\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2005(2005), No. 16, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2005 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2005/16\hfil On the behaviour of solutions] {Estimates for solutions to nonlinear boundary-value problems in conic domains} \author[T. S. Gadjiev, S. Y. Aliev \hfil EJDE-2005/16\hfilneg] {Tahir S. Gadjiev, Sardar Y. Aliev} \address{Tahir S. Gadjiev \hfill\break Institute of Mathematics \& Mechanics of NAS Azerbaijan, Department of Nonlinear Analysis, 9, F. Agayev str., AZ1141, Baku, Azerbaijan} \email{tgadjiev@mail.az} \address{Sardar Y. Aliev \hfill\break Baku State University, Department of Mathematics, 23 Z. Khalilov str., AZ1148, Baku, Azerbaijan} \email{ibvag@yahoo.com} \date{} \thanks{Submitted January 27, 2004. Published February 1, 2005.} \subjclass[2000]{35J20, 35D10} \keywords{Nonlinear equation; behavior of solutions; nonsmooth domain} \begin{abstract} We obtain sharp estimates on the solution and its derivative near the conic points. In particular, we show that the solution satisfies $|u(x)|\leq C|x|^\lambda$ where lambda is an eigenvalue of the Sturm-Liouville problem. Also we prove that the solution has square summable weighted second generalized derivatives. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \section{Introduction and preliminaries} We consider mixed boundary-value problems in a bounded domain $\Omega \subset \mathbb{R}^n$, $n\geq 2$ for the equation \begin{equation} \label{e1} \sum_{i=1}^n \frac{d}{dx_i}a_i( x,u,u_{x}) +a( x,u,u_{x}) =0,\quad x\in \Omega \end{equation} This study includes equations such as $-\mathop{\rm div}(k+|\nabla u|^{p-2})+\mu_1|u|^\beta+u^2\phi(x)$, where $p>1$ and $k\geq 0$. The domain $\Omega $ is assumed to satisfy the isoperimetric inequalities defined in \cite{m1}. The boundary of the domain is decomposed as $\partial \Omega =\Gamma_{1}\cup \Gamma_{2}$. Then Dirichlet conditions are given on $\Gamma_{1}$, and Neumann conditions on $\Gamma_{2}$. Our aim is to obtain sharp estimates on the solution and its derivative near the conic points. Also to obtain estimates for $|u|$ and $|\nabla u( x)|$ which correspond to $\varepsilon =0$ in \cite{g1}, but not obtained there. For the Dirichlet problem, these equations were considered in \cite{k1}. For the Dirichlet problem with linear equations, estimates on conical domains were considered in \cite{k2}. The mixed boundary-value problem for linear equations on conical domains was considered in \cite{w1}. Here we study a non-linear case. Let us set some notation. $B_{d}( 0) $ is ball of radius $d$ with the center at the point $0$. $\Omega_0 ^d =\Omega \cap B_{d}( 0)$ is cone in $\mathbb{R}^n$; i.e., for sufficiently small $d$ \[ \Omega_0 ^d =\{ ( r,\omega ) : 0n$, $g( 0)<\infty $. The function $a( x,u,p) $ is measurable at $x\in \Omega$, $u\in \mathbb{R}$, $p\in \mathbb{R}^n$ satisfies \begin{equation} \label{e12} | a( x,u,p) | \leq \mu_{2}(| u| ) ( |p|^{2}+f( x)), \end{equation} where $0\leq f( x)$, $f \in L_{q/2}( \Omega )$, $q>n$, $v( t)[ \mu( t) ,\mu_{1}( t) ,\mu_{2}( t)]$ is positive nondecreasing function (positive non-increasing) at $t\geq 0$, $\mu, v>0$, $\mu_{1},\mu_{2}\geq 0$. In \cite{g2} the boundedness and H\"older continuity of generalized solution of \eqref{e8} was proved under the conditions \eqref{e9}--\eqref{e12}. Assuming that the $\mathop{\rm vrai\,max}$ $M$ of $|u( x)|$ is known, there exists $\gamma >0$, $C_0 >0$ dependent only on $M,n,q,\mu ,\mu_{1},\mu_{2},v,\Omega $ such that \[ | u( x) | =| u( x) -u( 0)| \leq C_0 | x| ^{\gamma },\quad | x| 0$ there exists $d_0 >0$ such that for $p\in \mathbb{R}^n$, $|x|+|u|n$ we have \begin{equation} \label{e13} \Big( \sum_{i=1}^n [ a_i( x,u,p)-a_i( 0,0,p)] ^{2}\Big) ^{1/2} \leq K|p| +h( x)\,. \end{equation} Also assume that $g( x) \in {W}_{\alpha-2}^{0}( \Omega )$, $h( x) \in W_{\alpha-2,0}^{0}( \Omega )$, $f( x) \in W_{\alpha,0}^{0}( \Omega )$, $\alpha \leq 4-n$, and \begin{equation} \label{e14} \lambda >2-( n+\alpha )/2\,. \end{equation} Then \begin{equation} \label{e15} \begin{aligned} &\int_{\Omega } r^{\alpha -2}| \nabla u|^{2}dx &\leq C(1+\| g\|_{W_{\alpha -2}^{0}( \Omega) } +\| f\|_{q/2,\Omega }+\| h\|_{W_{\alpha -2,0}^{0}( \Omega ) }+\| f\|_{W_{\alpha,0}^{0}( \Omega ) }^{2}), \end{aligned} \end{equation} where $C$ is constant depending on $M,v,\mu_{1},\mu_{2},\mu ,\alpha ,n,\lambda ,q,\mathop{\rm meas}\Omega , \mathop{\rm meas}G$. \end{theorem} \begin{proof} For any $\delta \in ( 0,d) $ if $r$ is the radius vector of the point $x\in \overline{\Omega }$ then $r_{\delta }=| r-\delta l| \neq 0$, for all $x\in \overline{\Omega}$, where for the fixed point $z\in S^{n-1}\backslash \overline{G}$ and unit radius vector $l=\overrightarrow{0z}=( l_{1},\dots ,l_{n}) $, the vector $\delta l$ does not belong to $\Omega_0 ^d $. Therefore, the function $\eta( x) =r_{\delta }^{\alpha -2}u( x) $ is admissible in identity \eqref{e8}. We obtain \begin{equation} \label{e16} \begin{aligned} &\int_{\Omega} r_{\delta }^{\alpha -2} a_i( x,u,u_{x})u_{x_i}dx +\int_{\Omega} r_{\delta }^{\alpha -2} u( x) a( x,u,u_{x}) dx\\ &\quad+ \int_{\Omega } (\alpha -2) u( x) r_{\delta}^{\alpha -4} a_i(x,u,u_{x}) ( x_i-\delta l_i)dx=0. \end{aligned} \end{equation} Since $a_i(x,u,p)=p_j \int_0^1 {\frac{\partial a_i(x,u,\tau p)}{\partial (\tau p_j)}d\tau} +a_i(x,u,0)$, by \eqref{e10} we have \begin{equation} \label{e17} \begin{gathered} a_i( 0,0,p) =p_i+a_i^{0}\,,\quad a_i^{0}\equiv a_i(0,0,0) ,\quad i=\overline{1,n} \\ a_i( x,u,p) p_i=|p| ^{2}+a_i^{0}p_i+ [ a_i( x,u,p) -a_i( 0,0,p)] p_i. \end{gathered} \end{equation} Taking this into account, choosing some small number $d$ and dividing the domain $\Omega $ into two subdomains $\Omega_0 ^d $ and $\Omega \backslash \Omega_0 ^d $ we estimate the obtained integrals in each of subdomains separately. Then we apply inequality \eqref{e6}, use estimates from \cite{l1} and the fact that $u( x)$ is H\"older continuous. Finally, using conditions of the theorem passing to the limit as $\delta \to +0$ we obtain the required estimate. \end{proof} \noindent\textbf{Remark.} Let $n=2$, $0\in \partial \Omega $ be a corner point, $G=( 0,\omega_0 ), \omega_0 $ is size of the angle in the neighbourhood of $0$, $\Omega_0 ^d =( 0,d) \times (0,\omega_0 ) $. In this case eigenvalues problem \eqref{e3} has the form \begin{equation} \label{e18} \begin{gathered} u''+\lambda ^{2}u=0,\quad u=u( \omega ),\quad \omega \in G,\\ u( \omega ) \Big|_{\omega =0}=0, \quad \frac{\partial u}{\partial n}\Big|_{\omega =\omega_0 }=0\,. \end{gathered} \end{equation} Here, the least positive eigenvalue of this problem is $\lambda =\pi / (2\omega_0 )$ and condition \eqref{e14} takes the form \[ \frac{\pi }{\omega_0 }>2-\alpha ,\quad \alpha \leq 2. \] Before, estimating $|u( x)|$, we prove the following lemma. \begin{lemma} \label{lem0} Let $u( x) $ be a generalized solution of \eqref{e1} and let conditions \eqref{e9}--\eqref{e12} be satisfied. Then for any function \[ v( x) \in V=\{ v\in W_{2}^{1}( \Omega_0 ^{\rho }) : v( x) =0,\; x\in \Gamma_{0,1}^{\rho };\;\frac{\partial v}{\partial n}=0,\; x\in \Gamma_{0,2}^{\rho }\} \] and almost all $\rho \in ( 0,d)$ the following equality holds \begin{equation} \label{e19} \int_{\Omega_0 ^{\rho }} [ a_i( x,u,u_{x}) v_{x_i}+a( x,u,u_{x}) v( x) ] dx =\int_{G_{\rho }}a_i( x,u,u_{x}) v( x) \cos (r,x_i) dG_{\rho } \end{equation} \end{lemma} To prove it we substitute $\eta ( x) =v( x)( \chi_{\rho })_{h}( x)$, for $v\in W_{2,0}^{1}( \Omega ) $ into the integral identity \eqref{e8}, where $\chi_{\rho }( x) $ is characteristic function of the set $\Omega_0 ^{\rho }$ and $( \chi_{\rho })_{h}$ is its Sobolev averaging. Such $\eta $ is admissible by virtue of Theorem \ref{thm1}. Passing to the limit as $h\to 0$ we obtain \eqref{e19}. Passage to the limit is justified by the use of properties of mean functions \cite[theorem 3.10, p.113]{s1} and Theorem \ref{thm1}. \begin{theorem} \label{thm2} Let $u( x) $ be a generalized solution of \eqref{e1}. Assume conditions \eqref{e9}--\eqref{e12} and that \begin{equation} \Big( \sum_{i=1}^n [ a_i( x,u,p) -a_i( 0,0,p)] ^{2}\Big) ^{1/2} \leq \delta (|x| ) |p| +h( x), \end{equation} for any $x\in \Omega_0 ^d $, $u\in R,p\in \mathbb{R}^{n}$, where $\delta ( r) $ is a nondecreasing positive function satisfying the Diny condition $\int_0^d \frac{\delta ( r) }{r}dr<\infty $. In addition we assume that \begin{equation} \label{e21} \begin{gathered} a_i( x,u,p) p_i\geq v_0 |p|^{2}-\mu _{3}|u| ^{\beta }-u^{2}\varphi ( x) ;\\ a( x,u,p) u\leq \mu_0 |p|^{2}+\mu _{3}|u| ^{\beta }+u^{2}\varphi ( x), \end{gathered} \end{equation} where $2n/( n-2) >\beta >2$, $0\leq \varphi( x) \in L_{q/2}( \Omega )$, $q>n$, $v_0 >0$, $\mu_0 ,\mu_{3}\geq 0$; $ g( x) \in W_{2-n}^{0}( \Omega )$, $h( x) \in W_{2-n,0}^{0}( \Omega )$, $f( x) \in W_{4-n,0}^{0}( \Omega)$, and \[ \rho ^{2}\int_{G} g^{2}( \rho ,\omega ) d\omega +\rho ^{2}\int_{G} h^{2}( \rho ,\omega ) d\omega +\int_{\Omega_0 ^{\rho }} r^{4-n}f^{2}( x) dx\leq k\rho ^{s}, \] with $s>2\lambda ( G)$, $0<\rho 0$, and H\"older property of $u( x) $, we obtain \begin{equation} \label{e25} v( \rho ) \leq c\rho \,^{2\lambda }\ ,\ \ \ 0<\rho 2. \end{equation} Then taking into consideration results from \cite[ch.4, theorem 7.6]{l1}, by the assumption of this theorem, we obtain \begin{equation} \label{e28} | u( x) | \leq M_2\rho ^{\lambda ( G)} \end{equation} where $x\in \Omega_0 ^d \cap \{ \rho /2<|x| <\rho n$. Then $u( x) \in W_{\alpha ,0}^{2}( \Omega ) $ and \begin{align*} % 30 &\| u\|_{W_{\alpha ,0}^{2}( \Omega ) }^{2}\\ &\leq c_{1}(1+\| f\|_{q,\Omega }+\| f\|_{q/2,\Omega } +\| \varphi_0 \|_{q/2,\Omega}+\| \varphi_{2}\|_{q/2,\Omega } +\| \varphi_{1}\|_{q,\Omega }\\ &\quad +\| h\|_{W_{\alpha-2,0}^{2}( \Omega ) }^{2} +\|g\|_{W_{\alpha -2}^{0}( \Omega )}^{2} +\| f\|_{W_{\alpha,0}^{0}( \Omega ) }^{2}\\ &\quad +c_{2}\Big\{\int_{\Omega} r^{( \alpha +h) q/4-n}[\varphi_0 ^{q/2}( x) +\varphi_{1}^{q}( x) +\varphi_{2}^{q/2}( x) +f^{q/2}( x) +g^{q}(x) ]\Big\}^{4/q}\,, \end{align*} where $\alpha \leq 4-n$. Provided that the last integral is finite, the constat $c_{1},c_{2}>0$ depends on the known parameters. \end{theorem} To proof this theorem we considered a sequence of domains $\Omega_{k,\rho }$, which are intersections of $\Omega_0 ^d $ and some layers. Making some transformations and using an estimate from \cite{l1} and summing all the obtained inequalities over $k=1,2,\dots$. Using Theorem \ref{thm1} we obtain the following corollary. \begin{corollary} \label{coro1} Let the conditions of Theorem \ref{thm3}, except for \eqref{e14}, be fulfilled. Then generalized solution $u( x)$ of problem \eqref{e1} is in $W^{2}( \Omega )$, for the following cases: \begin{enumerate} \item $n\geq 4$; \item $n=2$ and $0<\omega_0 <\frac{\pi }{2}$; \item $n=3$ and $G\subset G_0 =\{ \omega =( \theta ;\varphi ): 0<| \theta | <\omega_0 <\pi ,\; 0<\varphi <2\pi \} $, where $\omega_0 $ is solution of equation $p_{1/2}( \cos \omega_0 ) =0$ for Legendre functions. \end{enumerate} \end{corollary} \begin{proof} (1) According to theorem \ref{thm3} $u( x) \in W_{4-n,0}^{2}( \Omega ) $. Condition \eqref{e14} is trivial if $\alpha =4-n$ because $\lambda =\lambda ( G) >0$. Now the statement follows from inequality \[ \int_{\Omega_0^d} u_{xx}^{2}dx \leq d^{n-4}\int_{\Omega_0 ^d } r^{4-n}u_{xx}^{2}dx\leq \mbox{const.} \] (2) Suppose $\alpha =0$ in Theorem \ref{thm3} then condition \eqref{e13} is trivial. If $n=2$ the statement follows from the remark. \noindent(3) Condition \eqref{e14} becomes $\lambda ( G) >1/2$. Let $\Omega_0 \subset S^{2}$ be a domain in which the eigenvalue problem \eqref{e3} is solvable for $\lambda ( G) =1/2$ and $\partial \Omega_0 =\partial ^{1}\Omega_0 \cup \partial^{2}\Omega_0 $: \begin{equation} \label{e31} \begin{aligned} \Delta_{\omega }u+( 1/2) ( 1+1/2) u=0,\quad \omega \in \Omega_0 \\ u\Big|_{\partial ^{1}\Omega_0 }=0,\quad \frac{\partial u}{\partial u}\Big|_{\partial ^{2}\Omega_0} =0 \end{aligned} \end{equation} The condition $\lambda>1/2 $ implies $\Omega \subset \Omega_0 $; see \cite{g2}. We are seeking of solution problem \eqref{e31} of the form $u= v( \theta ) $. Then for $v( \theta )$ we obtain \begin{equation} \label{e32} \begin{gathered} \frac{1}{\sin \theta } \frac{d}{d\theta }\big( \sin \theta \frac{dv}{d\theta }\big) +\frac{1}{2}\big( 1+\frac{1}{2}\big)v=0,\quad 0<| \theta | <\omega_0 ,\\ v( -\omega_0 ) =0\,\quad \frac{\partial v}{\partial n}(\omega_0 ) =0\,. \end{gathered} \end{equation} The solution to this equation is a Legendre function of the first genus $v(\theta ) =p_{1/2}( \cos \theta )$, which has exactly one zero in the interval $0<\theta <\pi $ which we denote by $\omega_0 $ (see \cite{l1}). Therefore, the corollary is proved. \end{proof} \begin{theorem} \label{thm4} Let $u( x)$ be a generalized solution of \eqref{e1}. Let functions $a_i( x,u,p)$, $a( x,u,p)$ be differentiable with respect to their arguments and conditions \eqref{e9}--\eqref{e12}, \eqref{e29} with $q=\infty $ be satisfied. Under the assumptions in Theorem \ref{thm2}, \begin{equation} | \nabla u( x) | \leq c|x|^{\lambda ( G) -1}\, \end{equation} where $\lambda ( G)$ is the least positive eigenvalue of \eqref{e3}, and constant $c$ depends only on the known quantities. \end{theorem} \begin{proof} As in the proof of Theorem \ref{thm2} consider function $z(x') =\rho ^{-\lambda ( G) }u(\rho x') $, $0<\rho 0$ depends on $v,v_0,\mu,\mu_1,\mu_2$ $\mathop{\rm vrai\,max}_{Q'} | {z(x')} |$. Then for the function $u( x) $ we obtain \begin{equation} |\nabla u( x)| \leq M_{1}\rho ^{\lambda( G) -1}\,,\quad x\in \Omega_0 ^d \cap \{ \rho :2<|x| <\rho