies \[ I(u_n) \geq c \| | \nabla u_n |\|^{p^0}_{\Phi}+k (\mu - \varepsilon) \| u_n \|_{\Phi}^{p^0} - \gamma \| u_n \|_\frac{Np^1}{N-p^1}^{\frac{Np^1}{N-p^1}} \] which implies \[ I(u_n) \geq C \| u_n \|_{1,\Phi}^{p^0} - \gamma \| u_n \|_{1,\Phi}^{\frac{Np^1}{N-p^1}}. \] Here we have used the fact that $L^{p^0}(\Omega)$ imbeds continuously in $L_{\Phi}(\Omega)$ and the fact that $L^{Np^1/(N-p^1)}$ imbeds continuously in $W^1L_{\Phi}$. Finally we have $C = \min \{c,k(\mu-\varepsilon)\}$. Thus, for big enough $n \in \mathbb{N}$ and noting that $p^0 < \frac{Np^1}{N-p^1}$ we deduce that there exists some $\rho > 0$ such that for all $u \in X$ with $\| u \|_{\Phi} = \rho$ we have that $I(u) > \eta >0$. The Lemma is proved. \end{proof} The existence theorem follows from the Mountain-Pass theorem. Note that we also extend the recently results of Tang \cite{Tang} for Neumann problems because the author there needs $h(u) = u$. \section{Superlinear Case} In this section we consider problem \eqref{e1} with a superlinear right hand side. We assume the following conditions on $g$, \begin{itemize} \item[(H3)] The funciton $g:\Omega \times \mathbb{R} \to \mathbb{R}$ is a continuous function satisfying the following hypotheses: \begin{enumerate} \item[(i)] There exists nonnegative constants $a_1,a_2$ such that $|g(x,s)| \leq a_1 + a_2 |s|^{a-1}$, for all $(x,s) \in \Omega \times \mathbb{R}$, with $p^0\leq a < \frac{N p^1}{N-p^1}$, . \item[(ii)] There exists some $q > 0$ such that for all $x \in \Omega$, \[ \limsup_{u \to 0} \frac{G(x,u)}{\Phi(|u|)} < -k <0\,\quad \lim_{u \to \infty} \frac{G(x,u)}{|u|^q} = 0, \quad 0< \beta \leq \liminf_{|s| \to \infty} \frac{G(x,s)}{\Phi(s)} \] \item[(iii)] There exists $\mu > N/p^1 (q-p^1)$ such that \[ \liminf_{|u| \to \infty} \frac{g(x,u)u-p^1 G(x,u)}{|u|^{\mu}} \geq m >0. \] \end{enumerate} with $G(x,u) = \int_0^u g(x,r)dr$. \end{itemize} \begin{theorem} \label{thm1} If hypotheses (H1)(ii) and (H3) hold, then problem \eqref{e1} has a nontrivial solution $u \in X$. \end{theorem} \begin{proof} Let us denote first by $N(u) = \int_{\Omega} G(x,u)dx$. Suppose that there exists a sequence $\{ u_n \} \subseteq X$ such that $I(u_n) \to c$ and $|| \leq \varepsilon_n \frac{\| y \|_{1,\Phi}}{1+\| u_n \|_{1,\Phi}}$ for all $y \in X$. We are going to show that $\| u_n \|_{1,\Phi}$ is bounded in $X$. Suppose not. Then there exists a subsequence such that $ \| u_n \|_{1,\Phi} \to \infty$. Using the definition of $p^1$ it is easy to see that $|\langle I'(u),u \rangle- p^1 I(u)| \geq |\langle N'(u),u\rangle -p^1N(u)|$ and using (H3)(iii), we arrive at $\| u_n \|_{\mu}^{\mu} \leq C$. Next, we use the interpolation inequality, namely \[ \| u \|_q \leq \| u \|_{\mu}^{1-t} \| u \|_{\frac{Np^1}{N-p^1}}^t, \] where $0 < \mu \leq q \leq \frac{Np^1}{N-p^1}$, $t \in [0,1]$. Using the fact that $X$ imbeds continuously in $L^{\frac{Np^1}{N-p^1}}$ we have \begin{equation} \label{e4} \begin{aligned} \int_{\Omega} \Phi (| \nabla u_n |)dx & = I(u_n) + N(u_n) \\ &\leq c_1 \| u_n \|_q^q +c_2 \\ &\leq \| u_n \|_{\mu}^{(1-t)q} \| u_n \|^{qt}_{\frac{Np^1}{N-p^1}}\\ &\leq c_1 \| u_n \|^{qt}_{1,\Phi} + c_2, \end{aligned} \end{equation} here we have used the second assertion of (H3)(ii). From the relation $|I(u_n)|\leq M$ we obtain \[ \int_{\Omega} G(x,u_n)dx \leq \int_{\Omega} \Phi(|\nabla u_n|)dx +M \] and \[ \beta \int_{\Omega} \Phi(u_n)dx \leq \int_{\Omega} \Phi(|\nabla u_n|)dx +M\,. \] We have used here the third assertion of (H3)(ii). Adding $\beta \int_{\Omega} \Phi(|\nabla u_n|)dx$ to the last inequality, we obtain \begin{equation} \label{e5} \beta ( \int_{\Omega} \Phi(u_n)dx + \int_{\Omega} \Phi(| \nabla u_n |)dx) \leq C \int_{\Omega} \Phi(|\nabla u_n|)dx +M. \end{equation} We can prove that $\Phi(t) \geq \rho^{p^1} \Phi(t/\rho)$ for $\rho \geq 1$ and combining \eqref{e4} and \eqref{e5}, we arrive at \[ c_1\| u_n \|_{1,\Phi}^{p^1} -c_2 \leq \int_{\Omega} \Phi(| \nabla u_n|)dx \leq c_1 \| u_n \|_{1,\Phi}^{qt} +c_2. \] for some $c_1,c_2>0$. Choosing $qt < p^1$ (or equivalently $\mu > N/p^1(q-p^1)$) we obtain a contradiction. Thus, $\{ u_n \} \subseteq X$ is bounded and using the same arguments as in Lemma \ref{lem1} we can prove that in fact $\{ u_n \}$ has a strongly convergent subsequence in $X$. Next we prove that there exists some $e \in X$ such that $I(e) \leq 0$. Indeed, take a sequence $t_n \to \infty$, then \[ I(t_n) = -\int_{\Omega} G(x,t_n)dx \leq -\beta \int_{\Omega} \Phi(t_n)dx +C. \] It is clear now that for big enough $n \in \mathbb{N}$ we have $I(t_n) \leq 0$. Using Lemma \ref{lem3} and the Mountain-Pass theorem, we obtain a nontrivial solution. \end{proof} As an example of functions that satisfy the above hypotheses, we have $\Phi(u) = \log(1+|u|)|u|^2$ and $G(u) = \log(1+|u|) \Phi(u)$. \subsection*{Acknowledgement} The author wishes to thank Professor Vy Khoi Le for his helpful suggestions and remarks. \begin{thebibliography}{99} \bibitem{BBF} P. Bartolo P, V. Benci, D. Fortunato; {\it Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity}, Nonl. Anal. 7 (1983), 981-1012. \bibitem{Clement} Ph. Clement, M. Garcia-Huidobro, R. Manasevich, K.Schmitt; {\it Mountain pass type solutions for quasilinear elliptic equations}, Calc. Var. 11, 33-62 (2000). \bibitem{Clement2} Ph. Clement, M. Garcia-Huidobro, R. Manasevich; {\it Mountain pass type solutions for quasilinear elliptic inclusions}, Comm. Contem. Math. 2002, pp. 607-637. \bibitem{CostaMag} D. Costa, C. A. Magalhaes; {\it Existence results for perturbations of the $p$-Laplacian}, Nonl. Anal. TMA Vol. 24, No. 3, pp. 409-418, 1995. \bibitem{Garcia} M. Garcia-Huidobro, V. K. Le, R. Manasevich, K. Schmitt; {\it On principal eigenvalues for quasilinear differential operators: an Orlicz-Sobolev space setting}, Nonl. differ. equ. appl. (1999) 207-225. \bibitem{Le1} V. K. Le; {\it A global bifurcation result for quasilinear elliptic equations in Orlicz-Sobolev spaces}, Top. Meth. Non. Anal. Vol. 15, 2000, 301-327. \bibitem{Le} V. K. Le; {\it Nontrivial solutions of mountain pass type of quasilinear equations with slowly growing principal parts}, Diff. Integ. Equat. Vol. 15, 2002, 839-862. \bibitem{Rao} M. M. Rao, Z. D. Ren; {\it Theory of Orlicz Spaces}, Marcel Dekker, Inc., Neq York, 1991. \bibitem{Struwe} M. Struwe; {\it Variational Methods}, Springer - Verlag, Berlin (1990). \bibitem{Tang} C. Tang; {\it Solvability of Neumann Problem for Elliptic Equations at Resonance}, Nonl. Anal. 44 (2001) 323-335. \end{thebibliography} \end{document}