\documentclass[reqno]{amsart} \usepackage{amssymb,hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2005(2005), No. 112, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2005 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2005/112\hfil A resonance problem] {A resonance problem for the p-laplacian in $\mathbb{R}^N$} \author[G. Izquierdo B., G. L\'{o}pez G.\hfil EJDE-2005/112\hfilneg] {Gustavo Izquierdo Buenrostro \& Gabriel L\'{o}pez Garza} \address{Gustavo Izquierdo Buenrostro \hfil\break Dept. Mat. Universidad Aut\'{o}noma Metropolitana\\ M\'{e}xico} \email{iubg@xanum.uam.mx} \address{Gabriel L\'{o}pez Garza \hfill\break Dept. Mat. Universidad Aut\'{o}noma Metropolitana\\ M\'{e}xico} \email{grlzgz@xanum.uam.mx} \date{} \thanks{Submitted May 31, 2005. Published October 17, 2005.} \subjclass[2000]{35J20} \keywords{Resonance; $p$-Laplacian; improved Poincar\'{e} inequality} \begin{abstract} We show the existence of a weak solution for the problem $$ -\Delta_p u=\lambda_1h(x)|u|^{p-2}u+a(x)g(u)+f(x),\quad u\in\mathcal{D}^{1,p}(\mathbb{R}^N), $$ where, $2
From here and henceforth the integrals and all the spaces are taken over $\mathbb{R}^N$ unless otherwise specified. The term resonance is well known in the literature, and refers to the case in which $\lambda$ is an eigenvalue of the problem \begin{equation}\label{eigen} \begin{gathered} -\Delta_p u=\lambda h(x)|u|^{p-2}u,\\ u\in \mathcal{D}^{1,p}. \end{gathered} \end{equation} In \cite{All}, Allegreto et al. show that the eigenvalue problem \eqref{eigen} possesses a sequence of eigenvalues $0<\lambda_1<\lambda_2\leqslant,\dots$ and a corresponding sequence of eigenfunctions $\{\varphi_j\}$, where $\varphi_1$ can be chosen to be positive a.e.. Moreover, we have the Rayleigh quotient characterization: \begin{equation} \label{Ray} \lambda_1=\inf\Big\{ \int |\nabla u|^p: u\in \mathcal{D}^{1,p}\mbox{ with } \int h |u|^p=1 \Big\}. \end{equation} We consider the function $\varphi_1$ to be normalized; i.e., $\int h|\varphi_1|^p=1$ and we decompose any function $u\in\mathcal{D}^{1,p}$ as a direct sum \begin{equation} \label{sum} \begin{gathered} u=\alpha \varphi_1+w\mbox{ where }\\ \alpha=\int h|\varphi_1|^{p-2}\varphi_1u\mbox{ and }\int h|\varphi_1|^{p-2}\varphi_1w=0. \end{gathered} \end{equation} Hence, we introduce the spaces \begin{equation} \label{spaces} \begin{gathered} V\stackrel{\text{def}}{=}\mathop{\rm span}\{\varphi_1\},\\ W \stackrel{\text{def}}{=}\big\{w\in\mathcal{D}^{1,p}:\int h|\varphi_1| ^{p-2}\varphi_1w=0\big\} \end{gathered} \end{equation} In order to prove our main result we use some of the results introduced by Alziary, Fleckinger and Tak\'{a}\u{c} in \cite{Takac} where the cases $1
0,\quad 2
0$ and $C>0$ such that
\begin{equation}
\label{H}
0 2$ (see \cite{All} inequality (7) p.237 and subsequent inequalities)
\begin{equation} \label{alegreto}
\begin{aligned}
\int|\nabla u_n-\nabla u|^p
&\leqslant C\left\{\int (|\nabla u_n|^{p-2}\nabla u_n-|\nabla u|^{p-2}
\nabla u)\cdot \nabla(u_n-u) \right\}\\
&\quad \times \Big(\int|\nabla u_n|^p+ \int|\nabla u|^p \Big).
\end{aligned}
\end{equation}
Thus it is sufficient to show that
$\lim_{n\to\infty}\int |\nabla u_n|^{p-2}\nabla u_n\cdot\nabla(u_n-u)=0$.
To this aim, taking $\varphi=u_n-u$, in \eqref{PS2} we have
\begin{equation} \label{PS3}
\begin{aligned}
&\int |\nabla u_n|^{p-2}\nabla u_n\cdot \nabla(u_n-u)\\
&=\lambda\int h|u_n|^{p-2}u_n(u_n-u)+\int ag(u_n)(u_n-u)
+\int f(u_n-u)+o(1)
\end{aligned}
\end{equation}
as $n\to\infty$.
For the first integral in the right hand side, using the H\"{o}lder's
inequality we have
$$
\big|\int h|u_n|^{p-2}u_n(u_n-u)\big|\leqslant
\Big(\int h|u_n|^p\Big)^{1/p'}\Big( \int h|u_n-u|^p\Big)^{1/p}.
$$
Noting that $h\in L^{N/p}(\mathbb{R}^N)=L^{(p^{*}/p)'}(\mathbb{R}^N)$, for
$1\leqslant q< p^{*}$ the functional $u\mapsto\int h|u|^q$ is
weakly continuous in $\mathcal{D}^{1,p}$ (see \cite[Prop. 2.1 p. 826]{Ben}).
Consequently,
\begin{equation}\label{PS4}
\lim_{n\to\infty} \int h|u_n|^{p-2}u_n(u_n-u)=0.
\end{equation}
For the integral $\int a g(u_n)|u_n-u|$ we consider the ball
$B_r(0)$. Since $a,\, g$ are bounded we have
$$\big|\int_{B_r(0)} ag(u_n)(u_n-u)\big|\leqslant
C\int_{B_r(0)}|u_n-u|\to 0 \quad \mbox{as }n\to\infty,
$$
since $u_n\to u$ strongly in $L^{1}(B_r(0))$ due to the Relich-Kondrachov
theorem. Now, together with the assumption that $u_n\mbox{ and }g$
are bounded, we obtain
$$
\big|\int_{\mathbb{R}^N\setminus B_r(0)}ag(u_n)|u_n-u|\big|\leqslant
C\Big( \int_{\mathbb{R}^N\setminus B_r(0)}|a|^\frac{Np}{N-p}\Big)
^\frac{N+p}{Np}
$$
So, by taking $r$ big enough it follows that
$$
\limsup_{n\to\infty}\big|\int ag(u_n)|u_n-u|\big|\leqslant C\varepsilon
$$
For arbitrary $\varepsilon$. Finally, since $f\in L^{(p^{*})'}(\mathbb{R}^N)$
we can use similar arguments as above to show that
$\lim_{n\to\infty}\int f(u_n-u)=0$.
\end{proof}
\section{Proof of Theorem \ref{thm1}}
In this section we consider the problem
\begin{equation} \label{pl1}
\begin{gathered}
-\Delta_p u=\lambda_1h(x)|u|^{p-2}u+a(x)g(u)+f(x)\\
u\in\mathcal{D}^{1,p}
\end{gathered}
\end{equation}
where $h$ satisfies (H).
To prove the main theorem of this section we require the
Saddle Point Theorem of Rabinowitz \cite{R}, which we introduce
here for the convenience of the reader.
\begin{theorem}[Saddle Point Theorem] \label{sadd}
Let $E=V\oplus W $, where $E$ is a real Banach space and $V\not= \{0\}$ is
finite dimensional. Suppose $I\in \mathcal{C}^1(E,{\mathbb{R}})$ satisfies the
(PS) condition and
\begin{itemize}
\item[(I1)] there is a constant $\alpha$ and a bounded neighborhood
$D$ of 0 in $V$ such that $I\big|_{\partial D}\leqslant\alpha$, and
\item[(I2)] there is a constant $\beta>\alpha$ such that
$I|_{W}\geqslant \beta$.
\end{itemize}
Then, $I$ possesses a critical value $c\geqslant\beta$. Moreover $c$ can be
characterized as
$$
c=\inf_{h\in\Gamma}\max_{u\in\overline{D}} I(h(u)),
$$
where
$\Gamma=\{h\in\mathcal{C}(\overline{D},E):h=\mbox{id on }\partial D\}$.
\end{theorem}
Now, we can show the existence of weak solutions for $J_{\lambda_1}$.
\begin{proof}[Proof of Theorem \ref{thm1}]
First, we show that the functional $J_{\lambda_1}$ corresponding to
problem \eqref{pl1} satisfies the $(PS)_c$ condition for any
$c\in\mathbb{R}$, and thereafter we verify that $J_{\lambda_1}$
satisfies the other hypotheses of the Theorem \ref{sadd}.
Let $(u_n)$ be a $(PS)_c$ sequence for the functional $J_{\lambda_1}$.
We claim that $(u_n)$ is bounded. For each $n\in\mathbb{N}$ write
$$
u_n\stackrel{\text{def}}{=}v_n+w_n=\alpha_n\varphi_1+w_n\quad \mbox{with }
\alpha_n\in\mathbb{R}\mbox{ and }w_n\in W.
$$
Since $(u_n)$ is a $(PS)_c$ sequence we have $|J_{\lambda_1}(u_n)|