\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2004(2004), No. 78, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2004 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2004/78\hfil Generic solvability for the 3-D Navier-Stokes equations] {Generic solvability for the 3-D Navier-Stokes equations with nonregular force} \author[Jihoon Lee\hfil EJDE-2004/78\hfilneg] {Jihoon Lee} \address{Max-Planck institute for mathematics in the sciences\\ Insel str. 22-26 04103 Leipzig, Germany} \email{zhlee@math.snu.ac.kr} \date{} \thanks{Submitted February 24, 2004. Published June 4, 2004.} \thanks{Supported by the post-doctoral Fellowship Program of KOSEF} \subjclass[2000]{35A05, 76N10} \keywords{Stochastic Navier-Stokes equations, generic solvability} \begin{abstract} We show that the existence of global strong solutions for the Navier-Stokes equations with nonregular force is generically true. Similar results for equations without the nonregular force have been obtained by Fursikov \cite{fursikov}. Our main tools are the Galerkin method and estimates on its solutions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \section{Introduction} We are interested in the generic solvability for the 3-dimensional Navier-Stokes equations with nonregular force on the periodic domain ${\mathbb{T}}^3\times [0, \infty)$. \begin{gather} \frac{\partial u}{\partial t} + (u\cdot \nabla )u +\nabla p =\nu \Delta u+f+\frac{\partial g}{\partial t}, \label{Navier-Stokes} \\ \mathop{\rm div} u =0 \label{eq-st},\\ u(x,0)=u_0(x),\label{eq-in} \end{gather} where $u$ is the fluid velocity vector field, $p$ is the scalar pressure, $\nu$ is the positive viscosity constant and $f+\frac{\partial g}{\partial t}$ s the external force. $u_0$ is a given initial data. The nonregular part is denoted by $\frac{\partial g}{\partial t}$. We assume $g\in C([0, \infty); V^2)$ which means $g(t)$ is a continuous function in $V^2$, where the space $V^2$ is defined below. Since we only consider the periodic domain ${\mathbb{T}}^3=[0, 2\pi]^3$, every function can be regarded as a periodic vector field with period $2\pi$, i.e., $u(x_1+2\pi, x_2, x_3)=u(x_1, x_2, x_3)$, etc. For this above Navier-Stokes equations with nonregular force, the existence of the weak solution was shown in \cite{Flandoli-Schmalfu}. Recently, Flandoli and Romito\cite{Flandoli-Romito} proved the paths of a martingale suitable weak solution for the Navier-Stokes equations with nonregular force have a set of singular points of one-dimensional Hausdorff measure zero. Also the stochastic Navier-Stokes equations have been intensively studied by many authors (see \cite{Da Prato-Zabczyk}, \cite{E-Mattingly-Sinai}, \cite{Romito} and references therein). One of the most important problems in nonlinear partial differential equations is to show existence of global strong solution for three-dimensional Navier-Stokes equations or to construct an example of the finite blow-up of the solution for the three-dimensional Navier-Stokes equations. Although, it is still far from being proved the global existence, it is known to be generically true for (\ref{Navier-Stokes})--(\ref{eq-in}) without the nonregular part $\frac{\partial g}{\partial t}$ (see \cite{fursikov} and \cite{Te}). In this paper, we show that generic solvability is still true even with the nonregular force. We assume $f$ and $g$ are divergence free vector fields for simplicity. In the following, we consider the Banach spaces $L^p(0, T; B)$ for any Banch spaces $B$, i.e. we say $f\in L^p(0, T;B)$ if and only if $|f|_{L^p(0, T; B)}<\infty$ (we use the same notation for the Banach space of 3-dimensional vector fields with the Banach space for scalar valued function for simplicity). We denote $\cup_{00$. Since $u_m$ is a finite Galerkin approximation, we have $|u_m|_{V^m} \leq C(m)|u_m|_{L^2}$. Hence $u_m$ is in $L^{\infty} (0,T; V)\cap L^2(0, T; V^2)$. Thus we have showed the following lemma. \begin{lemma} \label{lemma1} If $u_0 \in H$, then $u_m$ converges in $L^2(0, T;V^{1-\epsilon})$ and $L^\frac{1}{\epsilon}(0, T; H)$ for any small $\epsilon >0$ as $m\to \infty$. The sequence $u_m$ is bounded in $L^{\infty} (0, T;H) \cap L^2(0, T;V)$. Furthermore, $u_m$ is in $L^{\infty}_{\rm loc}(0, \infty; V)\cap L^2_{\rm loc}(0, \infty; V^2)$. \end{lemma} To proceed further, we consider the linear equations \begin{equation} \label{linear equation1} \begin{gathered} \frac{\partial v_m}{\partial t}+\nu \Lambda^2 v_m =(I-P_m)f+(I-P_m) \frac{\partial g}{\partial t}, \\ v_m (0) =(I-P_m) u_0, \end{gathered} \end{equation} where $I-P_m$ is the projection onto the space spanned by $\{ \frac{1}{\alpha_i(k)}P_{\rm div}(\vec{e}_ie^{ik\cdot x})\,|\, |k|> m\}$. \begin{lemma}\label{lemma3} If $u_0 \in H$, then there exist a unique solution $v_m$ of \eqref{linear equation1} in the space $L^2(0, T; V)\cap L^{\infty}(0, T; H)$ and $v_m\to 0$ in $ L^2(0, T; V)\cap L^{\infty}(0, T; H)$ as $m\to \infty$. Furthermore, if $u_0\in V$, then $v_m \in L^2(0, T; V^2)\cap L^{\infty}(0, T; V)$ and $v_m\to 0$ in $L^2(0, T; V^2)\cap L^{\infty}(0, T; V)$ as $m\to \infty$. \end{lemma} \begin{proof} Since (\ref{linear equation1}) is a simple linear dissipative system, the existence and uniqueness are immediate consequence of the standard results. Similarly to the proof of Lemma \ref{lemma1}, we can prove $v_m\in L^2(0, T; V)\cap L^{\infty}(0, T; H)$ and $v_m\to 0$ in $L^2(0, T; V)\cap L^{\infty}(0,T; H)$. We only provide the proof of the second claim of this lemma. Equation (\ref{linear equation1}) is equivalent to the integral equation \begin{align*} v_m(t)=& e^{-\nu t \Lambda^2} (I-P_m) u_0 +(I-P_m)g(t) +\int_0^t e^{-\nu (t-s)\Lambda^2} (I-P_m) f(s) \,ds\\ &- \int_0^t \nu \Lambda^2 e^{-\nu (t-s) \Lambda^2}(I-P_m) g(s)\, ds. \end{align*} Since \begin{align*} \Lambda v_m(t)=& e^{-\nu t\Lambda^2} \Lambda (I-P_m) u_0 +\Lambda (I-P_m) g(t) +\int_0^t \Lambda e^{-\nu (t-s) \Lambda^2} (I-P_m) f(s)\, ds\\ &-\int_0^t \nu \Lambda^{2(1-\epsilon)} e^{-\nu (t-s) \Lambda^2} \Lambda^{1+2\epsilon} (I-P_m) g(s) \,ds \end{align*} is a continuous function in $H$ (see (\ref{Linear norm})), we have $v_m\in C([0,T); V)$. Set \begin{align*} h_m(t)=& e^{-\nu t\Lambda^2} (I-P_m) u_0 -\int_0^t \nu \Lambda^2 e^{-\nu (t-s) \Lambda^2} (I-P_m)g(s)\, ds\\ & + \int_0^t e^{-\nu (t-s) \Lambda^2} (I-P_m) f(s)\, ds, \end{align*} i.e., $v_m(t)= (I-P_m)g(t)+h_m(t)$. It follows that $h_m$ satisfies the equation \[ \frac{dh_m}{dt} +\nu \Lambda^2 h_m= -\nu \Lambda^2 (I-P_m) g+ (I-P_m)f. \] Taking inner product with $\Lambda^2 h_m$ in $L^2$ produces \[ \frac12 \frac{d}{dt} |\Lambda h_m|_{L^2}^2 +\nu |\Lambda^2 h_m(t)|_{L^2}^2 \leq \frac{\nu}{2} |\Lambda^2 h_m|_{L^2}^2 + C|\Lambda^2(I-P_m) g|_{L^2}^2 +C|(I-P_m) f|_{L^2}^2. \] Integrating over $[0, T)$, we obtain \begin{align*} &|\Lambda^2 h_m(t)|_{L^2}^2 +\nu \int_0^T |\Lambda^2 h_m(t)|_{L^2}^2 dt \\ &\leq |\Lambda (I-P_m) u_0|_{L^2}^2 +C\int_0^T |\Lambda^2(I-P_m) g(t)|_{L^2}^2 dt +C\int_0^T |(I-P_m)f(t)|_{L^2}^2 dt. \end{align*} Thus $h_m\in L^2(0, T; V^2)$. Since $g\in L^2(0, T; V^2)$, we obtain $v_m\in L^2(0, T; V^2)$. Lebesgue's dominated convergence Theorem produces $v_m\to 0$ in $L^2(0, T; V^2) \cap L^{\infty}(0, T; V)$ as $m\to \infty$. For the uniqueness, if there exists two solutions $v_m^1$ and $v_m^2$ of (\ref{linear equation1}), then we denote by $\rho(t)=v_m^1(t)-v_m^2(t)$. We have the following deterministic equations. \[ \frac{d \rho}{dt} +\nu \Lambda^2 \rho=0,\quad \rho(0)=0. \] Thus we have $\rho(t)=0$, which completes the proof. \end{proof} From Lemma \ref{lemma1}, we have $u_m$ is in $L^{\infty} (0,T;V) \cap L^2(0, T;V^2)$. Now for every $m$, we consider also the solution $v_m$ of the linearized problems (\ref{linear equation1}) We then set $w_m = u_m +v_m$ and observe $w_m$ satisfies $w_m \in L^2(0, T; V^2)\cap L^{\infty} (0, T; V)$ if $u_0 \in V$. By adding two equations, we have the following Navier-Stokes equations with nonregular force \begin{equation}\label{main equation} \frac{d w_m}{d t} +\nu \Lambda^2 w_m - B(w_m, w_m) = f_m +\frac{d g}{d t}, \end{equation} where $f_m= f-B(v_m, v_m) - B(v_m, u_m) - B(u_m, v_m) -(I-P_m) B(u_m, u_m)$. Let $\tilde{w}_m$ be another solution of (\ref{main equation}). Then by letting $\tilde{\rho}_m= w_m-\tilde{w}_m$, we have \[ \frac{d \tilde{\rho}_m}{d t} +\nu \Lambda^2 \tilde{\rho}_m = B(\tilde{\rho}_m, w_m)+B(\tilde{w}_m, \tilde{\rho}_m). \] Hence we have \begin{align*} \frac{d}{dt} | \tilde{\rho}_m|_{L^2}^2 & \leq -2\nu |\Lambda \tilde{\rho}_m|_{L^2}^2 +C |\tilde{\rho}_m|_{L^6} |\nabla w_m|_{L^3} |\tilde{\rho}_m|_{L^2}\\ & \leq -\nu |\Lambda \tilde{\rho}_m|_{L^2}^2 +C| w_m |_{V^2}|w_m|_{V} | \tilde{\rho}_m|_{L^2}^2. \end{align*} Using Gronwall's inequality, we have \[ |\tilde{\rho}_m (t)|_{L^2}^2 \leq |\tilde{\rho}_m(0)|_{L^2}^2 \exp \Big(C\int_0^t |w_m|_{V^2} |w_m|_{V} ds \Big). \] Since $w_m \in L^2(0, T; V^2)\cap L^{\infty}(0, T; V)$, it is clear that $w_m$ is the unique solution in $L^2_{\rm loc}(0, \infty; V^2)\cap L^{\infty}_{\rm loc}(0, \infty; V)$. Hence for the proof of Theorem \ref{main theorem}, it is sufficient to show that $f_m$ converges to $f$ in $L^q(0, T; L^{6/5})$ with $1\leq q <\frac43$. \begin{proof}[Proof of Theorem \ref{main theorem}] For the remaining of this proof, we use only the weaker assumption $u_0\in H$ instead of $u_0\in V$. Since we have $v_m\to 0$ in $L^2(0, T; V)\cap L^{\infty} (0, T; H)$ as $m\to \infty$, it is clear that $B(v_m, v_m) \to 0$ in $L^q(0, T; L^{6/5})$ by the inequalities \begin{align*} \int_{0}^T | B(v_m, v_m)|_{L^{6/5}}^q dt & \leq C\int_{0}^T |v_m|_{L^{3}}^q \, |v_m |_{V}^q dt \\ & \leq C \int_0^T |v_m |_{L^2}^{q/2} |v_m|_{V}^{\frac32 q}dt \\ & \leq C\Big(\int_0^T |v_m|_{L^2}^{\frac{2q}{4-3q}}dt \Big)^{\frac{4-3q}{4}} \Big( \int_0^T |v_m|_{V}^2 dt \Big)^{3q/4}\\ & \leq CT^{\frac{4-3q}{4}}|v_m |_{L^{\infty}(0, T; H)}^{\frac{4q}{4-3q}} |v_m |_{L^2(0, T; V)}^{3q/2}. \end{align*} It is well known from the interpolation inequality that \[ \quad | B(u_m, v_m)|_{L^{6/5}} \leq C | u_m |_{L^6} |\nabla v_m|_{L^{3/2}} \leq C|\nabla u_m |_{L^2} | v_m |_{L^2}^{1/2} |v_m |_{V}^{1/2}. \] Then \begin{align*} & \int_{0}^T | B(u_m, v_m )|_{L^{6/5}}^q dt\\ & \leq C\int_0^T | \nabla u_m|_{L^2}^q |v_m |_{L^2}^{q/2} |v_m|_{V}^{q/2}dt\\ & \leq C \Big(\int_{0}^T |\nabla u_m|_{L^2}^2 dt \Big)^{q/2} \Big( \int_{0}^T |v_m|_{L^2}^{\frac{2q}{4-3q}}dt \Big)^{\frac{4-3q}{4}} \Big(\int_{0}^T |v_m |_{V}^2 dt \Big)^{q/4}\\ & \leq C T^{\frac{4-3q}{4}}|u_m |_{L^2 (0, T; V)}^q |v_m|_{L^{\infty}(0,T; H)}^{q/2} v_m|_{L^2(0, T; V)}^{q/2} \to 0\,. \end{align*} Similarly, we have \begin{align*} \int_{0}^T | B(v_m, u_m)|_{L^{6/5}}^q dt & \leq \int_{0}^T |v_m|_{L^3}^q |\nabla u_m |_{L^2}^q dt \\ & \leq C T^{\frac{4-3q}{4}}|u_m |_{L^2 (0, T; V)}^q |v_m|_{L^{\infty} (0,T; H)}^{q/2}|v_m|_{L^2(0, T; V)}^{q/2} \to 0\,. \end{align*} To complete the proof, it is sufficient to show that \[ (I-P_m) B(u_m, u_m) \to 0 \quad\mbox{in } L^q(0, T; L^{6/5})\mbox{ as } m\to \infty. \] First we recall that $u_m$ converges to its limit $u$ from Lemma \ref{lemma1}. We rewrite $u$ as an expansion by the complete orthonormal basis $K$, i.e., \[ u=\sum_{k\in{\mathbb{Z}}^3\; i=1,2,3} u^i_k \frac{1}{\alpha_i(k)} P_{\rm div} (\vec{e}_i e^{ik\cdot x})=: \sum_{k\in {\mathbb{Z}}^3} u_k e_k(x), \] where $u_k^i$ is the corresponding coefficient, and for simplicity of notation we introduced the right-hand-side. Then we have \begin{equation} \label{identity} \begin{aligned} (I-P_m) B(u, u)& = (I-P_m)P_{\rm div} ((u\cdot \nabla)u) \\ &= (I-P_m) P_{\rm div} \sum_{k'\in{\mathbb{Z}}^3} ( \sum_{k\in {\mathbb{Z}}^3} u_k e_k(x)\cdot k')u_{k'} e_{k'}(x) \\ &= P_{\rm div} \Big( \big(\sum_{|k|\geq [\frac{m}{2}]} u_k e_k(x)\cdot \nabla\big) \sum_{k'}^* u_{k'} e_{k'}(x) \Big)\\ &\quad + P_{\rm div} \Big( \big(\sum_{k}^* u_k e_k(x) \cdot \nabla\big) \sum_{|k'| \geq [\frac{m}{2}]} u_{k'} e_{k'}(x) \Big), \end{aligned} \end{equation} where $[a]$ denotes the largest integer less than or equal to $a$, and $\sum_{h}^* $ denotes the summation over all $h\in{\mathbb{Z}}^3$ satisfying $|h+j|>m$ when $|j|\geq [\frac{m}{2}]$. Using the identity (\ref{identity}), we obtain \begin{align*} |(I-P_m) B(u, u)| & \leq C |\sum_{|k|\geq [\frac{m}{2}]} u_k e_k(x) |_{L^3} | \nabla u |_{L^2} + C|u|_{L^6} |\nabla \sum_{|k'| \geq \frac{m}{2}} u_{k'} e_{k'}(x) |_{L^{3/2}}\\ &\leq C| \sum_{|k| \geq [\frac{m}{2}]} u_k e_k(x) |_{L^2}^{1/2} |\nabla u|_{L^2}^{3/2}. \end{align*} We obtain that for any $q<4/3$, \begin{align*} &\int_{0}^T | (I-P_m)B(u, u)|_{L^{6/5}}^q dt\\ & \leq C \int_{0}^T |\nabla u|_{L^2}^{\frac{3q}{2}} |\sum_{|k|\geq [\frac{m}{2}]} u_k e_k(x)|_{L^2}^{q/2} dt\\ & \leq C\Big(\int_{0}^T |\nabla u|_{L^2}^2dt \Big)^{3q/4} \Big( \int_{0}^T |\sum_{|k|\geq [\frac{m}{2}]}u_k e_k(x)|_{L^2}^{\frac{2q}{4-3q}} dt \Big)^{\frac{4-3q}{4}} . \end{align*} Since $K$ is a complete orthonormal basis for $H$, we have \[ (I-P_m) B(u, u) \to 0 \quad\mbox{in } L^q(0, T; L^{6/5})\mbox{ as } m\to \infty. \] Thus it only remains to prove that $ B(u_m, u_m)- B(u, u) \to 0$ in $L^q(0, T; L^{6/5})$. From Lemma \ref{lemma1}, we have \[ u_m \to u \quad \mbox{ in } L^2(0, T; V^{1-\epsilon})\cap L^{\frac{1}{\epsilon}} (0, T; H)\mbox{ for any } \epsilon >0. \] We complete the proof by showing that \[ B(u_m-u,u_m), B(u,u_m-u)\to 0 \quad\mbox{in } L^q(0, T; L^{6/5}) {\mbox{ for all }} q< 4/3. \] By the interpolation inequality, we have for $\epsilon <1/2$, \begin{gather*} |B(u_m-u,u_m)|_{L^{6/5}}\leq C |u_m -u|_{L^2}^{\frac{1-2\epsilon}{2(1-\epsilon)}} |u_m-u|_{V^{1-\epsilon}}^{\frac{1}{2(1-\epsilon)}}|\nabla u_m|_{L^2},\\ |B(u, u_m-u)|_{L^{6/5}} \leq C|u|_{L^6} |u_m-u|_{L^2}^{1/2} |u_m-u|_{V}^{1/2}. \end{gather*} Setting $r=\frac{2q(1-2\epsilon)}{4-3q-2\epsilon(2-q)}$, we have \[ \frac{q}{2}+ \frac{q}{4(1-\epsilon)} +\frac{q(1-2\epsilon)}{2r(1-\epsilon)}=1. \] By H\"{o}lder's inequality and Lemma \ref{lemma1}, we obtain \begin{align*} &\int_{0}^T |B(u_m-u, u_m)|_{L^{6/5}}^q dt\\ &\leq C\Big( \int_{0}^T|u_m-u|_{L^2}^r dt \Big)^{\frac{q(1-2\epsilon)}{2r(1-\epsilon)}} \Big( \int_{0}^T |u_m-u|_{V^{1-\epsilon}}^2dt \Big)^{\frac{q}{4(1-\epsilon)}} \Big(\int_{0}^T |\nabla u_m|_{L^2}^2dt \Big)^{q/2} \end{align*} which approaches zero as $m$ approaches $\infty$. Again using H\"{o}lder's inequality(note that $\frac{q}{2}+\frac{q}{4} +\frac{4-3q}{4}=1$), we have \begin{align*} &\int_{0}^T |B(u, u_m-u)|_{L^{6/5}}^q dt\\ &\leq C\Big( \int_{0}^T |u|_{V}^2 dt\Big)^{q/2} \Big( \int_{0}^T |u_m-u|_{L^2}^{\frac{2q}{4-3q}}dt \Big)^{\frac{4-3q}{4}} \Big(\int_{0}^T |u_m-u|_{V}^2 dt \Big)^{q/4} \to 0\,. \end{align*} This completes the proof of Theorem \ref{main theorem}. \end{proof} \subsection*{Acknowledgements} The author would like to thank Professor D. Chae for the many helpful suggestions on the generic solvability, and Professor Ya Sinai for his helpful discussions. The author also wants to thank the anonymous referee for his/her suggestions and corrections. \begin{thebibliography}{00} \bibitem{Da Prato-Zabczyk} G. Da Prato and J. Zabczyk, \emph{Ergodicity for Infinite dimensional systems}, London Mathematical Society Lecture Note Series, {\bf 229}. Cambridge University Press, Cambridge, 1996. \bibitem{E-Mattingly-Sinai} W. E, J. C. Mattingly, and Y.G. Sinai, {\it Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation}. Comm. Math. Phys., 224 (2001), pp. 83--106. \bibitem{Flandoli-Romito} F. Flandoli and M. Romito, {\it Partial regularity for the stochastic Navier-Stokes equations,} Trans. AMS., 354 (2002), pp. 2207--2241. \bibitem{Flandoli-Schmalfu} F. Flandoli and B. Schmalfu\ss, {\it Weak solutions and attractors for the three-dimensional Navier-Stokes equations with nonregular force}, J. Dynamical and Differential Equations, 11 (1999), pp. 355--398. \bibitem{fursikov} A. V. Fursikov, {\it On some problems of control}, Dokl. Akad. Nauk SSSR, (1980), pp. 1066--1070. \bibitem{Romito} M. Romito, {\it Ergodicity of the finite dimensional approximation of the 3D Navier-Stokes equations forced by a degenerate noise,} J. Statist. Physics, 114(2004), pp.155--177. \bibitem{Te} R. Temam, \emph{Navier-Stokes equations: Theory and Numerical analysis}, North-Holland, Amsterdam, 1984. \end{thebibliography} \end{document}