\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2004(2004), No. 76, pp. 1--32.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2004 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2004/76\hfil Variational methods for a resonant problem] {Variational methods for a resonant problem\\ with the $p$-Laplacian in $\mathbb{R}^N$} \author[B.\ Alziary, J.\ Fleckinger, P.\ Tak\'a\v{c}\hfil EJDE-2004/76\hfilneg] {B\'en\'edicte Alziary, Jacqueline Fleckinger, Peter Tak\'a\v{c}} % in alphabetical order \address{B\'en\'edicte Alziary \hfill\break CEREMATH \& UMR MIP\\ Universit\'e Toulouse~1 -- Sciences Sociales\\ 21 all\'ees de Brienne, F--31042 Toulouse Cedex, France} \email{alziary@univ-tlse1.fr} \address{Jacqueline Fleckinger \hfill\break CEREMATH \& UMR MIP \\ Universit\'e Toulouse~1 -- Sciences Sociales\\ 21 all\'ees de Brienne, F--31042 Toulouse Cedex, France} \email{jfleck@univ-tlse1.fr} \address{Peter Tak\'a\v{c} \hfill\break Fachbereich Mathematik\\ Universit\"at Rostock\\ Universit\"atsplatz 1, D--18055 Rostock, Germany} \email{peter.takac@mathematik.uni-rostock.de} \date{} \thanks{Submitted March 19, 2004. Published May 26, 2004.} \subjclass[2000]{35P30, 35J20, 47J10, 47J30} \keywords{$p$-Laplacian, degenerate quasilinear Cauchy problem, \hfill\break\indent Fredholm alternative, $(p-1)$-homogeneous problem at resonance, saddle point geometry, \hfill\break\indent improved Poincar\'e inequality, second-order Taylor formula} \begin{abstract} The solvability of the resonant Cauchy problem $$ - \Delta_p u = \lambda_1 m(|x|) |u|^{p-2} u + f(x) \quad\hbox{in } \mathbb{R}^N ;\quad u\in D^{1,p}(\mathbb{R}^N), $$ in the entire Euclidean space $\mathbb{R}^N$ ($N\geq 1$) is investigated as a part of the Fredholm alternative at the first (smallest) eigenvalue $\lambda_1$ of the positive $p$-Laplacian $-\Delta_p$ on $D^{1,p}(\mathbb{R}^N)$ relative to the weight $m(|x|)$. Here, $\Delta_p$ stands for the $p$-Laplacian, $m\colon \mathbb{R}_+\to \mathbb{R}_+$ is a weight function assumed to be radially symmetric, $m\not\equiv 0$ in $\mathbb{R}_+$, and $f\colon \mathbb{R}^N\to \mathbb{R}$ is a given function satisfying a suitable integrability condition. The weight $m(r)$ is assumed to be bounded and to decay fast enough as $r\to +\infty$. Let $\varphi_1$ denote the (positive) eigenfunction associated with the (simple) eigenvalue $\lambda_1$ of $-\Delta_p$. If $\int_{\mathbb{R}^N} f\varphi_1 \,{\rm d}x =0$, we show that problem has at least one solution $u$ in the completion $D^{1,p}(\mathbb{R}^N)$ of $C_{\mathrm{c}}^1(\mathbb{R}^N)$ endowed with the norm $(\int_{\mathbb{R}^N} |\nabla u|^p \,{\rm d}x)^{1/p}$. To establish this existence result, we employ a saddle point method if $1 < p < 2$, and an improved Poincar\'e inequality if $2\leq p< N$. We use weighted Lebesgue and Sobolev spaces with weights depending on $\varphi_1$. The asymptotic behavior of $\varphi_1(x)= \varphi_1(|x|)$ as $|x|\to \infty$ plays a crucial role. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}[theorem]{Proposition} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \numberwithin{equation}{section} \newcommand{\eqdef}{\stackrel{{\mathrm {def}}}{=}} \section{Introduction} \label{s:Intro} Spectral problems involving quasilinear degenerate or singular elliptic operators have been an interesting subject of investigation for quite some time; see e.g.\ {\sc Dr\'abek}~\cite{Drabek-1} or {\sc Fu\v{c}\'{\i}k} et al.~\cite{FucikNSS}. In our present work we focus our attention on the solvability of the Cauchy problem % \begin{equation} - \Delta_p u = \lambda\, m(x)\, |u|^{p-2} u + f(x) \;\mbox{ in } \mathbb{R}^N ;\qquad u\in D^{1,p}(\mathbb{R}^N) , \label{e:BVP.l} \end{equation} % in the entire Euclidean space $\mathbb{R}^N$ ($N\geq 1$). Here, $\Delta_p$ stands for the $p$-Laplacian defined by $\Delta_p u\equiv \mathop{\rm div} ( |\nabla u|^{p-2} \nabla u )$, $1 0$, the Sobolev imbedding $D^{1,p}(\mathbb{R}^N) \hookrightarrow L^p(\mathbb{R}^N; m)$ turns out to be compact, where $L^p(\mathbb{R}^N; m)$ denotes the weighted Lebesgue space of all measurable functions $u\colon \mathbb{R}^N\to \mathbb{R}$ with the norm % \[ \| u\|_{ L^{p}(\mathbb{R}^N; m) } \eqdef \Big( \int_{\mathbb{R}^N} |u(x)|^p\, m(x) \,{\rm d}x \Big)^{1/p} < \infty . \] % Hence, the Rayleigh quotient % \begin{equation} \lambda_1\eqdef \inf \Big\{ \int_{\mathbb{R}^N} |\nabla u|^p \,{\rm d}x \colon u\in D^{1,p}(\mathbb{R}^N) \;\mbox{ with }\; \int_{\mathbb{R}^N} |u|^p\, m \,{\rm d}x = 1 \Big\} \label{def.lam_1} \end{equation} % is positive and gives the first (smallest) eigenvalue $\lambda_1$ of $-\Delta_p$ relative to the weight $m$. Now take $f$ from the dual space $D^{-1,p'}(\mathbb{R}^N)$ of $D^{1,p}(\mathbb{R}^N)$, $p'= p/(p-1)$, with respect to the standard duality $\langle \,\cdot\, ,\,\cdot\, \rangle$ induced by the inner product on $L^2(\mathbb{R}^N)$. If $-\infty < \lambda < \lambda_1$ then the energy functional corresponding to equation \eqref{e:BVP.l}, % \begin{equation} \mathcal{J}_{\lambda}(u) \eqdef \frac{1}{p} \int_{\mathbb{R}^N} |\nabla u|^p \,{\rm d}x - \frac{\lambda}{p} \int_{\mathbb{R}^N} |u|^p\, m(x) \,{\rm d}x - \int_{\mathbb{R}^N} f(x) u \,{\rm d}x \label{def.jl} \end{equation} % defined for $u\in D^{1,p}(\mathbb{R}^N)$, is weakly lower semicontinuous and coercive on $D^{1,p}(\mathbb{R}^N)$. Thus, $\mathcal{J}_{\lambda}$ possesses a global minimizer which provides a weak solution to equation \eqref{e:BVP.l}. The critical case $\lambda = \lambda_1$ is much more complicated when $p\not= 2$ because the linear Fredholm alternative cannot be applied. First, one has to have sufficient information on the first eigenvalue $\lambda_1$; we refer the reader to {\sc Fleckinger} et al.~\cite[Sect.\ 2 and~3]{FMST} or {\sc Stavrakakis} and {\sc de~Th\'elin} \cite{StavrThelin}. One has % \begin{equation} - \Delta_p \varphi_1 = \lambda_1\, m(x)\, |\varphi_1|^{p-2} \varphi_1 \;\mbox{ in } \mathbb{R}^N ;\qquad \varphi_1\in D^{1,p}(\mathbb{R}^N)\setminus \{ 0\} , \label{e:varphi.l_1} \end{equation} % and the eigenvalue $\lambda_1$ is simple, by a result due to {\sc Anane} \cite[Th\'eor\`eme~1, p.~727]{Anane-1} and later generalized by {\sc Lindqvist} \cite[Theorem 1.3, p.~157]{Lindqvist}. Moreover, the corresponding eigenfunction $\varphi_1$ can be normalized by $\|\varphi_1\|_{ L^p(\mathbb{R}^N; m) } = 1$ and $\varphi_1 > 0$ in $\mathbb{R}^N$, owing to the strong maximum principle \cite[Prop.\ 3.2.1 and 3.2.2, p.~801]{Tolksdorf-1} or \cite[Theorem~5, p.~200]{Vazquez}. We decompose the unknown function $u\in D^{1,p}(\mathbb{R}^N)$ as a direct sum % \begin{equation} \label{ortho:u} \begin{gathered} u = u^\parallel\cdot \varphi_1 + u^\top\quad \mbox{ where }\\ u^\parallel = \int_{\mathbb{R}^N} u\, \varphi_1\, \mu(x) \,{\rm d}x \in \mathbb{R} \;\mbox{ and }\; \int_{\mathbb{R}^N} u^\top\, \varphi_1\, \mu(x) \,{\rm d}x = 0 , \end{gathered} \end{equation} % with the weight $\mu(x)$ given by $\mu\eqdef \varphi_1^{p-2}\, m$. It is quite natural that we treat the two components, $u^\parallel$ and $u^\top$, differently. The linearization of the equation % \begin{equation} - \Delta_p u = \lambda_1\, m(x)\, |u|^{p-2} u + f(x) \;\mbox{ in } \mathbb{R}^N ;\qquad u\in D^{1,p}(\mathbb{R}^N) , \label{e:BVP.l_1} \end{equation} % about $u^\parallel\cdot \varphi_1$, and the corresponding ``quadratization'' of the functional $\mathcal{J}_{\lambda_1}$, play an important role in our approach. We will also see that the orthogonality condition % \begin{equation} \int_{\mathbb{R}^N} f\, \varphi_1\, \mu \,{\rm d}x \equiv \int_{\mathbb{R}^N} f\, \varphi_1^{p-1}\, m \,{\rm d}x = 0 \label{e:f.phi_1=0} \end{equation} % for $f$ and $\varphi_1$ relative to the measure $\mu(x) \,{\rm d}x$ is sufficient, but not necessary for the solvability of problem~\eqref{e:BVP.l_1}. Similarly as in {\sc Dr\'abek} and {\sc Holubov\'a} \cite{DrabHolub} for $12} for $2\leq p < N$ and Theorem~\ref{thm-Exist:p<2} for $1 < p < 2\leq N$, and some properties of the energy functional $\mathcal{J}_{\lambda}$ needed to establish the solvability, as well. Naturally, our approach requires the compactness of several Sobolev imbeddings in $\mathbb{R}^N$ with weights (Proposition \ref{prop-Compact}) which we prove in Section~\ref{s:pf-Compact}. In Section~\ref{s:Auxiliary} we establish a few auxiliary results for the quadratization of $\mathcal{J}_{\lambda_1}$. We use this quadratization to verify the improved Poincar\'e inequality (Lemma~\ref{lem-Poincare}) for $2\leq p < N$ in Section~\ref{s:Impr_Poinc}. From this inequality we derive Theorem~\ref{thm-Exist:p>2} in Section~\ref{s:pr-Exist:p>2}. For $10} \makeatother There exist constants $\delta > 0$ and $C>0$ such that % \begin{equation} 0 < m(r)\leq \frac{C}{ (1+r)^{p+\delta} } \quad\mbox{for almost all } 0\leq r < \infty . \label{ineq:m>0} \end{equation} \end{enumerate} \begin{remark}\label{rem-hyp:m>0}\begingroup\rm In fact, in hypothesis \eqref{hyp:m>0} above, instead of $m(r) > 0$ for almost all $0\leq r < \infty$, it suffices to assume only $m\geq 0$ a.e.\ in $\mathbb{R}^N$ and $m$ does not vanish identically near zero, i.e., for every $r_0 > 0$ we have $m\not\equiv 0$ in $(0,r_0)$. However, if $m\equiv 0$ on a set $S\subset \mathbb{R}_+$ of positive Lebesgue measure, then the weighted spaces $\mathcal{H}_{\varphi_1} = L^2(\mathbb{R}^N; \varphi_1^{p-2} m)$, $L^p(\mathbb{R}^N; m)$, etc.\ defined below become linear spaces with a seminorm only. Moreover, all functions from their dual spaces $ \mathcal{H}_{\varphi_1}' = L^{2}\big( \mathbb{R}^N; \varphi_1^{2-p} m^{-1} \big)$, $L^{p'}( \mathbb{R}^N; m^{-1/(p-1)} )$, etc., respectively, must vanish identically (i.e., almost everywhere) in the ``spherical shell'' $\{ x\in \mathbb{R}^N\colon |x|\in S\}$. This would make our presentation much less clear; therefore, we have decided to leave the necessary amendments in our arguments to an interested reader. \endgroup \end{remark} \subsection{The first eigenfunction $\varphi_1$} \label{ss:phi_1} Under hypothesis \eqref{hyp:m>0}, the first eigenvalue $\lambda_1$ of $-\Delta_p$ on $\mathbb{R}^N$ relative to the weight $m(|x|)$ is simple and the eigenfunction $\varphi_1$ associated with $\lambda_1$ is commonly called a ``ground state'' for the Cauchy problem~\eqref{e:varphi.l_1}. The simplicity of $\lambda_1$ forces $\varphi_1(x) = \varphi_1(|x|)$ radially symmetric in $\mathbb{R}^N$. Hence, the eigenvalue problem \eqref{e:varphi.l_1} is equivalent to % \begin{equation*} \begin{split} {}- ( |\varphi_1'|^{p-2} \varphi_1' )' - \frac{N-1}{r}\, |\varphi_1'|^{p-2} \varphi_1' = \lambda_1\, m(r)\, \varphi_1^{p-1} \quad\mbox{for } r>0 ; \\ \mbox{subject to}\quad \int_0^\infty |\varphi_1'(r)|^p\, r^{N-1} \,{\rm d}r < \infty \quad\mbox{and }\quad \varphi_1(r) \to 0 \mbox{ as } r\to \infty . \end{split} \end{equation*} % It can be further rewritten as % \begin{equation} \label{ev:phi_1.rad} \begin{split} {}- ( r^{N-1}\, |\varphi_1'|^{p-2} \varphi_1' )' = \lambda_1\, m(r)\, r^{N-1}\, \varphi_1^{p-1} \quad\mbox{for } r>0 ; \\ \varphi_1'(r)\to 0 \mbox{ as } r\to 0 \quad\mbox{and }\quad \varphi_1(r) \to 0 \mbox{ as } r\to \infty . \end{split} \end{equation} % Recalling hypothesis \eqref{hyp:m>0}, from \eqref{ev:phi_1.rad} we can deduce the following simple facts. %%%%% LEMMA - phi_1' < 0 and Simple Facts %%%% \begin{lemma}\label{lem-phi_1'} Let $10$. % \end{lemma} To determine the asymptotic behavior of $\varphi_1(r)$ as $r\to \infty$, we will investigate the corresponding nonlinear eigenvalue problem \eqref{ev:phi_1.rad} in Appendix~\ref{s:Asymptotic}. Higher smoothness of $\varphi_1\colon \mathbb{R}_+\to (0,\infty)$ can be obtained directly by integrating equation \eqref{ev:phi_1.rad}: $\varphi_1\in C^{1,\beta}(\mathbb{R}_+)$ with $\beta = \min\{ 1 ,\, \frac{1}{p-1} \}$. We refer to {\sc Man\'a\-se\-vich} and {\sc Tak\'a\v{c}} \cite[Eq.~(33)]{ManTakac} for details. \subsection{Notation} \label{ss:Notation} The closure and boundary of a set $S\subset \mathbb{R}^N$ are denoted by $\overline{S}$ and $\partial S$, respectively. We denote by $B_{\varrho}\eqdef \{ x\in \mathbb{R}^N\colon |x| < \varrho\}$ the ball of radius $0 < \varrho < \infty$. All Banach and Hilbert spaces used in this article are real. Given an integer $k\geq 0$ and $0\leq \alpha\leq 1$, we denote by $C^{k,\alpha}(\mathbb{R}^N)$ the linear space of all $k$-times continuously differentiable functions $u\colon \mathbb{R}^N\to \mathbb{R}$ whose all (classical) partial derivatives of order $\leq k$ are locally $\alpha$-H\"older continuous on $\mathbb{R}^N$. As usual, we abbreviate $C^k(\mathbb{R}^N) \equiv C^{k,0}(\mathbb{R}^N)$. The linear subspace of $C^k(\mathbb{R}^N)$ consisting of all $C^k$ functions $u\colon \mathbb{R}^N\to \mathbb{R}$ with compact support is denoted by $C_{\mathrm{c}}^k(\mathbb{R}^N)$. For $1 0$, such that for arbitrary vectors ${\bf a}, {\bf b}, {\bf v}\in \mathbb{R}^N$ we have % \begin{equation} \label{1-s.A.geom:p>2} \begin{split} c_p\cdot \big( \max_{0\leq s\leq 1} |{\bf a} + s {\bf b}| \big)^{p-2} |{\bf v}|^2 & \leq \int_0^1 \langle {\bf A}({\bf a} + s {\bf b}) {\bf v}, {\bf v} \rangle (1-s) \,{\rm d}s \\ & \leq \frac{p-1}{2} \big( \max_{0\leq s\leq 1} |{\bf a} + s {\bf b}| \big)^{p-2} |{\bf v}|^2 . \end{split} \end{equation} % On the other hand, given any $1 < p < 2$, there exists a constant $c_p > 0$, such that for arbitrary vectors ${\bf a}, {\bf b}, {\bf v}\in \mathbb{R}^N$, with $|{\bf a}| + |{\bf b}| > 0$, we have % \begin{equation} \label{1-s.A.geom:p<2} \begin{split} \frac{p-1}{2} \big( \max_{0\leq s\leq 1} |{\bf a} + s {\bf b}| \big)^{p-2} |{\bf v}|^2 & \leq \int_0^1 \langle {\bf A}({\bf a} + s {\bf b}) {\bf v}, {\bf v} \rangle (1-s) \,{\rm d}s \\ & \leq c_p\cdot \big( \max_{0\leq s\leq 1} |{\bf a} + s {\bf b}| \big)^{p-2} |{\bf v}|^2 . \end{split} \end{equation} % These inequalities are needed to treat the linearization of $-\Delta_p$ at $\varphi_1$ below. Next, as in \cite[Sect.~1]{Takac-1}, we rewrite the first and second terms of the energy functional $\mathcal{J}_{\lambda_1}$ using the integral forms of the first- and second\--order Taylor formulas; we set % \begin{equation} \mathcal{F}(u) \eqdef \frac{1}{p} \int_{\mathbb{R}^N} |\nabla u|^p \,{\rm d}x - \frac{\lambda_1}{p} \int_{\mathbb{R}^N} |u|^p\, m \,{\rm d}x ,\quad u\in D^{1,p}(\mathbb{R}^N) . \label{def.J} \end{equation} % We need to treat the Taylor formulas for $p\geq 2$ and $1 0$. Furthermore, our definition~\eqref{def.lam_1} of $\lambda_1$ and eq.~\eqref{J''.phi_1} guarantee $\mathcal{Q}_{t\phi}(\phi,\phi) \geq 0$ for all $t\in \mathbb{R}\setminus \{ 0\}$. Letting $t\to 0$ we arrive at % \begin{equation} \mathcal{Q}_0 (\phi,\phi) \geq 0 \quad\mbox{for all }\, \phi\in D^{1,p}(\mathbb{R}^N) . \label{Q.geq.0} \end{equation} % \noindent {\it Case\/} $12} Let $2\leq p < N$. If $f\in \mathcal{D}_{\varphi_1}'$ satisfies $\langle f, \varphi_1\rangle = 0$, then problem~\eqref{e:BVP.l_1} possesses a weak solution $u\in D^{1,p}(\mathbb{R}^N)$. % \end{theorem} This is a part of the Fredholm alternative for $-\Delta_p$ at $\lambda_1$. The proof is given in Section~\ref{s:pr-Exist:p>2}. In a bounded domain $\Omega\subset \mathbb{R}^N$, this theorem is due to {\sc Fleckinger} and {\sc Tak\'a\v{c}} \cite[Theorem 3.3, p.~958]{FleckTakac-1}. The orthogonality condition $\langle f, \varphi_1\rangle = 0$ is sufficient, but {\em not\/} necessary to obtain existence for problem~\eqref{e:BVP.l_1} provided $p\neq 2$, according to recent results obtained in {\sc Dr\'abek}, {\sc Girg} and {\sc Man\'a\-se\-vich} \cite[Theorem 1.3]{DrabGirgMan} for $N=1$, in {\sc Dr\'abek} and {\sc Holubov\'a} \cite[Theorem 1.1]{DrabHolub} for any $N\geq 1$ and $12} \begingroup\rm For $2\leq p < N$, the hypothesis $f\in \mathcal{D}_{\varphi_1}'$ is fulfilled, for example, if $f = f_1 + f_2$ where $f_1\in L^2(B_\varepsilon; m^{-1})$ and $f_1\equiv 0$ in $\mathbb{R}^N\setminus B_\varepsilon$, and $f_2\equiv 0$ in $B_\varepsilon$ and % \begin{math} f_2\in L^2\big( \mathbb{R}^N\setminus B_\varepsilon; r^{ - N + \frac{N-p}{p-1} } \big) \end{math} % for some $0 < \varepsilon\leq 1$. This claim follows from the imbeddings in Lemma~\ref{lem-Compact} combined with the asymptotic formulas in Proposition~\ref{prop-Asympt}, where % \begin{math} \mathcal{H}_{\varphi_1}' = L^{2}\big( \mathbb{R}^N; \varphi_1^{2-p} m^{-1} \big) \end{math} % is the dual space of $\mathcal{H}_{\varphi_1}$, and $L^{2}\left( \mathbb{R}^N; |\varphi_1'|^{-p} \varphi_1^2 \right)$ is the dual space of $L^{2}\left( \mathbb{R}^N; |\varphi_1'|^p \varphi_1^{-2} \right)$. \endgroup \end{example} %%%%% Fredholm ALTERNATIVE at $\lambda_1$ (Theorem) \begin{theorem}\label{thm-Exist:p<2} Let $N\geq 2$ and\/ $1 < p < 2$. Assume that $f^{\#}\in D^{-1,p'}(\mathbb{R}^N)$ satisfies $\langle f^{\#}, \varphi_1\rangle = 0$ and $f^{\#}\not\equiv 0$ in $\mathbb{R}^N$. Then there exist two numbers $\delta\equiv \delta(f^{\#}) > 0$ and $\varrho\equiv \varrho(f^{\#}) > 0$ such that problem \eqref{e:BVP.l} with $f = f^{\#} + \zeta\, m\varphi_1^{p-1}$ has at least one solution whenever $\lambda\in (\lambda_1 - \delta, \lambda_1 + \delta)$ and $\zeta\in (-\varrho,\varrho)$. % \end{theorem} The proof of this theorem is given in Section~\ref{s:pr-Exist:p<2}. %%%%% Fredholm ALTERNATIVE at $\lambda_1$ (Remark) \begin{remark}\label{rem-Exist:p<2} \begingroup\rm In the situation of {\rm Theorem \ref{thm-Exist:p<2}}, if $\lambda\in (\lambda_1 - \delta, \lambda_1)$ and $\zeta\in (-\varrho,\varrho)$, then problem \eqref{e:BVP.l} has {\it at least three\/} solutions $u_1, u_2, u_3\in D^{1,p}(\mathbb{R}^N)$, such that % \[ \int_{\mathbb{R}^N} u_2\, \varphi_1^{p-1}\, m \,{\rm d}x < \int_{\mathbb{R}^N} u_1\, \varphi_1^{p-1}\, m \,{\rm d}x < \int_{\mathbb{R}^N} u_3\, \varphi_1^{p-1}\, m \,{\rm d}x , \] % $u_1$ is a saddle point (which will be obtained in the proof of Theorem \ref{thm-Exist:p<2}) and $u_2, u_3$ are local minimizers for the functional $\mathcal{J}_{\lambda}$ on $D^{1,p}(\mathbb{R}^N)$. The proof of this claim is given in Section \ref{s:pr-Exist:p<2}, {\S}\ref{ss:Fredh_Mount}, after the proof of Theorem \ref{thm-Exist:p<2}. \endgroup \end{remark} %%%%% Fredholm ALTERNATIVE at $\lambda_1$ (Example) \begin{example}\label{exam-Exist:p<2} \begingroup\rm For $1 < p\leq 2$, the hypothesis $f\in \mathcal{D}_{\varphi_1}'$ is fulfilled if $|x|\, f(x)\in L^{p'}(\mathbb{R}^N)$ with $p'= p/(p-1)$, by the imbedding $D^{1,p}(\mathbb{R}^N) \hookrightarrow L^{p}(\mathbb{R}^N; |x|^{-p})$ in Lemma~\ref{lem-D^p.L^p}. \endgroup \end{example} The proofs of both theorems above hinge on the following imbeddings with weights. %%%%% PROPOSITION - Compact Imbedding \begin{proposition}\label{prop-Compact} Let $10} be satisfied. Then the following two imbeddings are compact: % \begin{itemize} % \item[{\rm (a)}] $D^{1,p}(\mathbb{R}^N) \hookrightarrow L^{p}(\mathbb{R}^N; m)$; % \item[{\rm (b)}] $\mathcal{D}_{\varphi_1} \hookrightarrow \mathcal{H}_{\varphi_1}$. \end{itemize} \end{proposition} The proof of this proposition is given in Section~\ref{s:pf-Compact}. The reader is referred to {\sc Berger} and {\sc Schechter} \cite[Proof of Theorem 2.4, p.~277]{BergSchecht}, {\sc Fleckinger}, {\sc Gossez}, and {\sc de~Th\'elin} \cite[Lemma 2.3]{FGdT}, or {\sc Schechter} \cite{Schecht-1, Schecht-2} for related imbeddings and compactness results. \subsection{Properties of the corresponding energy functional} \label{ss:J-Energy} Weak solutions in $D^{1,p}(\mathbb{R}^N)$ to the Dirichlet boundary value problem \eqref{e:BVP.l_1} with $f\in D^{-1,p'}(\mathbb{R}^N)$ correspond to critical points of the energy functional $\mathcal{J}_{\lambda_1} \colon D^{1,p}(\mathbb{R}^N)\to \mathbb{R}$ defined in \eqref{def.jl} with $\lambda = \lambda_1$. Owing to the imbeddings in Proposition~\ref{prop-Compact}, all expressions in \eqref{def.jl} are meaningful. For the cases $2\leq p < N$ and $1 < p < 2\leq N$, the geometry of the functional $\mathcal{J}_{\lambda_1}$ is completely different; cf.\ {\sc Fleckinger} and {\sc Tak\'a\v{c}} \cite[Theorem 3.1, p.~957]{FleckTakac-1} and {\sc Dr\'abek} and {\sc Holubov\'a} \cite[Theorem 1.1, p.~184]{DrabHolub}, respectively, in a bounded domain $\Omega\subset \mathbb{R}^N$. In the former case, we have the following analogue of the {\em improved Poincar\'e inequality\/} from \cite[Theorem 3.1, p.~957]{FleckTakac-1}, which is of independent interest. %%%%% An Improved Poincare INEQUALITY (Lemma) \begin{lemma}\label{lem-Poincare} Let $2\leq p < N$ and let hypothesis \eqref{hyp:m>0} be satisfied. Then there exists a constant $c\equiv c(p,m) > 0$ such that the inequality % \begin{equation} \begin{split} & \int_{\mathbb{R}^N} |\nabla u|^p \,{\rm d}x - \lambda_1 \int_{\mathbb{R}^N} |u|^p\, m(x) \,{\rm d}x \\ & \geq c \Big( | u^\parallel |^{p-2} \int_{\mathbb{R}^N} |\nabla\varphi_1(x)|^{p-2} |\nabla u^\top|^2 \,{\rm d}x + \int_{\mathbb{R}^N} |\nabla u^\top|^p \,{\rm d}x \Big) \end{split} \label{e:Poincare} \end{equation} % holds for all\/ $u\in D^{1,p}(\mathbb{R}^N)$. % \end{lemma} Here, a function $u\in D^{1,p}(\mathbb{R}^N)$ is decomposed as the direct sum \eqref{ortho:u}. If the constant $c$ in~\eqref{e:Poincare} is replaced by zero, one obtains the classical Poincar\'e inequality; see e.g.\ {\sc Gilbarg} and {\sc Trudinger} \cite[Ineq.\ (7.44), p.~164]{GilbargTrud}. In analogy with the case $p=2$, the {\em improved Poincar\'e inequality\/} \eqref{e:Poincare} guarantees the solvability of the Cauchy boundary value problem \eqref{e:BVP.l_1} in the special case when $f\in \mathcal{D}_{\varphi_1}'$ satisfies $\langle f, \varphi_1\rangle = 0$. On the other hand, the ``singular'' case $1 < p < 2\leq N$ is much different and has to be treated by a minimax method introduced in {\sc Tak\'a\v{c}} \cite[Sect.~7]{Takac-1}. It uses the fact that the functional $\mathcal{J}_{\lambda_1}$ still remains coercive on % \begin{equation} D^{1,p}(\mathbb{R}^N)^\top \eqdef \Big\{ u\in D^{1,p}(\mathbb{R}^N) \colon \int_{\mathbb{R}^N} u\, \varphi_1^{p-1}\, m \,{\rm d}x = 0 \Big\} , \label{def.D^top} \end{equation} % the complement of $\mathop{\rm lin} \{ \varphi_1\}$ in $D^{1,p}(\mathbb{R}^N)$ with respect to the direct sum~\eqref{ortho:u}, viz.\ % \begin{math} D^{1,p}(\mathbb{R}^N) \penalty-1000 = \mathop{\rm lin} \{ \varphi_1\} \oplus D^{1,p}(\mathbb{R}^N)^\top \end{math}. % The following notion introduced in {\sc Dr\'abek} and {\sc Holubov\'a} \cite[Def.\ 2.1, p.~185]{DrabHolub} is crucial. %%%%% Simple SADDLE Point Geometry (Definition) \begin{definition}\label{def-Saddle_Geom} \begingroup\rm We say that a continuous functional $\mathcal{E}\colon D^{1,p}(\mathbb{R}^N)\to \mathbb{R}$ has a {\em simple saddle point geometry\/} if we can find $u,v\in D^{1,p}(\mathbb{R}^N)$ such that % \begin{gather*} \int_{\mathbb{R}^N} u\, \varphi_1^{p-1}\, m \,{\rm d}x < 0 < \int_{\mathbb{R}^N} v\, \varphi_1^{p-1}\, m \,{\rm d}x \quad\mbox{and } \\ \max\{ \mathcal{E}(u) ,\, \mathcal{E}(v) \} < \inf \left\{ \mathcal{E}(w)\colon w\in D^{1,p}(\mathbb{R}^N)^\top \right\} . \end{gather*} % \endgroup \end{definition} Note that on any continuous path $\theta\colon [-1,1]\to D^{1,p}(\mathbb{R}^N)$ with $\theta(-1) = u$ and $\theta(1) = v$ there is a point $w = \theta(t_0)\in D^{1,p}(\mathbb{R}^N)^\top$ for some $t_0\in [-1,1]$. Hence, $\max\{ \mathcal{E}(u) ,\, \mathcal{E}(v) \} < \mathcal{E}(w)$ shows that the function $\mathcal{E}\circ \theta\colon [-1,1]\to \mathbb{R}$ attains its maximum at some $t'\in (-1,1)$. The following result is essential; in fact it replaces Lemma~\ref{lem-Poincare}. For a bounded domain $\Omega\subset \mathbb{R}^N$, it was shown in {\sc Dr\'abek} and {\sc Holubov\'a} \cite[Lemma 2.1, p.~185]{DrabHolub}. % %%%%% Simple SADDLE Point Geometry (Lemma) % \begin{lemma}\label{lem-Saddle_Geom} Let\/ $1 < p < 2\leq N$. Assume $f\in D^{-1,p'}(\mathbb{R}^N)$ with\/ $\langle f, \varphi_1\rangle = 0$ and\/ $f\not\equiv 0$ in~$\mathbb{R}^N$. Then the functional\/ $\mathcal{J}_{\lambda_1}$ has a simple saddle point geometry. Moreover, it is unbounded from below on $D^{1,p}(\mathbb{R}^N)$. % \end{lemma} % Its proof will be given in Section \ref{s:pr-Exist:p<2}, {\S}\ref{ss:Saddle_Geom}. For $10} be satisfied. Then the following imbeddings are continuous: % \begin{gather} D^{1,p}(\mathbb{R}^N) \hookrightarrow L^{p}(\mathbb{R}^N; |x|^{-p}) \hookrightarrow L^{p}(\mathbb{R}^N; m) ; \label{imb:D^p.L^p-m}\\ D^{1,p}(\mathbb{R}^N) \hookrightarrow L^{p^*}(\mathbb{R}^N) \hookrightarrow L^{p}(\mathbb{R}^N; m) , \label{imb:D^p.L^p^*} \end{gather} % where $p^* = Np / (N-p)$ denotes the critical Sobolev exponent. % \end{lemma} % % \begin{proof} The imbedding $L^{p}(\mathbb{R}^N; |x|^{-p}) \hookrightarrow L^{p}(\mathbb{R}^N; m)$ follows from inequality~\eqref{ineq:m>0}. By a classical result ({\sc Gilbarg} and {\sc Trudinger} \cite[Theorem 7.10, p.~166]{GilbargTrud}), the imbedding $D^{1,p}(\mathbb{R}^N) \hookrightarrow L^{p^*}(\mathbb{R}^N)$ is continuous. Notice that $(p/p^*) + (p/N) = 1$. Finally, given an arbitrary function $u\in C_{\mathrm{c}}^0(\mathbb{R}^N)$, we combine the H\"older inequality with \eqref{ineq:m>0} to estimate % \begin{align*} \int_{\mathbb{R}^N} |u|^p\, m \,{\rm d}x &\leq \Big( \int_{\mathbb{R}^N} |u|^{p^*} \,{\rm d}x \Big)^{ p/p^* } \Big( \int_{\mathbb{R}^N} m^{N/p} \,{\rm d}x \Big)^{ p/N } \\ & \leq C \Big( \int_{\mathbb{R}^N} |u|^{p^*} \,{\rm d}x \Big)^{ p/p^* } \Big( \int_{\mathbb{R}^N} (1 + |x|)^{ - N ( 1 + \frac{\delta}{p} ) } \,{\rm d}x \Big)^{ p/N } . \end{align*} % The continuity of the imbedding $L^{p^*}(\mathbb{R}^N) \hookrightarrow L^{p}(\mathbb{R}^N; m)$ follows because $C_{\mathrm{c}}^0(\mathbb{R}^N)$ is dense in $L^{p^*}(\mathbb{R}^N)$. \end{proof} %%%%% LEMMA - Compact Imbedding \begin{lemma}\label{lem-H^p.L^p} Let hypothesis \eqref{hyp:m>0} be satisfied. Then we have the following imbeddings: % \begin{itemize} % \item[{\rm (i)}] $\mathcal{H}_{\varphi_1} \hookrightarrow L^p(\mathbb{R}^N; m)$ if\/ $12$. As above, for $u\in C_{\mathrm{c}}^0(\mathbb{R}^N)$ we estimate % \begin{equation*} \int_{\mathbb{R}^N} u^2\, \varphi_1^{p-2}\, m \,{\rm d}x \leq \Big( \int_{\mathbb{R}^N} |u|^p\, m \,{\rm d}x \Big)^{ 2/p } \Big( \int_{\mathbb{R}^N} \varphi_1^{p}\, m \,{\rm d}x \Big)^{ (p-2)/p } = \| u\|_{ L^{p}(\mathbb{R}^N; m) }^2 . \end{equation*} % The lemma is proved. \end{proof} %%%%% LEMMA - Compact Imbedding \begin{lemma}\label{lem-D_1.D^p} Let hypothesis \eqref{hyp:m>0} be satisfied. The following imbeddings hold true: % \begin{itemize} % \item[{\rm (i)}] $\mathcal{D}_{\varphi_1} \hookrightarrow D^{1,p}(\mathbb{R}^N)$ if\/ $12$. Given $u\in C_{\mathrm{c}}^0(\mathbb{R}^N)$, we estimate \begin{align*} \int_{\mathbb{R}^N} |\nabla u|^2\, |\varphi_1'(r)|^{p-2} \,{\rm d}x &\leq \Big( \int_{\mathbb{R}^N} |\nabla u|^p \,{\rm d}x \Big)^{ 2/p } \Big( \int_{\mathbb{R}^N} |\varphi_1'|^{p} \,{\rm d}x \Big)^{ (p-2)/p }\\ &= \lambda_1^{ (p-2)/p }\, \| u\|_{ \mathcal{D}_{\varphi_1} }^2 . \end{align*} % This proves the lemma. \end{proof} %%%%% LEMMA - Compact Imbedding \begin{lemma}\label{lem-Compact} Let\/ $10} be satisfied. Then both imbeddings $\mathcal{D}_{\varphi_1} \hookrightarrow \mathcal{H}_{\varphi_1}$ and % \begin{math} \mathcal{D}_{\varphi_1} \hookrightarrow L^{2}\left( \mathbb{R}^N; |\varphi_1'|^p \varphi_1^{-2} \right) \end{math} % are continuous. % \end{lemma} % % \begin{proof} We need to distinguish between the cases $10} guarantees also the compactness of both imbeddings $D^{1,p}(\mathbb{R}^N) \hookrightarrow L^{p}(\mathbb{R}^N; m)$ and $\mathcal{D}_{\varphi_1} \hookrightarrow \mathcal{H}_{\varphi_1}$ for $1 0$ sufficiently large as is shown in the following lemma. %%%%% LEMMA - Cut-off: Compact Imbedding \begin{lemma}\label{lem-Cut-off} Let\/ $10} be satisfied. Then there exist constants $C_2 > 0$, $C_3 > 0$ and $R_1 > 0$, such that for all\/ $\varrho\geq R_1$ we have % \begin{gather} \| \psi_{\varrho} u \|_{ D^{1,p}(\mathbb{R}^N) } \leq C_2\, \| u\|_{ D^{1,p}(\mathbb{R}^N) } \quad\mbox{for all } u\in D^{1,p}(\mathbb{R}^N) ; \label{est:T_psi,p}\\ \| \psi_{\varrho} u \|_{ \mathcal{D}_{\varphi_1} } \leq C_3\, \| u\|_{ \mathcal{D}_{\varphi_1} } \quad\mbox{for all } u\in \mathcal{D}_{\varphi_1} . \label{est:T_psi} \end{gather} \end{lemma} % \begin{proof} We give the proof for the case $1 0$. For an arbitrary function $u\in D^{1,p}(\mathbb{R}^N)$ we have $$ \nabla (\psi_{\varrho} u) = \psi_{\varrho}(r)\, \nabla u(x) + u(x)\, \psi_{\varrho}'(r)\, r^{-1} x \quad\mbox{for $x\in \mathbb{R}^N$ and $r = |x|$. } $$ Therefore, by the Minkowski inequality followed by \eqref{est:psi'} and the Hardy inequality \eqref{e:Hardy}, we have % \begin{equation} \label{ineq:T_psi,p} \begin{aligned} \| \psi_{\varrho} u \|_{ D^{1,p}(\mathbb{R}^N) } &= \Big( \int_{\mathbb{R}^N} |\nabla (\psi_{\varrho} u)|^p \,{\rm d}x \Big)^{1/p}\\ & \leq \Big( \int_{\mathbb{R}^N} |\psi_{\varrho}|^p |\nabla u|^p \,{\rm d}x \Big)^{1/p} + \Big( \int_{\mathbb{R}^N} |\psi_{\varrho}'|^p |u|^p \,{\rm d}x \Big)^{1/p} \\ & \leq \| u\|_{ D^{1,p}(\mathbb{R}^N) } + C_1 \Big( \int_{\mathbb{R}^N} |u(x)|^p\, |x|^{-p} \,{\rm d}x \Big)^{1/p}\\ &\leq C_2\, \| u\|_{ D^{1,p}(\mathbb{R}^N) } , \end{aligned} \end{equation} % where $C_2 = 1 + p C_1 / (N-p)$. This proves \eqref{est:T_psi,p}. Similarly, for every $u\in \mathcal{D}_{\varphi_1}$ we have % \begin{equation} \label{ineq:T_psi} \begin{aligned} \| \psi_{\varrho} u \|_{ \mathcal{D}_{\varphi_1} } &= \big( \int_{\mathbb{R}^N} |\varphi_1'|^{p-2} |\nabla (\psi_{\varrho} u)|^2 \,{\rm d}x \big)^{1/2} \\ & \leq \Big( \int_{\mathbb{R}^N} |\varphi_1'|^{p-2} |\psi_{\varrho}|^2 |\nabla u|^2 \,{\rm d}x \Big)^{1/2} + \Big( \int_{\mathbb{R}^N} |\varphi_1'|^{p-2} |\psi_{\varrho}'|^2 u^2 \,{\rm d}x \Big)^{1/2}\\ & \leq \| u\|_{ \mathcal{D}_{\varphi_1} } + \Big( \int_{\mathbb{R}^N} |\varphi_1'|^{p-2} |\psi_{\varrho}'|^2 u^2 \,{\rm d}x \Big)^{1/2} . \end{aligned} \end{equation} % The last integral is estimated as follows. Using the limit formula \eqref{e:u'/u.infty} we have % \begin{equation} \label{e:psi'/psi.infty} \varphi_1^{-1} |\varphi_1'| \geq \frac{N-p}{ 2(p-1)r } \quad\mbox{for all } r\geq R_1 , \end{equation} % where $R_1 > 0$ is a sufficiently large constant. We combine this inequality with \eqref{est:psi'} to conclude that % \begin{equation} \label{est:psi'.phi_1} | \psi_{\varrho}'(r) | \leq C_4\, \varphi_1^{-1} |\varphi_1'| \quad\mbox{for all } r\geq R_1 , \end{equation} % where $C_4 = 2 (p-1) C_1 / (N-p)$. Applying this estimate to the last integral in \eqref{ineq:T_psi}, and recalling $\psi_{\varrho}'(r) = 0$ whenever $0\leq r\leq \varrho$, for every $\varrho\geq R_1$ we get % \begin{equation*} \| \psi_{\varrho} u \|_{ \mathcal{D}_{\varphi_1} } \leq \| u\|_{ \mathcal{D}_{\varphi_1} } + C_4 \Big( \int_{\mathbb{R}^N} |\varphi_1'|^p |\varphi_1|^{-2} u^2 \,{\rm d}x \Big)^{1/2} . \end{equation*} % Finally, we invoke inequality \eqref{ineq:Imbedd} to estimate the last integral. The desired estimate \eqref{est:T_psi} follows with the constant $C_3 > 0$ given by $C_3 = 1 + 2 C_4$. \end{proof} Denoting by $J$ ($J_{\varphi_1}$, respectively) the continuous imbedding \\ $D^{1,p}(\mathbb{R}^N) \hookrightarrow L^{p}(\mathbb{R}^N; m)$ ($\mathcal{D}_{\varphi_1} \hookrightarrow \mathcal{H}_{\varphi_1}$), we now show that the operators % \begin{equation*} J T_{\varrho}\colon D^{1,p}(\mathbb{R}^N) \to L^{p}(\mathbb{R}^N; m) \qquad ( J_{\varphi_1} T_{\varrho}\colon \mathcal{D}_{\varphi_1} \to \mathcal{H}_{\varphi_1} ) \end{equation*} % converge to $J$ ($J_{\varphi_1}$) in the uniform operator topology as $\varrho\to \infty$. %%%%% LEMMA - Cut-off: Convergence \begin{lemma}\label{lem-Cut-off:Conv} Let\/ $10} be satisfied. Then, as $\varrho\to \infty$, we have % \begin{gather} \| (1 - \psi_{\varrho}) u \|_{ L^{p}(\mathbb{R}^N; m) } \to 0 \quad\mbox{uniformly for }\ \| u\|_{ D^{1,p}(\mathbb{R}^N) } \leq 1 ; \label{est:I-T_psi,p} \\ \| (1 - \psi_{\varrho}) u \|_{ \mathcal{H}_{\varphi_1} } \to 0 \quad\mbox{uniformly for }\ \| u\|_{ \mathcal{D}_{\varphi_1} } \leq 1 . \label{est:I-T_psi} \end{gather} % \end{lemma} % % \begin{proof} From hypothesis \eqref{hyp:m>0} we get % \begin{equation*} m(r)\, r^p \leq \frac{C\, r^p}{ (1+r)^{p+\delta} } < \frac{C}{ (1+r)^{\delta} } \quad\mbox{for all } r>0 . \end{equation*} % Hence, for any $\varrho > 0$, % \begin{align*} \int_{ |x|\geq \varrho } |u|^p\, m \,{\rm d}x & \leq \frac{C}{ (1 + \varrho)^{\delta} } \int_{ |x|\geq \varrho } |u|^p\, |x|^{-p} \,{\rm d}x \\ & \leq \frac{C}{ (1 + \varrho)^{\delta} } \big( \frac{p}{N-p}\big)^{p} \| u\|_{ D^{1,p}(\mathbb{R}^N) }^{p} , \end{align*} % by the Hardy inequality \eqref{e:Hardy}. Letting $\varrho\to \infty$ we obtain the convergence \eqref{est:I-T_psi,p}. Similarly as above, we combine hypothesis \eqref{hyp:m>0} and inequality \eqref{e:psi'/psi.infty} to compare the weights % \begin{equation*} \frac{ \varphi_1(r)^{p-2}\, m(r) } { |\varphi_1'(r)|^{p}\, \varphi_1(r)^{-2} } \leq \frac{C_5\, r^p}{ (1+r)^{p+\delta} } < \frac{C_5}{ (1+r)^{\delta} } \quad\mbox{for all } r\geq R_1 , \end{equation*} % where $$ C_5 =\big( \frac{ 2 (p-1)}{N-p}\big)^p C . $$ We use this inequality to estimate the second integral on the left\--hand side in \eqref{ineq:Imbedd}, thus arriving at % \begin{equation*} \lambda_1\int_{\mathbb{R}^N} u^2\, \varphi_1^{p-2}\, m \,{\rm d}x + \frac{ (1 + \varrho)^{\delta} }{ 2 C_5 } \int_{ |x|\geq \varrho } u^2\, \varphi_1^{p-2}\, m \,{\rm d}x \leq 2\, \| u\|_{ \mathcal{D}_{\varphi_1} }^2 \end{equation*} % for every $\varrho\geq R_1$. Letting $\varrho\to \infty$ we obtain the conclusion \eqref{est:I-T_psi} immediately. \end{proof} % \subsection{Rest of the proof of Proposition~\ref{prop-Compact}} \label{ss:pf-Compact} According to Lemmas \ref{lem-D^p.L^p} and~\ref{lem-Compact}, it remains to show that the imbeddings $D^{1,p}(\mathbb{R}^N) \hookrightarrow L^{p}(\mathbb{R}^N; m)$ and $\mathcal{D}_{\varphi_1} \hookrightarrow \mathcal{H}_{\varphi_1}$ are compact. We take advantage of the well\--known approximation theorem (see {\sc Kato} \cite[Chapt.~III, {\S}4.2, p.~158]{Kato}) which states that the set of all compact linear operators $S\colon X\to Y$, where $X$ and $Y$ are Banach spaces, is a Banach space. In our setting this means that, by Lemma \ref{lem-Cut-off:Conv}, it suffices to show that the operators % \begin{equation*} J T_{\varrho}\colon D^{1,p}(\mathbb{R}^N) \to L^{p}(\mathbb{R}^N; m) \quad\mbox{and }\quad J_{\varphi_1} T_{\varrho}\colon \mathcal{D}_{\varphi_1} \to \mathcal{H}_{\varphi_1} , \end{equation*} % respectively, are compact for each $\varrho > 0$ large enough. Recall $B_r = \{ x\in \mathbb{R}^N\colon |x|0}, we conclude that % \begin{math} J T_{\varrho}\colon D^{1,p}(\mathbb{R}^N) \to L^{p}(\mathbb{R}^N; m) \end{math} % is compact as well, whenever $\varrho\geq R_1$. \noindent {\it Proof of\/} Part~{\rm (b)}. We need to treat the two cases $1 0$. Finally, the imbedding $W_0^{1,2}(B_{2\varrho}) \hookrightarrow L^2(B_{2\varrho})$ being compact by Rellich's theorem, and $L^2(B_{2\varrho}) \hookrightarrow \mathcal{H}_{\varphi_1}$ being continuous by \eqref{ineq:m>0}, we conclude that % \begin{math} J_{\varphi_1} T_{\varrho}\colon \mathcal{D}_{\varphi_1} \to \mathcal{H}_{\varphi_1} \end{math} % is compact as well, whenever $\varrho\geq R_1$. \noindent {\it Case\/} $p\geq 2$. First, taking an arbitrary function $u\in C^1(\mathbb{R}^N)$ with compact support, we derive inequalities \eqref{CS:Imbedd} and \eqref{ineq:Imbedd}. In particular, inequalities in \eqref{CS:Imbedd} entail % \begin{equation}\label{est:Imbedd:p>2} \begin{aligned} \lambda_1\int_{\mathbb{R}^N} u^2\, \varphi_1^{p-2}\, m \,{\rm d}x &\leq 2 \Big( \int_{\mathbb{R}^N} |\varphi_1'|^{p-2} \big(\frac{\partial u}{\partial r}\big)^2 \,{\rm d}x \Big)^{1/2} \Big( \int_{\mathbb{R}^N} u^2\, |\varphi_1'|^{p}\, \varphi_1^{-2} \,{\rm d}x \Big)^{1/2}\\ &\leq 2\, \| u\|_{ \mathcal{D}_{\varphi_1} } \Big( \int_{\mathbb{R}^N} u^2\, |\varphi_1'|^{p}\, \varphi_1^{-2} \,{\rm d}x \Big)^{1/2} . \end{aligned} \end{equation} % We need to show that, besides inequalities \eqref{ineq:Imbedd}, we have also % \begin{equation} \int_{B_R} |\varphi_1'|^{p}\, \varphi_1^{-2}\, u^2 \,{\rm d}x \leq 9\cdot \log\genfrac{(}{)}{}0{ \varphi_1(0) }{ \varphi_1(R) } \cdot \| u\|_{ \mathcal{D}_{\varphi_1} }^2 \quad\mbox{for every } R>0 . \label{R:Imbedd:p>2} \end{equation} % To this end, fix any $x'\in \mathbb{R}^N$ with $|x'| = 1$, and take $x = rx'$ with $0\leq r\leq R$. We use eq.~\eqref{ev:phi_1.rad} to compute % \begin{align*} & r^{N-1}\, |\varphi_1'(r)|^{p-1}\, \varphi_1(r)^{-1}\, u(rx')^2 = - \left( r^{N-1}\, |\varphi_1'|^{p-2} \varphi_1' \right) \varphi_1^{-1}\, u^2\\ & = - \int_0^r \frac{\partial}{\partial s} \left[ s^{N-1}\, |\varphi_1'(s)|^{p-2} \varphi_1(s)'\, \varphi_1(s)^{-1}\, u(sx')^2 \right] \,{\rm d}s\\ & = \lambda_1 \int_0^r m(s)\, s^{N-1}\, \varphi_1(s)^{p-2}\, u(sx')^2 \,{\rm d}s \\ & \quad + \int_0^r s^{N-1}\, |\varphi_1'(s)|^{p}\, \varphi_1(s)^{-2}\, u(sx')^2 \,{\rm d}s \\ & \quad + 2 \int_0^r s^{N-1}\, |\varphi_1'(s)|^{p-1}\, \varphi_1(s)^{-1}\, u(sx')\, \frac{\partial u}{\partial s}(sx') \,{\rm d}s . \end{align*} % Estimating the last integral by the Cauchy\--Schwarz inequality, we have % \begin{align*} r^{N-1}\, |\varphi_1'(r)|^{p-1}\, \varphi_1(r)^{-1}\, u(rx')^2 & \leq \lambda_1 \int_0^r m(s)\, \varphi_1(s)^{p-2}\, u(sx')^2\, s^{N-1} \,{\rm d}s \\ &\quad + 2 \int_0^r |\varphi_1'(s)|^{p}\, \varphi_1(s)^{-2}\, u(sx')^2\, s^{N-1} \,{\rm d}s \\ &\quad + \int_0^r |\varphi_1'(s)|^{p-2}\, \left( \frac{\partial u}{\partial s}(sx') \right)^2\, s^{N-1} \,{\rm d}s . \end{align*} % Next, setting $y = sx'$, we integrate this inequality with respect to $x'$ over the unit sphere $S_1 = \partial B_1\subset \mathbb{R}^N$ endowed with the surface measure $\sigma$ to get % \begin{equation} \label{p-1:phi_1.rad} \begin{aligned} & r^{N-1}\, |\varphi_1'(r)|^{p-1}\, \varphi_1(r)^{-1} \int_{S_1} u(rx')^2 \,{\rm d}\sigma(x') \\ & \leq \lambda_1 \int_{B_r} u^2\, \varphi_1^{p-2}\, m \,{\rm d}y + 2 \int_{B_r} u^2\, |\varphi_1'|^{p}\, \varphi_1^{-2} \,{\rm d}y \\ & \quad + \int_{B_r} |\varphi_1'|^{p-2}\, \big(\frac{\partial u}{\partial s}\big)^2 \,{\rm d}y \leq 8\, \| u\|_{ \mathcal{D}_{\varphi_1} }^2 + \| u\|_{ \mathcal{D}_{\varphi_1} }^2 = 9\, \| u\|_{ \mathcal{D}_{\varphi_1} }^2 , \end{aligned} \end{equation} % by ineq.~\eqref{ineq:Imbedd}. Finally, upon multiplication by $-\varphi_1'/ \varphi_1$ followed by integration over $0\leq r\leq R$, we arrive at the desired inequality \eqref{R:Imbedd:p>2}. Again, by Lemma \ref{lem-Cut-off}, the operators % \begin{math} T_{\varrho}\colon \mathcal{D}_{\varphi_1} \to \mathcal{D}_{\varphi_1}(B_{2\varrho}) \subset \mathcal{D}_{\varphi_1} \end{math} % are uniformly bounded for all $\varrho\geq R_1$. In order to show that % \begin{math} J T_{\varrho}\colon \mathcal{D}_{\varphi_1} \to \mathcal{H}_{\varphi_1} \end{math} % is compact, it suffices to verify that the imbedding % \begin{math} \mathcal{D}_{\varphi_1}(B_{2\varrho}) \hookrightarrow \mathcal{H}_{\varphi_1} \end{math} % is compact. So let $\varrho\geq R_1$ be fixed. Consider an arbitrary bounded sequence $\{ u_n\}_{n=1}^\infty$ in the Hilbert space $\mathcal{D}_{\varphi_1}(B_{2\varrho})$. Hence, there exists a weakly convergent subsequence denoted again by $\{ u_n\}_{n=1}^\infty$, i.e., $u_n\rightharpoonup u$ in $\mathcal{D}_{\varphi_1}(B_{2\varrho})$ as $n\to \infty$. Replacing $u_n - u$ by $u_n$, we may assume $u_n\rightharpoonup 0$ weakly in $\mathcal{D}_{\varphi_1}(B_{2\varrho})$. In addition, we may assume $\| u_n\|_{ \mathcal{D}_{\varphi_1} } \leq 1$ for all $n=1,2,\dots$. Next, we show that $u_n\to 0$ strongly in $L^{2}\left( B_{2\varrho} ; |\varphi_1'|^p \varphi_1^{-2} \right)$. Choose $\varepsilon > 0$. Fix $R_0 > 0$ small enough, such that \[ 9\cdot \log\big(\frac{\varphi_1(0)}{\varphi_1(R_0)}\big) \leq \frac{\varepsilon}{2} , \] by $\lim_{r\to 0} \varphi_1(r) = \varphi_1(0) > 0$. Hence, inequality \eqref{R:Imbedd:p>2} entails % \begin{equation} \int_{B_{R_0}} |\varphi_1'|^{p}\, \varphi_1^{-2}\, u_n^2 \,{\rm d}x \leq \frac{\varepsilon}{2} \quad\mbox{for } n=1,2,\dots . \label{R_0:Imbedd:p>2} \end{equation} % Since $\gamma_2\eqdef \inf_{ [ R_0, 2\varrho ] } |\varphi_1'|^{p-2} > 0$, by Lemma~\ref{lem-phi_1'}, the sequence $\{ u_n\}_{n=1}^\infty$ is bounded in the Sobolev space $W^{1,2}( B_{2\varrho} \setminus B_{R_0} )$, by inequalities \eqref{ineq:Imbedd}. The imbedding % \begin{math} W^{1,2}( B_{2\varrho} \setminus B_{R_0} ) \hookrightarrow L^2 ( B_{2\varrho} \setminus B_{R_0} ) \end{math} % being compact by Rellich's theorem, we conclude that $u_n\to 0$ strongly in $L^2( B_{2\varrho} \setminus B_{R_0} )$. Consequently, there is an integer $n_0\geq 1$ large enough, such that % \begin{equation} \int_{ B_{2\varrho} \setminus B_{R_0} } |\varphi_1'|^{p}\, \varphi_1^{-2}\, u_n^2 \,{\rm d}x \leq \frac{\varepsilon}{2} \quad\mbox{for every } n\geq n_0 . \label{r>R_0:Imbedd:p>2} \end{equation} % We combine estimates \eqref{R_0:Imbedd:p>2} and \eqref{r>R_0:Imbedd:p>2} to obtain % \begin{equation*} \int_{ B_{2\varrho} } |\varphi_1'|^{p}\, \varphi_1^{-2}\, u_n^2 \,{\rm d}x \leq \varepsilon \quad\mbox{for every } n\geq n_0 . \end{equation*} % This means that $u_n\to 0$ strongly in $L^{2}\left( B_{2\varrho} ; |\varphi_1'|^p \varphi_1^{-2} \right)$. Finally, from inequality \eqref{est:Imbedd:p>2} we deduce $u_n\to 0$ strongly also in $\mathcal{H}_{\varphi_1}$. Hence, the imbedding % \begin{math} \mathcal{D}_{\varphi_1}(B_{2\varrho}) \hookrightarrow \mathcal{H}_{\varphi_1} \end{math} % is compact as claimed. We have completed the proof of Proposition~\ref{prop-Compact}. \section{Properties of the quadratization at $\varphi_1$} \label{s:Auxiliary} In this section we state a few analog results to those in {\sc Tak\'a\v{c}} \cite[Sect.~4]{Takac-1} that are employed later in the proofs of Theorem~\ref{thm-Exist:p>2} and Lemma~\ref{lem-Poincare}. Note that inequality~\eqref{A.ellipt} entails % \begin{equation} \label{norm:A.equiv} \min\{ 1,\,p-1\} \| v\|_{ \mathcal{D}_{\varphi_1} }^2 \leq \int_{\mathbb{R}^N} \langle {\bf A} (\nabla\varphi_1) \nabla v , \nabla v \rangle_{\mathbb{R}^N} \,{\rm d}x \leq \max\{ 1,\,p-1\} \| v\|_{ \mathcal{D}_{\varphi_1} }^2 \end{equation} % for $v\in \mathcal{D}_{\varphi_1}$. Several important properties of $\mathcal{D}_{\varphi_1}$ are established below. The following result is obvious. %%%%% Q - nonnegative (Lemma) \begin{lemma}\label{lem-Q-posit} We have $\mathcal{Q}_0 (\varphi_1,\varphi_1) = 0$ and\/ $0\leq \mathcal{Q}_0 (v,v) < \infty$ for all\/ $v\in \mathcal{D}_{\varphi_1}$. % \end{lemma} % We denote by $\mathcal{A}_{\varphi_1}$ the Lax\--Milgram representation of the symmetric bilinear form $2\cdot \mathcal{Q}_0$ on $\mathcal{D}_{\varphi_1}\times \mathcal{D}_{\varphi_1}$ (see \cite[Chapt.~VI, Eq.\ (2.3), p.~323]{Kato}). In our setting this means that % \begin{math} \mathcal{A}_{\varphi_1} \colon \mathcal{D}_{\varphi_1} \to \mathcal{D}_{\varphi_1}' \end{math} % is a bounded linear operator such that % \begin{equation} \langle \mathcal{A}_{\varphi_1} v, w\rangle = 2\cdot \mathcal{Q}_0 (v,w) \quad\mbox{for all } v,w\in \mathcal{D}_{\varphi_1} . \label{def.A} \end{equation} % Identifying the dual space of $\mathcal{D}_{\varphi_1}'$ with $\mathcal{D}_{\varphi_1}$ (see {\sc Yosida} \cite[Theorem IV.8.2, p.~113]{Yosida}), we find that $\mathcal{A}_{\varphi_1}$ is selfadjoint in the following sense: $$ \langle \mathcal{A}_{\varphi_1} v, w\rangle = \langle v, \mathcal{A}_{\varphi_1} w\rangle \quad\mbox{for all } v,w\in \mathcal{D}_{\varphi_1} . $$ Note that our definition of $\mathcal{Q}_0$ yields $\mathcal{A}_{\varphi_1} \varphi_1 = 0$. Since the imbedding $\mathcal{D}_{\varphi_1} \hookrightarrow \mathcal{H}_{\varphi_1}$ is compact, the null space of $\mathcal{A}_{\varphi_1}$ denoted by \[ \ker(\mathcal{A}_{\varphi_1}) = \{ v\in \mathop{\rm dom}(\mathcal{A}_{\varphi_1})\colon \mathcal{A}_{\varphi_1} v = 0 \} \] is finite\--dimensional, by the Riesz\--Schauder theorem \cite[Theorem III.6.29, p.~187]{Kato}. Lemma~\ref{lem-Q-posit} provides another variational formula for $\lambda_1$, namely, % \begin{equation} \lambda_1 = \inf \Big\{ \frac{ \int_{\mathbb{R}^N} \langle {\bf A}(\nabla\varphi_1) \nabla u, \nabla u \rangle_{\mathbb{R}^N} \,{\rm d}x }% { (p-1) \int_{\mathbb{R}^N} |u|^2\, \varphi_1^{p-2}\, m \,{\rm d}x } \colon 0\not\equiv u\in \mathcal{D}_{\varphi_1} \Big\} , \label{eq.lam_1} \end{equation} % cf.\ eq.~\eqref{def.lam_1}. This is a generalized Rayleigh quotient formula for the first (smallest) eigenvalue of the selfadjoint operator % \begin{math} (p-1)^{-1} \mathcal{A}_{\varphi_1} + \lambda_1\varphi_1^{p-2} m \colon \mathcal{D}_{\varphi_1} \to \mathcal{D}_{\varphi_1}' , \end{math} % where $\mathcal{A}_{\varphi_1}$ has been defined in~\eqref{def.A}. The following result determines all minimizers for~\eqref{eq.lam_1}: % %%%%% UNIQUENESS and POSITIVITY - EV (Proposition) % \begin{proposition}\label{prop-Uni-EV} Let\/ $10} be satisfied. Then a function $u\in \mathcal{D}_{\varphi_1}$ satisfies $\mathcal{Q}_0 (u,u) = 0$ if and only if $u = \kappa\varphi_1$ for some constant $\kappa\in \mathbb{R}$. % \end{proposition} % The analogue of this proposition for a bounded domain $\Omega\subset \mathbb{R}^N$ with a sufficiently regular boundary $\partial\Omega$ is due to {\sc Tak\'a\v{c}} \cite[Prop.\ 4.4, p.~202]{Takac-1}. Our proof of Proposition~\ref{prop-Uni-EV} below is a simplification of that given in \cite{Takac-1}. \smallskip \begin{proof}{Proof of Proposition~\ref{prop-Uni-EV}} Recall that the embedding $\mathcal{D}_{\varphi_1} \hookrightarrow \mathcal{H}_{\varphi_1}$ is compact, by Proposition \ref{prop-Compact}(b). Let $u$ be any (nontrivial) minimizer for $\lambda_1$ in~\eqref{eq.lam_1}. If $u$ changes sign in $\mathbb{R}^N$, denote $u^+ = \max\{ u, 0\}$ and $u^- = \max\{ -u, 0\}$. Then we have, using {\sc Gilbarg} and {\sc Trudinger} \cite[Theorem 7.8, p.~153]{GilbargTrud}, % \begin{align*} \lambda_1 & = \frac{ \int_{\mathbb{R}^N} (u^+)^2\, \varphi_1^{p-2}\, m \,{\rm d}x }% { \int_{\mathbb{R}^N} u^2\, \varphi_1^{p-2}\, m \,{\rm d}x } \cdot \frac{ \int_{\mathbb{R}^N} \langle {\bf A}(\nabla\varphi_1) \nabla u^+, \nabla u^+ \rangle_{\mathbb{R}^N} \,{\rm d}x }% { (p-1) \int_{\mathbb{R}^N} (u^+)^2\, \varphi_1^{p-2}\, m \,{\rm d}x } \\ &\quad + \frac{ \int_{\mathbb{R}^N} (u^-)^2\, \varphi_1^{p-2}\, m \,{\rm d}x }% { \int_{\mathbb{R}^N} u^2\, \varphi_1^{p-2}\, m \,{\rm d}x } \cdot \frac{ \int_{\mathbb{R}^N} \langle {\bf A}(\nabla\varphi_1) \nabla u^-, \nabla u^- \rangle_{\mathbb{R}^N} \,{\rm d}x }% { (p-1) \int_{\mathbb{R}^N} (u^-)^2\, \varphi_1^{p-2}\, m \,{\rm d}x } \\ & \geq \Big( \frac{ \int_{\mathbb{R}^N} (u^+)^2\, \varphi_1^{p-2}\, m \,{\rm d}x }% { \int_{\mathbb{R}^N} u^2\, \varphi_1^{p-2}\, m \,{\rm d}x } + \frac{ \int_{\mathbb{R}^N} (u^-)^2\, \varphi_1^{p-2}\, m \,{\rm d}x }% { \int_{\mathbb{R}^N} u^2\, \varphi_1^{p-2}\, m \,{\rm d}x } \Big) \lambda_1 = \lambda_1 . \end{align*} % Consequently, both $u^+$ and $u^-$ are (nontrivial) minimizers for $\lambda_1$. Next, we show that if $u\in \ker(\mathcal{A}_{\varphi_1})$ then $u$ is a constant multiple of $\varphi_1$. Since $\varphi_1$ satisfies~\eqref{e:varphi.l_1}, it is of class $C^\infty$ in $\mathbb{R}^N\setminus \{ 0\}$, by classical regularity theory \cite[Theorem 8.10, p.~186]{GilbargTrud}. Now, for each $\gamma\in \mathbb{R}$ fixed, consider the function $v_\gamma\eqdef u - \gamma\varphi_1$ in $\mathbb{R}^N$. Then both $v_\gamma^+$ and $v_\gamma^-$ belong to $\ker(\mathcal{A}_{\varphi_1})$ and thus satisfy the equation % \begin{equation} - \nabla\cdot \left( {\bf A}(\nabla\varphi_1) \nabla v_\gamma^\pm \right) = \lambda_1 (p-1) \varphi_1^{p-2} m v_\gamma^\pm \geq 0 \quad\mbox{in } \mathbb{R}^N\setminus \{ 0\} . \label{A_phi=0:U} \end{equation} % Again, we have $v_\gamma^\pm \in C^\infty( \mathbb{R}^N\setminus \{ 0\} )$. So we may apply the strong maximum principle \cite[Theorem 3.5, p.~35]{GilbargTrud} to eq.~\eqref{A_phi=0:U} to conclude that either $v_\gamma^+ \equiv 0$ in $\mathbb{R}^N\setminus \{ 0\}$, or else $v_\gamma^+ > 0$ throughout $\mathbb{R}^N\setminus \{ 0\}$, and similarly for $v_\gamma^-$. This means that $\mathop{\rm sign} (u - \gamma\varphi_1) \equiv \mathrm{const}$ in $\mathbb{R}^N\setminus \{ 0\}$. Moving $\gamma$ from $-\infty$ to $+\infty$, we get $u\equiv \kappa\varphi_1$ in $\mathbb{R}^N\setminus \{ 0\}$ for some constant $\kappa\in \mathbb{R}$. This means $u = \kappa\varphi_1$ in $\mathcal{D}_{\varphi_1}$, as claimed. \end{proof} \section{An improved Poincar\'e inequality ($2\leq p < N$)} \label{s:Impr_Poinc} We need a few more technical tools from {\sc Fleckinger} and {\sc Tak\'a\v{c}} \cite[Sect.~5]{FleckTakac-1} to prove Lemma~\ref{lem-Poincare}. Although our present situation requires only a few changes in the space setting in \cite{FleckTakac-1}, we provide complete proofs of all results for the convenience of the reader. % %%%%% An Improved Poincare INEQUALITY (Remark) % \begin{remark}\label{rem-Poincare} \begingroup\rm Except when $u^\parallel = 0$, we may replace $u\in D^{1,p}(\mathbb{R}^N)$ by $v = u / u^\parallel$ in inequality~\eqref{e:Poincare} and thus restate it equivalently as follows, for all $v^\top\in D^{1,p}(\mathbb{R}^N)$ with $\int_{\mathbb{R}^N} v^\top\, \varphi_1^{p-1}\, m \,{\rm d}x = 0$: % \begin{equation} \mathcal{Q}_{v^\top}(v^\top, v^\top) = \mathcal{F}(\varphi_1 + v^\top) \geq \frac{c}{p} \left( \| v^\top\|_{ \mathcal{D}_{\varphi_1} }^2 + \| v^\top\|_{ D^{1,p}(\mathbb{R}^N) }^p \right) . \label{e:Poinc} \end{equation} % \endgroup \end{remark} % This remark indicates that our proof of inequality~\eqref{e:Poincare} should distinguish between the cases when the ratio $\| u^\top\|_{ D^{1,p}(\mathbb{R}^N) } / | u^\parallel |$ is bounded away from zero by a constant $\gamma > 0$, say, \[ \| u^\top\|_{ D^{1,p}(\mathbb{R}^N) } / | u^\parallel | \geq \gamma , \] and when it is sufficiently small, say, \[ \| u^\top\|_{ D^{1,p}(\mathbb{R}^N) } / | u^\parallel | \leq \gamma \] where $\gamma > 0$ is small enough. The former case is treated in a standard way analogous to~\eqref{def.lam_1}, whereas the latter case requires a more sophisticated approach based on the second\--order Taylor formula \eqref{def.Q} applied to the expression $\mathcal{Q}_{v^\top}(v^\top, v^\top)$ on the left\--hand side in~\eqref{e:Poinc} where $v = u / u^\parallel$. For either of these cases we need a separate auxiliary result: We derive two formulas for Rayleigh quotients outside and inside an arbitrarily small cone around the axis spanned by $\varphi_1$, respectively. % \subsection{Minimization outside a cone around $\varphi_1$} \label{ss:Ext-Cone} We allow $1 < p < N$ throughout this paragraph. Given any number $0 < \gamma < \infty$, we set % \begin{gather*} \mathcal{C}_\gamma \eqdef \Big\{ u\in D^{1,p}(\mathbb{R}^N) \colon \| u^\top \|_{ D^{1,p}(\mathbb{R}^N) } \leq \gamma | u^\parallel | \Big\} ,\\ \mathcal{C}_\gamma^\prime \eqdef \Big\{ u\in D^{1,p}(\mathbb{R}^N) \colon \| u^\top \|_{ D^{1,p}(\mathbb{R}^N) } \geq \gamma | u^\parallel | \Big\} . \end{gather*} % Note that $\mathcal{C}_\gamma$ is a closed cone in $D^{1,p}(\mathbb{R}^N)$ and $\mathcal{C}_\gamma^\prime$ is the closure of $\mathcal{C}_\gamma^c$, the complement of $\mathcal{C}_\gamma$ in $D^{1,p}(\mathbb{R}^N)$. We consider also the hyperplane \[ \mathcal{C}_\infty^\prime \eqdef \Big\{ u\in D^{1,p}(\mathbb{R}^N) \colon u^\parallel = 0 \Big\} = \bigcap_{ 0 < \gamma < \infty } \mathcal{C}_\gamma^\prime . \] For $0 < \gamma\leq \infty$ we define % \begin{equation} \Lambda_\gamma \eqdef \inf \Big\{ \frac{ \int_{\mathbb{R}^N} |\nabla u|^p \,{\rm d}x }% { \int_{\mathbb{R}^N} |u|^p\, m \,{\rm d}x } \colon u\in \mathcal{C}_\gamma^\prime \setminus \{ 0\} \Big\} . \label{def.Lam_g} \end{equation} % The next result is an analogue of \cite[Lemma 5.1, p.~963]{FleckTakac-1} proved for a bounded domain $\Omega\subset \mathbb{R}^N$. %%%%% Exterior Cone Minimum (Lemma) \begin{lemma}\label{lem-Ext-Cone} Let\/ $1 < p < N$ and\/ $0 < \gamma\leq \infty$. Then we have $\Lambda_\gamma > \lambda_1$. \end{lemma} % \begin{proof} Assume the contrary, that is, $\Lambda_\gamma = \lambda_1$ for some $0 < \gamma < \infty$. Pick a minimizing sequence $\{ u_n\}_{n=1}^\infty$ in $\mathcal{C}_\gamma^\prime$ such that \[ \int_{\mathbb{R}^N} |u_n|^p\, m \,{\rm d}x = 1 \quad\mbox{and }\quad \int_{\mathbb{R}^N} |\nabla u_n|^p \,{\rm d}x \to \lambda_1 \quad\mbox{as } n\to \infty . \] Since $D^{1,p}(\mathbb{R}^N)$ is a reflexive Banach space, the minimizing sequence contains a weakly convergent subsequence in $D^{1,p}(\mathbb{R}^N)$ which we denote by $\{ u_n\}_{n=1}^\infty$ again. Consequently, $u_n\to u$ strongly in $L^p(\mathbb{R}^N; m)$, by Proposition \ref{prop-Compact}(a), and $\nabla u_n\rightharpoonup \nabla u$ weakly in $[ L^p(\mathbb{R}^N) ]^N$ as $n\to \infty$. We deduce that $\int_{\mathbb{R}^N} |u|^p\, m \,{\rm d}x = 1$ and \[ \lambda_1^{1/p} \leq \| \nabla u\|_{L^p(\mathbb{R}^N)} \leq \liminf_{n\to \infty} \| \nabla u_n\|_{L^p(\mathbb{R}^N)} = \lambda_1^{1/p} . \] As the standard norm on the space $D^{1,p}(\mathbb{R}^N)$ is uniformly convex, by Clarkson's inequalities, we must have $u_n\to u$ strongly in $D^{1,p}(\mathbb{R}^N)$, by the proof of Milman's theorem (see {\sc Yosida} \cite[Theorem V.2.2, p.~127]{Yosida}). This means that % \begin{gather*} u_n^\parallel = \int_{\mathbb{R}^N} u_n\, \varphi_1^{p-1}\, m \,{\rm d}x \to u^\parallel = \int_{\mathbb{R}^N} u\, \varphi_1^{p-1}\, m \,{\rm d}x , \\ u_n^\top = u_n - u_n^\parallel \varphi_1 \to u^\top = u - u^\parallel \varphi_1 \mbox{ strongly in } D^{1,p}(\mathbb{R}^N) , \end{gather*} % as $n\to \infty$. The set $\mathcal{C}_\gamma^\prime$ being closed in $D^{1,p}(\mathbb{R}^N)$, we thus have $u\in \mathcal{C}_\gamma^\prime$. On the other hand, from $\| u\|_{ L^p(\mathbb{R}^N; m) } = 1$ and $\| \nabla u\|_{L^p(\mathbb{R}^N)} = \lambda_1^{1/p}$, combined with the simplicity of the first eigenvalue $\lambda_1$, one deduces that $u = \pm\varphi_1$, a contradiction to $u\in \mathcal{C}_\gamma^\prime$. The lemma is proved. \end{proof} % \subsection{Minimization inside a cone around $\varphi_1$} \label{ss:Int-Cone} For $\phi\in D^{1,p}(\mathbb{R}^N)$, $\phi\not\equiv 0$ in $\mathbb{R}^N$, let us define % \begin{equation} \tilde\Lambda \eqdef \liminf_{ \begin{smallmatrix} { \|\phi\|_{ D^{1,p}(\mathbb{R}^N) } \to 0 }\\ { \langle\phi, \varphi_1^{p-1} m\rangle = 0 } \end{smallmatrix} } \frac{ \int_{\mathbb{R}^N} \left\langle \left[ \int_0^1 \mathbf{A} \left( \nabla ( \varphi_1 + s\phi ) \right) (1-s) \,{\rm d}s \right] \nabla\phi ,\, \nabla\phi \right\rangle_{\mathbb{R}^N} \,{\rm d}x }{ \int_{\mathbb{R}^N} \left[ \int_0^1 |\varphi_1 + s\phi|^{p-2} (1-s) \,{\rm d}s \right] |\phi|^2\, m \,{\rm d}x } \label{def.Lam_0} \end{equation} % with the abbreviation~\eqref{def.A=F''}. Using the quadratic form $\mathcal{Q}_\phi$ defined in~\eqref{def.Q}, we notice that \[ \tilde\Lambda - \lambda_1 (p-1) = \liminf_{ \begin{smallmatrix} { \|\phi\|_{ D^{1,p}(\mathbb{R}^N) } \to 0 }\\ { \langle\phi, \varphi_1^{p-1} m\rangle = 0 } \end{smallmatrix} } \frac{ \mathcal{Q}_{\phi}(\phi,\phi) }{ \int_{\mathbb{R}^N} \left[ \int_0^1 |\varphi_1 + s\phi|^{p-2} (1-s) \,{\rm d}s \right] |\phi|^2\, m \,{\rm d}x } \geq 0 . \] The next result parallels \cite[Lemma 5.2, p.~964]{FleckTakac-1} shown for a bounded domain $\Omega\subset \mathbb{R}^N$. %%%%% Interior Cone Minimum (Lemma) \begin{lemma}\label{lem-Int-Cone} Let\/ $2\leq p < N$. We have $\tilde\Lambda > \lambda_1 (p-1)$. % \end{lemma} % Before giving the proof of this inequality, we first recall that the kernels of the quadratic forms $\mathcal{Q}_{\phi}(v,v)$ and $\mathcal{Q}_0(v,v)$ defined in \eqref{def.Q} and \eqref{def.Q_0}, respectively, can be compared by inequalities \eqref{1-s.A.geom:p>2} for $p\geq 2$, and \eqref{1-s.A.geom:p<2} for $p<2$, so that we can use the Hilbert space $\mathcal{D}_{\varphi_1}$ not only for $\mathcal{Q}_0$ but also for $\mathcal{Q}_{\phi}$. Next, we introduce the following notations where $t\in \mathbb{R}$ and $\phi\in D^{1,p}(\mathbb{R}^N)$: % \begin{gather*} \mathcal{P}_0(t,\phi) \eqdef \int_{\mathbb{R}^N} \Big[ \int_0^1 | \varphi_1 + s t\phi |^{p-2} (1-s) \,{\rm d}s \Big] \phi^2\, m \,{\rm d}x ,\\ \mathcal{P}_1(t,\phi) \eqdef \int_{\mathbb{R}^N} \Big\langle \Big[ \int_0^1 \mathbf{A} ( \nabla ( \varphi_1 + s t\phi ) ) (1-s) \,{\rm d}s \Big] \nabla\phi ,\, \nabla\phi \Big\rangle_{\mathbb{R}^N} \,{\rm d}x . \end{gather*} % Hence, equation~\eqref{def.Lam_0} takes the form \[ \tilde\Lambda = \liminf_{ \begin{smallmatrix} { \|\phi\|_{ D^{1,p}(\mathbb{R}^N) } \to 0 }\\ { \langle\phi, \varphi_1^{p-1} m\rangle = 0 } \end{smallmatrix} } \frac{ \mathcal{P}_1(t,\phi) }{ \mathcal{P}_0(t,\phi) } \quad\mbox{with any fixed } t\in \mathbb{R}\setminus \{ 0\} . \] Furthermore, due to inequalities \eqref{1-s.A.geom:p>2}, the expressions $\mathcal{P}_0(t,\phi)$ and $\mathcal{P}_1(t,\phi)$, respectively, are equivalent to % \begin{align*} \mathcal{N}_0(t,\phi) &\eqdef \int_{\mathbb{R}^N} \left( \varphi_1^{p-2} + |t|^{p-2} |\phi|^{p-2} \right) \phi^2\, m \,{\rm d}x \\ & = \int_{\mathbb{R}^N} \varphi_1^{p-2} \phi^2\, m \,{\rm d}x + |t|^{p-2} \|\phi\|_{ L^p(\mathbb{R}^N; m) }^p \end{align*} % and % \begin{align*} \mathcal{N}_1(t,\phi) &\eqdef \int_{\mathbb{R}^N} \left( |\nabla\varphi_1|^{p-2} + |t|^{p-2} |\nabla\phi|^{p-2} \right) |\nabla\phi|^2 \,{\rm d}x \\ & = \|\phi\|_{ \mathcal{D}_{\varphi_1} }^2 + |t|^{p-2} \|\phi\|_{ D^{1,p}(\mathbb{R}^N) }^p , \end{align*} % that is, there are two constants $c_1, c_2 > 0$ independent from $t$ and $\phi$ such that % \begin{equation} c_1\, \mathcal{N}_i(t,\phi) \leq \mathcal{P}_i(t,\phi) \leq c_2\, \mathcal{N}_i(t,\phi) ;\quad i=0,1 . \label{ineq.PN} \end{equation} % \begin{proof}[Proof of Lemma~\ref{lem-Int-Cone}] On the contrary, assume that $\tilde\Lambda \leq \lambda_1 (p-1)$. Pick a minimizing sequence $\{ \phi_n\}_{n=1}^\infty$ in $D^{1,p}(\mathbb{R}^N)$ such that $\phi_n\not\equiv 0$ in $\mathbb{R}^N$, $\langle\phi_n, \varphi_1^{p-1} m\rangle = 0$, $\|\phi_n\|_{ D^{1,p}(\mathbb{R}^N) } \to 0$, and \[ \frac{ \mathcal{P}_1(1,\phi_n) }{ \mathcal{P}_0(1,\phi_n) } \,\longrightarrow \tilde\Lambda \leq \lambda_1 (p-1) \quad\mbox{as } n\to \infty . \] Next, set $t_n = \mathcal{P}_0(1,\phi_n)^{1/2}$ and $V_n = \phi_n / t_n$ for $n=1,2,\dots$. Hence, we have \hbox{$t_n\to 0$}, $\mathcal{P}_0(t_n,V_n) = 1$, and $\mathcal{P}_1(t_n,V_n) \to \tilde\Lambda$ as $n\to \infty$. Inequalities~\eqref{ineq.PN} guarantee that both sequences $\| V_n\|_{ \mathcal{D}_{\varphi_1} }$ and $t_n^{1 - (2/p)} \| V_n\|_{ D^{1,p}(\mathbb{R}^N) }$ are bounded, and so we may extract a subsequence denoted again by $\{ V_n\}_{n=1}^\infty$ such that $V_n\rightharpoonup V$ weakly in $\mathcal{D}_{\varphi_1}$ and $t_n^{1 - (2/p)} V_n$ $\rightharpoonup z$ weakly in $D^{1,p}(\mathbb{R}^N)$ as $n\to \infty$. Using the imbedding $D^{1,p}(\mathbb{R}^N) \hookrightarrow \mathcal{D}_{\varphi_1}$, we get $z\equiv 0$ in $\mathbb{R}^N$. Furthermore, both imbeddings $D^{1,p}(\mathbb{R}^N) \hookrightarrow L^p(\mathbb{R}^N; m)$ and $\mathcal{D}_{\varphi_1} \hookrightarrow \mathcal{H}_{\varphi_1}$ being compact by Proposition \ref{prop-Compact}, we have also $V_n\to V$ strongly in $\mathcal{H}_{\varphi_1}$ and $t_n^{1 - (2/p)} V_n\to 0$ strongly in $L^p(\mathbb{R}^N; m)$. It follows that $\langle V, \varphi_1^{p-1} m\rangle = 0$ and % \begin{gather*} \mathcal{P}_0(0,V) = \frac12 \int_{\mathbb{R}^N} \varphi_1^{p-2} V^2 \,{\rm d}x = 1 , \\ \mathcal{P}_1(0,V) = \frac12 \left\langle \mathbf{A} (\nabla\varphi_1) \nabla V ,\, \nabla V \right\rangle \leq \tilde\Lambda \leq \lambda_1 (p-1) . \end{gather*} % Consequently, Proposition~\ref{prop-Uni-EV} forces $V = \kappa\varphi_1$ in $\mathbb{R}^N$, where $\kappa\in \mathbb{R}$ is a constant, $\kappa\neq 0$ by $\mathcal{P}_0(0,V) = 1$. But this is a contradiction to $\langle V, \varphi_1^{p-1} m\rangle = 0$. We conclude that $\tilde\Lambda > \lambda_1 (p-1)$ as claimed. \end{proof} \subsection{Proof of Lemma~\ref{lem-Poincare}} \label{ss:Poincare} If $u\in D^{1,p}(\mathbb{R}^N)$ satisfies $\langle u, \varphi_1\rangle = 0$, then equation~\eqref{def.Lam_g} implies % \begin{equation} \begin{split} \int_{\mathbb{R}^N} |\nabla u|^p \,{\rm d}x - \lambda_1 \int_{\mathbb{R}^N} |u|^p\, m \,{\rm d}x & \geq \big( 1 - \frac{\lambda_1}{\Lambda_\infty} \big) \int_{\mathbb{R}^N} |\nabla u|^p \,{\rm d}x\\ &= \big( 1 - \frac{\lambda_1}{\Lambda_\infty} \big) \int_{\mathbb{R}^N} |\nabla u^\top|^p \,{\rm d}x \end{split} \label{ineq:Lam_inf} \end{equation} % where $\lambda_1 / \Lambda_\infty < 1$ by Lemma~\ref{lem-Ext-Cone}. Thus, we may assume $\langle u, \varphi_1\rangle \not= 0$ and so we need to prove only inequality~\eqref{e:Poinc}. We will apply Lemmas \ref{lem-Ext-Cone} and~\ref{lem-Int-Cone} to the following two cases, respectively. \noindent {\it Case\/} $\| v^\top\|_{ D^{1,p}(\mathbb{R}^N) } \geq \gamma$: Here, $\gamma > 0$ is an arbitrary, but fixed number. In analogy with inequality~\eqref{ineq:Lam_inf} above, we have % \begin{equation} \begin{split} & \int_{\mathbb{R}^N} |\nabla\varphi_1 + \nabla v^\top|^p \,{\rm d}x - \lambda_1 \int_{\mathbb{R}^N} |\varphi_1 + v^\top|^p\, m \,{\rm d}x \\ & \geq \big( 1 - \frac{\lambda_1}{\Lambda_\gamma} \big) \int_{\mathbb{R}^N} |\nabla\varphi_1 + \nabla v^\top|^p \,{\rm d}x \geq c_\gamma \int_{\mathbb{R}^N} |\nabla v^\top|^p \,{\rm d}x \end{split} \label{ineq:Lam_g} \end{equation} % for all $v^\top\in D^{1,p}(\mathbb{R}^N)$ such that $\langle v^\top, \varphi_1^{p-1} m\rangle = 0$ and $\| v^\top\|_{ D^{1,p}(\mathbb{R}^N) } \geq \gamma$, where $c_\gamma > 0$ is a constant independent from $v^\top$. The last inequality follows from the boundedness of the orthogonal projections $u\mapsto u^\parallel\cdot \varphi_1$ and $u\mapsto u^\top$ in $D^{1,p}(\mathbb{R}^N)$. Recalling the imbedding $D^{1,p}(\mathbb{R}^N) \hookrightarrow \mathcal{D}_{\varphi_1}$, we deduce from~\eqref{ineq:Lam_g} that inequality~\eqref{e:Poinc} is valid provided $\| v^\top\|_{ D^{1,p}(\mathbb{R}^N) }$ $\geq \gamma$. \noindent {\it Case\/} $\| v^\top\|_{ D^{1,p}(\mathbb{R}^N) } \leq \gamma$: Here, $\gamma > 0$ is sufficiently small. According to equation~\eqref{def.Lam_0} and Lemma~\ref{lem-Int-Cone} we have % \begin{equation} \begin{split} \mathcal{Q}_{v^\top}(v^\top, v^\top) &= \mathcal{P}_1(1,v^\top) - \lambda_1 (p-1)\, \mathcal{P}_0(1,v^\top) \\ & \geq \Big( 1 - \frac{\lambda_1 (p-1)}{\tilde\Lambda} \Big) \mathcal{P}_1(1,v^\top)\\ &\geq \tilde c\cdot \mathcal{N}_1(1,v^\top) \end{split} \label{ineq:Lam_0} \end{equation} % for all $v^\top\in D^{1,p}(\mathbb{R}^N)$ such that $\langle v^\top, \varphi_1^{p-1} m\rangle = 0$ and $\| v^\top\|_{ D^{1,p}(\mathbb{R}^N) } \leq \gamma$, where $\gamma > 0$ is sufficiently small and $\tilde c > 0$ is a constant independent from $v^\top$. Recall that the expressions $\mathcal{P}_i(1,v^\top)$ and $\mathcal{N}_i(1,v^\top)$ ($i=0,1$) have been defined after Lemma~\ref{lem-Int-Cone}. From~\eqref{ineq:Lam_0} we deduce that inequality~\eqref{e:Poinc} is valid also when $\| v^\top\|_{ D^{1,p}(\mathbb{R}^N) } \leq \gamma$. %\end{proof} %%%%% Coercivity of J_{\lambda_1} (Remark) \begin{remark}\label{rem-E_f:coercive} \begingroup\rm Assume $2 < p < N$ and let $f\in \mathcal{D}_{\varphi_1}'$ satisfy $\langle f,\varphi_1\rangle = 0$. Recall that $D^{1,p}(\mathbb{R}^N) \hookrightarrow \mathcal{D}_{\varphi_1}$. Although the functional $\mathcal{J}_{\lambda_1}$, defined in \eqref{def.jl} with $\lambda = \lambda_1$, is no longer coercive on $D^{1,p}(\mathbb{R}^N)$, it is still not only bounded from below, but also ``very close'' to being coercive on the weighted Sobolev space $\mathcal{D}_{\varphi_1}$, as a direct consequence of improved Poincar\'e's inequality \eqref{e:Poincare}. This property of $\mathcal{J}_{\lambda_1}$ will be used in the next section to prove the existence theorem (Theorem~\ref{thm-Exist:p>2}) for problem \eqref{e:BVP.l_1}. \endgroup \end{remark} % \section{Proof of Theorem~\ref{thm-Exist:p>2}} \label{s:pr-Exist:p>2} Our proof of Theorem~\ref{thm-Exist:p>2} combines the improved Poincar\'e inequality~\eqref{e:Poincare} with a generalized Rayleigh quotient formula. To this end, we may assume that $f\in \mathcal{D}_{\varphi_1}'$ satisfies $f\not\equiv 0$ in $\mathbb{R}^N$ and $\langle f, \varphi_1\rangle = 0$. Define the number $M_f$, for $0\leq M_f\leq \infty$, by % \begin{equation} M_f\eqdef \sup_{ \begin{smallmatrix} v\in D^{1,p}(\mathbb{R}^N)\\ v\not\in \{ \kappa\varphi_1\colon \kappa\in \mathbb{R}\} \end{smallmatrix} } \frac{ | \langle f, v\rangle |^p }% { \int_{\mathbb{R}^N} |\nabla v|^p \,{\rm d}x - \lambda_1 \int_{\mathbb{R}^N} |v|^p\, m \,{\rm d}x }\, . \label{def.M_f} \end{equation} % Clearly, $M_f > 0$. Moreover, inequality~\eqref{e:Poincare} entails % \[ | \langle f, v\rangle |^p \leq \| f\|_{ D^{-1,p'}(\mathbb{R}^N) }^p\, \| v^\top\|_{ D^{1,p}(\mathbb{R}^N) }^p \leq C_f \Big( \int_{\mathbb{R}^N} |\nabla v|^p \,{\rm d}x - \lambda_1 \int_{\mathbb{R}^N} |v|^p\, m \,{\rm d}x \Big) \] % for all $v\in D^{1,p}(\mathbb{R}^N)$, where $C_f = c^{-1}\, \| f\|_{ D^{-1,p'}(\mathbb{R}^N) }^p$ is a constant. This shows that $M_f\leq C_f < \infty$. In a similar way we arrive at % \begin{equation} \begin{split} | v^\parallel |^{p-2}\, | \langle f, v\rangle |^2 &\leq | v^\parallel |^{p-2} \left( \| f\|_{ \mathcal{D}_{\varphi_1}' } \right)^2\, \| v^\top\|_{ \mathcal{D}_{\varphi_1} }^2 \\ & \leq C_f' \Big( \int_{\mathbb{R}^N} |\nabla v|^p \,{\rm d}x - \lambda_1 \int_{\mathbb{R}^N} |v|^p\, m \,{\rm d}x \Big) \quad\mbox{for all } v\in D^{1,p}(\mathbb{R}^N) , \end{split} \label{ineq:f.v_2} \end{equation} % where $C_f'= c^{-1} ( \| f\|_{ \mathcal{D}_{\varphi_1}' } )^2$ is a constant, and $\|\cdot\|_{ \mathcal{D}_{\varphi_1}' }$ stands for the dual norm on $\mathcal{D}_{\varphi_1}'$. >From \eqref{def.M_f} and inequality~\eqref{ineq:f.v_2} we can draw the following conclusion: If $v\in D^{1,p}(\mathbb{R}^N)$ is such that $v^\top \not\equiv 0$ in $\mathbb{R}^N$ and \[ \frac{ | \langle f, v\rangle |^p }% { \int_{\mathbb{R}^N} |\nabla v|^p \,{\rm d}x - \lambda_1 \int_{\mathbb{R}^N} |v|^p\, m \,{\rm d}x } \geq \frac{1}{2} M_f , \] then $\langle f, v\rangle \neq 0$ and \[ | v^\parallel |^{p-2} \leq 2 (C_f' / M_f)\, | \langle f, v\rangle |^{p-2} \leq (C_f'')^{p-2}\, \| v^\top\|_{ D^{1,p}(\mathbb{R}^N) }^{p-2} , \] where % \begin{math} C_f''= [ 2 (C_f' / M_f) ]^{1/(p-2)}\, \| f\|_{ D^{-1,p'}(\mathbb{R}^N) } \end{math} % is a constant, i.e., % \begin{equation} | v^\parallel | \leq C_f''\, \| v^\top\|_{ D^{1,p}(\mathbb{R}^N) } . \label{ineq:v_f.v} \end{equation} % Next, take any maximizing sequence $\{ v_n\}_{n=1}^\infty$ in $D^{1,p}(\mathbb{R}^N)$ for the generalized Rayleigh quotient~\eqref{def.M_f}, that is, $v_n^\top \not\equiv 0$ in $\mathbb{R}^N$ and % \begin{equation} \frac{ | \langle f, v_n\rangle |^p }% { \int_{\mathbb{R}^N} |\nabla v_n|^p \,{\rm d}x - \lambda_1 \int_{\mathbb{R}^N} |v_n|^p\, m \,{\rm d}x }\,\longrightarrow M_f \quad\mbox{as } n\to \infty . \label{M_f:v_n} \end{equation} % Since both, the numerator and the denominator are $p$-homogeneous, we may assume $\| v_n\|_{ D^{1,p}(\mathbb{R}^N) } = 1$ for all $n\geq 1$. The Sobolev space $D^{1,p}(\mathbb{R}^N)$ being reflexive, we may pass to a convergent subsequence $v_n\rightharpoonup w$ weakly in $D^{1,p}(\mathbb{R}^N)$; hence, also $v_n\to w$ strongly in $L^p(\mathbb{R}^N; m)$, by Proposition \ref{prop-Compact}(a), and $\langle f, v_n\rangle \to \langle f, w\rangle$ as $n\to \infty$. We insert these limits into~\eqref{M_f:v_n} to obtain % \begin{equation} \int_{\mathbb{R}^N} |\nabla w|^p \,{\rm d}x - \lambda_1 \int_{\mathbb{R}^N} |w|^p\, m \,{\rm d}x \leq 1 - \lambda_1 \int_{\mathbb{R}^N} |w|^p\, m \,{\rm d}x = M_f^{-1} | \langle f, w\rangle |^p . \label{M_f:w} \end{equation} % In particular, we have $w\not\equiv 0$ in $\mathbb{R}^N$, therefore also $w^\top \not\equiv 0$ by~\eqref{ineq:v_f.v}, and consequently $| \langle f, w\rangle | \not= 0$ by~\eqref{M_f:w}. We combine \eqref{def.M_f} with~\eqref{M_f:w} to get $\int_{\mathbb{R}^N} |\nabla w|^p \,{\rm d}x = 1$. Hence, the supremum $M_f$ in~\eqref{def.M_f} is attained at $w$ in place of $v$. Finally, we can apply the calculus of variations to the inequality % \[ \int_{\mathbb{R}^N} |\nabla v|^p \,{\rm d}x - \lambda_1 \int_{\mathbb{R}^N} |v|^p\, m \,{\rm d}x - M_f^{-1} | \langle f, v\rangle |^p \geq 0 \quad\mbox{for } v\in D^{1,p}(\mathbb{R}^N) \] % to derive % \[ - \Delta_p w - \lambda_1\, m\, |w|^{p-2} w = M_f^{-1} | \langle f, w\rangle |^{p-2} \langle f, w\rangle \cdot f(x) \quad\mbox{in } \mathbb{R}^N . \] % It follows that $u\eqdef M_f^{1/(p-1)} \langle f, w\rangle^{-1} \cdot w$ is a weak solution of problem~\eqref{e:BVP.l_1}. Theorem~\ref{thm-Exist:p>2} is proved. %\end{proof} \section{Proof of Theorem~\ref{thm-Exist:p<2}} \label{s:pr-Exist:p<2} In contrast to the case $2\leq p < N$ in Section~\ref{s:Impr_Poinc}, Remark~\ref{rem-E_f:coercive}, for $1 \lambda_1$ in formula \eqref{def.Lam_g}. This shows that the functional $\mathcal{E}_f$ is coercive on $\mathcal{C}_\infty^\prime = D^{1,p}(\mathbb{R}^N)^\top$. Hence, being also weakly lower semicontinuous, $\mathcal{E}_f$ possesses a global minimizer $u_0^\top$ over $D^{1,p}(\mathbb{R}^N)^\top$, \[ \mathcal{E}_f(u_0^\top) = \inf_{ w\in D^{1,p}(\mathbb{R}^N)^\top } \mathcal{E}_f(w) > -\infty . \] Now let us look for the functions $u$ and $v$, respectively, in Definition \ref{def-Saddle_Geom} in the forms of % \begin{equation} u_\pm = \pm\tau \varphi_1 + \tau^{1 - (p/2)} \phi \quad\mbox{with $\tau\in (0,\infty)$ sufficiently large, } \label{def.u,v} \end{equation} % where $\phi\in C_{\mathrm{c}}^1(\mathbb{R}^N)$ is a function chosen as follows: % \begin{itemize} % \item[($\boldsymbol{\Phi}$)] $\langle f, \phi\rangle = 1$ and $0\not\in K$ where % \begin{equation*} K = \mathop{\rm supp}(\phi)\eqdef \overline{ \{ x\in \mathbb{R}^N\colon \phi(x)\not= 0\} } \quad ( \subset \mathbb{R}^N ) \end{equation*} % denotes the support of $\phi$. % \end{itemize} % The existence of $\phi$ is verified as follows. Since $f\in D^{-1,p'}(\mathbb{R}^N)$ satisfies $f\not\equiv 0$ in $\mathbb{R}^N$, there is a function $\phi_0\in C_{\mathrm{c}}^1(\mathbb{R}^N)$ such that $\langle f, \phi_0\rangle = 1$. On the contrary to ($\boldsymbol{\Phi}$), suppose that the support $K_0 = \mathop{\rm supp}(\phi_0)$ of $\phi_0$ always contains $0\in \mathbb{R}^N$. This is equivalent to saying that $\langle f, \phi\rangle = 0$ whenever $\phi\in C_{\mathrm{c}}^1(\mathbb{R}^N)$ is such that $0\not\in \mathop{\rm supp}(\phi)$. Now choose a $C^1$ function $\psi\colon \mathbb{R}_+\to [0,1]$ such that $\psi(r) = 1$ if $0\leq r\leq 1$, $0\leq \psi(r)\leq 1$ if $1\leq r\leq 2$, and $\psi(r) = 0$ if $2\leq r < \infty$. Define $\psi_n(x)\eqdef \psi(n|x|)$ for all $x\in \mathbb{R}^N$; $n=1,2,\dots$. Then $0\not\in \mathop{\rm supp}( (1-\psi_n)\phi_0 )$ which yields $\langle f, (1-\psi_n)\phi_0\rangle = 0$. Hence % \begin{math} \langle f, \psi_n\phi_0\rangle = \langle f, \phi_0\rangle = 1 . \end{math} % However, this is contradicted by $\| \psi_n\phi_0\|_{ D^{1,p}(\mathbb{R}^N) } \to 0$ as $n\to \infty$, which follows easily from % \begin{equation*} \| \nabla(\psi_n\phi_0) \|_{ L^p(\mathbb{R}^N) } \leq \| \phi_0\|_{ L^\infty(\mathbb{R}^N) } \| \nabla\psi_n\|_{ L^p(\mathbb{R}^N) } + \| \nabla\phi_0\|_{ L^\infty(\mathbb{R}^N) } \| \psi_n\|_{ L^p(\mathbb{R}^N) } \end{equation*} % with both % \begin{gather*} \| \nabla\psi_n\|_{ L^p(\mathbb{R}^N) } = n^{1 - (N/p)} \| \nabla\psi\|_{ L^p(\mathbb{R}^N) } \to 0,\\ \| \psi_n\|_{ L^p(\mathbb{R}^N) } = n^{- (N/p)} \| \psi\|_{ L^p(\mathbb{R}^N) } \to 0 \end{gather*} % as $n\to \infty$, by $1 < p < 2\leq N$. So let $\phi\in C_{\mathrm{c}}^1(\mathbb{R}^N)$ satisfy condition ($\boldsymbol{\Phi}$). % For $\tau\in (0,\infty)$ we compute % \begin{equation} \int_{\mathbb{R}^N} u_\pm\, \varphi_1^{p-1}\, m \,{\rm d}x = \pm\tau + \tau^{1 - (p/2)} \int_{\mathbb{R}^N} \phi\, \varphi_1^{p-1}\, m \,{\rm d}x , \label{u_pm.phi_1} \end{equation} % by $\int_{\mathbb{R}^N} \varphi_1^p\, m \,{\rm d}x = 1$. It follows that % \[ \int_{\mathbb{R}^N} u_-\, \varphi_1^{p-1}\, m \,{\rm d}x < 0 < \int_{\mathbb{R}^N} u_+\, \varphi_1^{p-1}\, m \,{\rm d}x \quad\mbox{for all $\tau > 0$ large enough.} \] % Next we use eqs.\ \eqref{J''.phi_1} and \eqref{def.Q} together with $\langle f, \varphi_1\rangle = 0$ to obtain % \begin{equation} \begin{split} & \mathcal{E}_f(u_\pm) = \mathcal{J}_{\lambda_1} ( \pm\tau \varphi_1 + \tau^{1 - (p/2)} \phi ) = \\ & \mathcal{Q}_{ \pm \tau^{-p/2} \phi }(\phi,\phi) - \tau^{1 - (p/2)}\, \langle f, \phi\rangle = \mathcal{Q}_{ \pm \tau^{-p/2} \phi }(\phi,\phi) - \tau^{1 - (p/2)} . \end{split} \label{E_f:u_pm} \end{equation} % We recall that the quadratic forms $\mathcal{Q}_{ \pm\tau^{-p/2} \phi }$ are given by formula \eqref{def.Q}. Since $\inf_K |\nabla\varphi_1|$ $> 0$, $\inf_K \varphi_1 > 0$, and $\phi$ is supported in $K\subset \mathbb{R}^N\setminus \{ 0\}$, we conclude that both summands in $\mathcal{Q}_{ \pm\tau^{-p/2} \phi }(\phi,\phi)$ are bounded independently from $\tau\geq \tau_0$, provided $\tau_0\in (0,\infty)$ is large enough. Finally, from \eqref{E_f:u_pm} we deduce that $\mathcal{E}_f(u_\pm) \to -\infty$ as $\tau\to +\infty$. The conclusion of the lemma follows. \end{proof} % \subsection{A minimax method} \label{ss:Minimax} We allow $1 0 . \] % Note that for any fixed $\tau\in \mathbb{R}$ the functional $u^\top \mapsto \mathcal{J}_{\lambda}( \tau\varphi_1 + u^\top )$ is coercive on the (closed linear) subspace $D^{1,p}(\mathbb{R}^N)^\top$ of $D^{1,p}(\mathbb{R}^N)$. This claim follows from the following inequalities which are valid whenever % \begin{math} |\tau|\leq T\leq \gamma_\eta^{-1} \| u^\top\|_{ D^{1,p}(\mathbb{R}^N) } , \end{math} % for any fixed $T\in (0,\infty)$: % \begin{equation} \begin{split} & \int_{\mathbb{R}^N} |\nabla ( \tau\varphi_1 + u^\top )|^p \,{\rm d}x - (\Lambda_\infty - \eta) \int_{\mathbb{R}^N} |( \tau\varphi_1 + u^\top )|^p\, m \,{\rm d}x \\ & \geq \Big( 1 - \frac{ \Lambda_\infty - \eta }{ \Lambda_{\gamma_\eta} } \Big) \int_{\mathbb{R}^N} |\nabla ( \tau\varphi_1 + u^\top )|^p \,{\rm d}x \\ & \geq \Big( 1 - \frac{ \Lambda_\infty - \eta }{ \Lambda_{\gamma_\eta} } \Big) \left| \| \nabla u^\top\|_{ L^p(\mathbb{R}^N) } - |\tau|\cdot \| \nabla\varphi_1\|_{ L^p(\mathbb{R}^N) } \right|^p \\ & \geq c\, \| \nabla u^\top\|_{ L^p(\mathbb{R}^N) }^p - c_T , \end{split} \label{ineq:Lam_1.T} \end{equation} % with another constant $0 < c_T < \infty$ depending solely on $T$. The first inequality in~\eqref{ineq:Lam_1.T} is easily derived from formula \eqref{def.Lam_g}. Consequently, any global minimizer $u_\tau^\top$ for the functional $u^\top \mapsto \mathcal{J}_{\lambda}( \tau\varphi_1 + u^\top )$ on $D^{1,p}(\mathbb{R}^N)^\top$ satisfies the estimate $\| u_\tau^\top\|_{ D^{1,p}(\mathbb{R}^N) } \leq C_T$ $< \infty$, where $C_T$ is a constant independent from $\lambda\in [ 0, \Lambda_\infty - \eta ]$ and $\tau\in [-T,T]$. Such a global minimizer always exists and verifies the Euler\--Lagrange equation % \begin{equation} \begin{split} &- \Delta_p( \tau\varphi_1 + u_\tau^\top ) - \lambda\, m(x)\, | \tau\varphi_1 + u_\tau^\top |^{p-2} ( \tau\varphi_1 + u_\tau^\top ) \\ & = f^\top(x) + \zeta_\tau\cdot m(x)\, \varphi_1(x)^{p-1} \quad\mbox{in } \mathbb{R}^N , \end{split} \label{t:BVP.u_tau} \end{equation} % with a Lagrange multiplier $\zeta_\tau\in \mathbb{R}$. Thus, we may define % \begin{equation} j_\lambda(\tau)\eqdef \min_{ u^\top\in D^{1,p}(\mathbb{R}^N)^\top } \mathcal{J}_{\lambda}( \tau\varphi_1 + u^\top ) . \label{def.j_lam,tau} \end{equation} % In the rest of our proof of Theorem \ref{thm-Exist:p<2} in {\S}\ref{ss:Fredh_Mount} we will show that for $1 0 . \label{j_disc} \end{equation} % Consider any global minimizer $u_n^\top$ for the functional % \begin{math} u^\top \mapsto \mathcal{J}_{\mu_n}( \tau_n\varphi_1 + u^\top ; f_n ) \end{math} % on $D^{1,p}(\mathbb{R}^N)^\top$; $n=1,2,\dots$. The sequence $\{ u_n^\top \}_{n=1}^\infty$ is bounded in $D^{1,p}(\mathbb{R}^N)$, by ineq.~\eqref{ineq:Lam_1.T}, and hence, it contains a weakly convergent subsequence (indexed by $n$ again) $u_n^\top \rightharpoonup w^\top$ in $D^{1,p}(\mathbb{R}^N)^\top$ as $n\to \infty$. >From the weak lower semicontinuity of $\mathcal{J}_{\lambda}$ on $D^{1,p}(\mathbb{R}^N)$ we obtain % \begin{equation} \begin{split} \liminf_{n\to \infty} j_{\mu_n}(\tau_n;f_n) &= \liminf_{n\to \infty} \mathcal{J}_{\mu_n}( \tau_n\varphi_1 + u_n^\top ; f_n ) \\ & \geq \mathcal{J}_{\mu_0}( \tau_0\varphi_1 + w^\top ; f_0 ) \geq j_{\mu_0}(\tau_0;f_0) . \end{split} \label{j_lower} \end{equation} % On the other hand, if $u_0^\top$ is any global minimizer for the functional $u^\top \mapsto$ $\mathcal{J}_{\mu_0}( \tau_0\varphi_1 + u^\top ; f_0 )$ on $D^{1,p}(\mathbb{R}^N)^\top$, then one has % \begin{equation} \begin{split} \limsup_{n\to \infty} j_{\mu_n}(\tau_n;f_n) & \leq \lim_{n\to \infty} \mathcal{J}_{\mu_n}( \tau_n\varphi_1 + u_0^\top ; f_n ) \\ & = \mathcal{J}_{\mu_0}( \tau_0\varphi_1 + u_0^\top ; f_0 ) = j_{\mu_0}(\tau_0;f_0) . \end{split} \label{j_upper} \end{equation} % We combine inequalities \eqref{j_lower} and~\eqref{j_upper} to get \[ \lim_{n\to \infty} j_{\mu_n}(\tau_n;f_n) = j_{\mu_0}(\tau_0;f_0) \] which contradicts~\eqref{j_disc}. The continuity of $(\tau,\lambda,f) \mapsto j_\lambda(\tau;f)$ is proved. Finally, the equicontinuity of the family~\eqref{j_equicont} is a consequence of the uniform continuity of the mapping~\eqref{j_cont} on the compact set $[-T,T]\times [0, \Lambda_\infty - \eta]\times K$. \end{proof} %%%%% Continuity of Constrained Minimum (Remark) \begin{remark}\label{rem-Cont-Min} \begingroup\rm We claim that in the proof of Lemma~\ref{lem-Cont-Min}, $w^\top$ is a global minimizer for the functional % \begin{math} u^\top \mapsto \mathcal{J}_{\mu_0}( \tau_0\varphi_1 + u^\top ; f_0 ) \end{math} % on $D^{1,p}(\mathbb{R}^N)^\top$ and we have also $u_n^\top \to w^\top$ strongly in $D^{1,p}(\mathbb{R}^N)$ as $n\to \infty$. First of all, \eqref{j_lower} and~\eqref{j_upper} imply \[ j_{\mu_n}(\tau_n;f_n) = \mathcal{J}_{\mu_n}( \tau_n\varphi_1 + u_n^\top ; f_n ) \to \mathcal{J}_{\mu_0}( \tau_0\varphi_1 + w^\top ; f_0 ) = j_{\mu_0}(\tau_0;f_0) . \] Combining this result with $\tau_n\to \tau_0$, $\mu_n\to \mu_0$, $f_n\to f_0$ in $D^{-1,p'}(\mathbb{R}^N)$, $u_n^\top \rightharpoonup w^\top$ weakly in $D^{1,p}(\mathbb{R}^N)$, and $u_n^\top \to w^\top$ strongly in $L^p(\mathbb{R}^N; m)$, we arrive at \[ \left\| \tau_n\varphi_1 + u_n^\top \right\|_{ D^{1,p}(\mathbb{R}^N) } \to \left\| \tau_0\varphi_1 + w^\top \right\|_{ D^{1,p}(\mathbb{R}^N) } \quad\mbox{as } n\to \infty . \] Thus, the uniform convexity of the standard norm on $D^{1,p}(\mathbb{R}^N)$ forces $\tau_n\varphi_1 + u_n^\top \to \tau_0\varphi_1 + w^\top$ strongly in $D^{1,p}(\mathbb{R}^N)$. Our claim now follows as $\tau_n\to \tau_0$. \endgroup \end{remark} % Obviously, if the function $j_{\lambda}\colon \mathbb{R}\to \mathbb{R}$ has a local minimum at some point $\tau_0\in \mathbb{R}$, and $u_0^\top$ is a global minimizer for the functional $u^\top \mapsto \mathcal{J}_{\lambda}( \tau_0\varphi_1 + u^\top )$ on $D^{1,p}(\mathbb{R}^N)^\top$, then $u_0 = \tau_0\varphi_1 + u_0^\top$ is a local minimizer for $\mathcal{J}_{\lambda}$ on $D^{1,p}(\mathbb{R}^N)$ and thus a weak solution to problem~\eqref{e:BVP.l}. Our next lemma displays a similar result if $j_{\lambda}$ has a {\it local maximum\/} at $\tau_0\in \mathbb{R}$; it claims that $\beta_{\lambda}$ in~\eqref{def.b_lam} is a critical value of $\mathcal{J}_{\lambda}$. %%%%% Criticality of the Maximin Point (Lemma) \begin{lemma}\label{lem-Crit-Value} Let\/ $0\leq \lambda\leq \Lambda_\infty - \eta$ and\/ $f\in D^{-1,p'}(\mathbb{R}^N)$. Assume that the function $j_{\lambda}\colon \mathbb{R}\to \mathbb{R}$ attains a local maximum $\beta_{\lambda}$ at some point $\tau_0\in \mathbb{R}$. Then there exists $u_0^\top\in D^{1,p}(\mathbb{R}^N)^\top$ such that\/ $u_0^\top$ is a global minimizer for the functional\/ $u^\top \mapsto \mathcal{J}_{\lambda}( \tau_0\varphi_1 + u^\top )$ on $D^{1,p}(\mathbb{R}^N)^\top$, $u_0 = \tau_0\varphi_1 + u_0^\top$ is a critical point for $\mathcal{J}_{\lambda}$, and $\mathcal{J}_{\lambda}(u_0) = \beta_{\lambda}$. % \end{lemma} \begin{proof} Given an arbitrary numerical sequence $\{ \tau_n\}_{n=1}^\infty$ with $\tau_n\to \tau_0$ in~$\mathbb{R}$ as $n\to \infty$ and $\tau_n\not= \tau_0$ for all $n\geq 1$, we can deduce from Remark~\ref{rem-Cont-Min} that this sequence contains a subsequence denoted again by $\{ \tau_n\}_{n=1}^\infty$, such that for each $n=0,1,2,\dots$, $u_n^\top$ is a global minimizer for the functional $u^\top \mapsto \mathcal{J}_{\lambda}( \tau_n\varphi_1 + u^\top )$ and $u_n^\top \to u_0^\top$ strongly in $D^{1,p}(\mathbb{R}^N)$ as $n\to \infty$. It follows that % \begin{equation} \begin{split} \mathcal{J}_{\lambda}( \tau_n\varphi_1 + u_n^\top ) - \mathcal{J}_{\lambda}( \tau_0\varphi_1 + u_n^\top ) & \leq \mathcal{J}_{\lambda}( \tau_n\varphi_1 + u_n^\top ) - \mathcal{J}_{\lambda}( \tau_0\varphi_1 + u_0^\top )\\ &= j_{\lambda}(\tau_n) - j_{\lambda}(\tau_0) \leq 0 \end{split} \label{c:J_upper} \end{equation} % for all integers $n\geq 1$ sufficiently large; again, we may assume it for all $n\geq 1$. On the other hand, denoting \[ \phi_n(s)\eqdef \tau_0\varphi_1 + u_n^\top + s(\tau_n - \tau_0) \varphi_1 \quad\mbox{for }\ 0\leq s\leq 1 ;\ n\geq 1 , \] we have % \begin{eqnarray*} & \mathcal{J}_{\lambda}( \tau_n\varphi_1 + u_n^\top ) - \mathcal{J}_{\lambda}( \tau_0\varphi_1 + u_n^\top ) = (\tau_n - \tau_0) \int_0^1 \left\langle \mathcal{J}_{\lambda}^\prime (\phi_n(s)) ,\, \varphi_1 \right\rangle \,{\rm d}s \end{eqnarray*} % where % \begin{align*} \left\langle \mathcal{J}_{\lambda}^\prime (\phi_n(s)) ,\, \varphi_1 \right\rangle & = \int_{\mathbb{R}^N} |\nabla \phi_n(s)|^{p-2}\, \nabla \phi_n(s) \cdot \nabla\varphi_1 \,{\rm d}x\\ & \quad - \lambda \int_{\mathbb{R}^N} |\phi_n(s)|^{p-2}\, \phi_n(s)\, \varphi_1\, m \,{\rm d}x - \int_{\mathbb{R}^N} f\varphi_1 \,{\rm d}x . \end{align*} % Since $\phi_n(s)\to u_0 = \tau_0\varphi_1 + u_0^\top$ strongly in $D^{1,p}(\mathbb{R}^N)$ and uniformly for $0\leq s\leq 1$, we arrive at % \begin{equation} \begin{split} & (\tau_n - \tau_0)^{-1} \left[ \mathcal{J}_{\lambda}( \tau_n\varphi_1 + u_n^\top ) - \mathcal{J}_{\lambda}( \tau_0\varphi_1 + u_n^\top ) \right] \\ & \longrightarrow\; \left\langle \mathcal{J}_{\lambda}^\prime (u_0) ,\, \varphi_1 \right\rangle = \zeta_0\, \| \varphi_1\|_{ L^p(\mathbb{R}^N; m) } = \zeta_0 \quad\mbox{as } n\to \infty , \end{split} \label{c:J_lower} \end{equation} % where % \begin{align*} \left\langle \mathcal{J}_{\lambda}^\prime (u_0) ,\, \varphi_1 \right\rangle & = \int_{\mathbb{R}^N} |\nabla u_0|^{p-2}\, \nabla u_0 \cdot \nabla\varphi_1 \,{\rm d}x\\ & \quad - \lambda \int_{\mathbb{R}^N} |u_0|^{p-2} u_0\varphi_1\, m \,{\rm d}x - \int_{\mathbb{R}^N} f\varphi_1 \,{\rm d}x \end{align*} and $\zeta_0\in \mathbb{R}$ is the Lagrange multiplier given by $\mathcal{J}_{\lambda}^\prime (u_0) = \zeta_0\, m\, \varphi_1^{p-1}$. Finally, if we choose $\tau_n$ such that the sign of $(\tau_n - \tau_0)$ does not change for all $n=1,2,\dots$, then \eqref{c:J_upper} and~\eqref{c:J_lower} yield $\zeta_0\leq 0$ if $\mathop{\rm sgn}(\tau_n - \tau_0) = 1$, and $\zeta_0\geq 0$ if $\mathop{\rm sgn}(\tau_n - \tau_0) = -1$. Since both alternatives are possible, we conclude that $\zeta_0 = 0$ which shows $\mathcal{J}_{\lambda}^\prime (u_0) = 0$, i.e., $u_0$ is a weak solution to problem~\eqref{e:BVP.l_1} as desired. In particular, $\mathcal{J}_{\lambda}(u_0)$ is a critical value of $\mathcal{J}_{\lambda}$. \end{proof} %%%%% Criticality of the Maximin Point (Remark) \begin{remark}\label{rem-Crit-Value} \begingroup\rm As an easy consequence of \eqref{c:J_upper}, \eqref{c:J_lower} in the proof of Lemma~\ref{lem-Crit-Value}, we conclude that the function $j_{\lambda}\colon \mathbb{R}\to \mathbb{R}$ is differentiable at $\tau_0$ with $j_{\lambda}^\prime (\tau_0) = 0$. \endgroup \end{remark} % \subsection{Rest of the proof of Theorem \ref{thm-Exist:p<2}} \label{ss:Fredh_Mount} We deduce from Lemma~\ref{lem-Saddle_Geom} that there exist $a,b\in \mathbb{R}$ such that $a<0 0$ and $\varrho\equiv \varrho(f^{\#}) > 0$ such that also with $f = f^{\#} + \zeta\, m\varphi_1^{p-1}$ we have % \begin{eqnarray*} & \max\{ j_{\lambda}(a;f) ,\, j_{\lambda}(b;f) \} < j_{\lambda}(0;f) \end{eqnarray*} % for all $\lambda\in (\lambda_1 - \delta, \lambda_1 + \delta)$ and all $\zeta\in (-\varrho,\varrho)$. Now we can apply Lemma~\ref{lem-Crit-Value} to conclude that the functional $\mathcal{J}_{\lambda}(\,\cdot\, ;f)$ possesses a critical point $u_1 = \tau_1\varphi_1 + u_1^\top$, with some $\tau_1\in (a,b)$ and $u_1^\top\in D^{1,p}(\mathbb{R}^N)^\top$. This proves Theorem \ref{thm-Exist:p<2}. \begin{proof}[Proof of Remark~\ref{rem-Exist:p<2}] If $\lambda < \lambda_1$ then we have $j_{\lambda}(\tau;f) \to +\infty$ as $|\tau|\to \infty$. Consequently, for $\lambda\in (\lambda_1 - \delta, \lambda_1)$ and $\zeta\in (-\varrho,\varrho)$, the continuous function $j_{\lambda}(\,\cdot\, ;f) \colon \mathbb{R}\to \mathbb{R}$ possesses also a local minimizer in each of the intervals $(-\infty, \tau_1)$ and $(\tau_1, \infty)$, say, $\tau_2$ and $\tau_3$, respectively. Our definition of $j_{\lambda}(\,\cdot\, ;f)$ now shows that $u_2 = \tau_2\varphi_1 + u_2^\top$ and $u_3 = \tau_3\varphi_1 + u_3^\top$ are local minimizers for $\mathcal{J}_{\lambda}(\,\cdot\, ;f)$, with some $u_2^\top, u_3^\top\in D^{1,p}(\mathbb{R}^N)^\top$, as claimed. \end{proof} %%%%% APPENDIX: ASYMPTOTICS OF THE FIRST EIGENFUNCTION \section{Appendix: Asymptotics of the eigenfunction $\varphi_1$} \label{s:Asymptotic} To determine the asymptotic behavior of the first eigenfunction $\varphi_1$ of the $p$-Laplacian $\Delta_p$ on $\mathbb{R}^N$ subject to a weight $m(|x|)$, for $10} on the weight $m$ as follows: %%%%%%%%%% MAIN HYPOTHESIS (weaker) %%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{enumerate} \renewcommand{\labelenumi}{({\bf H'})} % \item \makeatletter \def\@currentlabel{{H'}} \label{hyp:m=0} \makeatother There exist constants $\delta > 0$ and $C>0$ such that % \begin{equation} 0\leq m(r)\leq \frac{C}{ (1+r)^{p+\delta} } \quad\mbox{for almost all }\ 0\leq r < \infty , \label{ineq:m=0} \end{equation} % and $m\not\equiv 0$ in $\mathbb{R}_+$. \end{enumerate} % Under this hypothesis, we are able to establish the following asymptotic behavior of $u(r)$ and $u'(r)$ as $r\to \infty$. % %%%%% PROPOSITION: ASYMPTOTICS OF THE FIRST EIGENFUNCTION %%%%%%% % \begin{proposition}\label{prop-Asympt} There exists a constant $c > 0$ such that % \begin{gather} \lim_{r\to \infty} \left( u(r)\, r^{ \frac{N-p}{p-1} } \right) = c , \label{e:u.infty} \\ \lim_{r\to \infty} \left( u'(r)\, r^{ \frac{N-1}{p-1} } \right) = - \textstyle\frac{N-p}{p-1}\, c . \label{e:u'.infty} \end{gather} % \end{proposition} % For the related Cauchy problem, % \begin{equation} \label{ev:u:rel} - \Delta_p u(|x|) = f(u(|x|)) \;\mbox{ for } x\in \mathbb{R}^N ; \qquad u(|x|)\to 0 \;\mbox{ as } |x|\to \infty , \end{equation} % with $f(u)\geq 0$ for $u>0$ sufficiently small, the inequalities $$ u(r)\, r^{ \frac{N-p}{p-1} } \geq c_1 > 0 \quad\mbox{and }\quad - u'(r)\, r^{ \frac{N-1}{p-1} } \geq c_2 > 0 $$ for all sufficiently large $r>0$ (with some constants $c_1$ and $c_2$) have been established in the work of {\sc Ni} and {\sc Serrin} \cite[Theorem 6.1]{NiSerrin}. Their method of proof applies also to our case. % For the inequality % \begin{equation} \label{ev:u:ineq} - \Delta_p u\leq m(|x|)\, u^{p-1} \quad\mbox{for } x\in \mathbb{R}^N ; \quad u(x)\to 0 \;\mbox{ as } |x|\to \infty , \end{equation} % with $u(x)$ not necessarily radially symmetric, $u(x) > 0$, but with the weight $m(r)$ decaying at infinity faster than ours, an upper estimate on the decay of $u$ at infinity can be found in {\sc Fleckinger}, {\sc Harrell} and {\sc de Th\'elin} \cite[Theorem IV.2]{FHdT}. In the proof of Proposition~\ref{prop-Asympt} we need a few auxiliary results. The Cauchy problem \eqref{ev:u} is equivalent to % \begin{equation} \label{ev:u.rad} \begin{gathered} {}- (|u'|^{p-2} u')' - \frac{N-1}{r}\, |u'|^{p-2} u' = m(r)\, u^{p-1} \quad\mbox{for } r>0 ; \\ u'(r)\to 0 \mbox{ as } r\to 0 \quad\mbox{and }\quad u(r) \to 0 \mbox{ as } r\to \infty . \end{gathered} \end{equation} % This problem can be rewritten as % \begin{equation} \label{ev:r.u.rad} \begin{gathered} {}- ( r^{N-1}\, |u'|^{p-2} u' )' = m(r)\, r^{N-1}\, u^{p-1} \quad\mbox{for } r>0 ; \\ u'(r)\to 0 \mbox{ as } r\to 0 \quad\mbox{and }\quad u(r) \to 0 \mbox{ as } r\to \infty . \end{gathered} \end{equation} % We reduce this second-order differential equation to a first-order equation by introducing the Riccati-type transformation % \begin{equation} \label{u:Riccati} U(r)\eqdef {}- r^{p-1} \Big| \frac{ u'(r) }{ u(r) } \Big|^{p-2} \frac{ u'(r) }{ u(r) } \quad\mbox{for } r>0 ,\quad U(0)\eqdef 0 . \end{equation} % By~\eqref{ev:r.u.rad}, the function $r\mapsto r^{ \frac{N-1}{p-1} } u'(r)$ is nonincreasing for $0 < r < \infty$ which implies $u'(r)\leq 0$ for all $r>0$, and therefore also $U(r)\geq 0$. Hence, for $r>0$, % \begin{align*} U'(r) & = - (p-1) r^{p-2} \big| \frac{u'}{u} \big|^{p-2} \frac{u'}{u} - (p-1) r^{p-1} \big| \frac{u'}{u} \big|^{p-2} \big[ \frac{u''}{u} - \big(\frac{u'}{u}\big)^2 \big] \\ & = \frac{p-1}{r}\, U(r) - r^{p-1}\, \frac{ ( |u'|^{p-2} u' )' }{ |u|^{p-2} u } + \frac{p-1}{r}\, U(r)^{ \frac{p}{p-1} } . \end{align*} % Inserting the second derivative expression from equation \eqref{ev:u.rad}, we arrive at \[ U'(r) = - \frac{N-p}{r}\, U(r) + \frac{p-1}{r}\, U(r)^{ \frac{p}{p-1} } + m(r)\, r^{p-1} . \] This is a differential equation for the unknown function $U$ which we rewrite as % \begin{equation} \label{eq:U} U'(r) = \frac{p-1}{r}\, U(r) \Big( U(r)^{ \frac{1}{p-1} } - \frac{N-p}{p-1} \Big) + m(r)\, r^{p-1} \quad\mbox{for } r>0 . \end{equation} % An upper bound for $U(r)$ is obtained first: %%%%% LEMMA - Upper Bound for U(r) \begin{lemma}\label{lem-UpperBound} We have % \begin{equation} \label{e:U.Upper} U(r)\leq c_{N,p}\eqdef \big(\frac{N-p}{p-1}\big)^{p-1} \quad\mbox{for all } r\geq 0 . \end{equation} \end{lemma} \begin{proof} Clearly, by \eqref{u:Riccati}, the function $U\colon \mathbb{R}_+\to \mathbb{R}$ is continuous and, by \eqref{eq:U}, it is differentiable almost everywhere with the derivative $U'$ being locally bounded. Now, in contradiction with \eqref{e:U.Upper}, suppose that there exists a number $r_0\geq 0$ such that $U(r_0) > c_{N,p}$. Let $$ r_1\eqdef \sup\{ r'\colon r'\geq r_0 \,\mbox{ and }\, U(r) > c_{N,p} \;\mbox{ for all }\; r_0\leq r\leq r' \} . $$ Next we show that $r_1 = \infty$. Indeed, equation \eqref{eq:U} with $U(r) > c_{N,p}$ and $m(r)\geq 0$ for $r_0\leq r < r_1$ implies $U'(r) > 0$. This shows that the function $U(r)$ is strictly increasing for $r_0\leq r < r_1$. Consequently, $r_1 < \infty$ would yield $U(r_1) = c_{N,p} < U(r_0) < U(r_1)$ which is impossible. Hence, there is a constant $\gamma > 0$ such that the expression inside the parenthesis in eq.~\eqref{eq:U} satisfies % \[ U(r)^{ \frac{1}{p-1} } - \frac{N-p}{p-1} \geq \gamma\, U(r)^{ \frac{1}{p-1} } \quad\mbox{for all } r\geq r_0 . \] % Applying this inequality to equation \eqref{eq:U} we obtain % \[ U'(r)\geq \frac{p-1}{r}\, \gamma\, U(r)^{ \frac{p}{p-1} } \quad\mbox{for all } r\geq r_0 . \] % We integrate this inequality over the interval $[r_0,r]$ to get $$ U(r_0)^{ - \frac{1}{p-1} } - U(r)^{ - \frac{1}{p-1} } \geq \gamma\, \log (r/r_0) \quad\mbox{for all } r\geq r_0 . $$ Recalling $U(r) > 0$ and letting $r\to \infty$, we arrive at $U(r_0)^{ - \frac{1}{p-1} } \geq +\infty$, which is a contradiction. Inequality \eqref{e:U.Upper} is proved. \end{proof} Define the function % \begin{equation} \label{def:a(r)} a(r)\eqdef \frac{p-1}{r} \Big( \frac{N-p}{p-1} - U(r)^{ \frac{1}{p-1} } \Big) \quad\mbox{for } r>0 . \end{equation} % Note that $a(r)\geq 0$ by Lemma~\ref{lem-UpperBound}, and $$ a(r) = \frac{N-p}{r} + (p-1) \,\frac{u'(r)}{u(r)} = (p-1) \,\frac{ {\rm d} }{ {\rm d}r } \log\left( u(r)\, r^{ \frac{N-p}{p-1} } \right) . $$ We substitute this function into eq.~\eqref{eq:U} and use integrating factor to integrate it over any interval $[r_0,r]$ with $r_0 > 0$ fixed and $r\geq r_0$. We thus obtain % \begin{equation} \label{eq:U(r)} U(r) - U(r_0)\, e^{ - \int_{r_0}^r a(s) \,{\rm d}s } = \int_{r_0}^r m(s)\, s^{p-1}\, e^{ - \int_s^r a(t) \,{\rm d}t } \,{\rm d}s . \end{equation} % Furthermore, we introduce the abbreviation % \begin{equation} \label{def:A(r)} A(r)\eqdef \int_{r_0}^r a(s) \,{\rm d}s = (p-1)\, \log \frac{ u(r)\, r^{ \frac{N-p}{p-1} } } { u(r_0)\, r_0^{ \frac{N-p}{p-1} } } \quad\mbox{for } r\geq r_0 . \end{equation} % %%%%% LEMMA - Lower Bound for U(r) \begin{lemma}\label{lem-LowerBound} We have $a(r)\geq 0$ for all $r>0$ and % \begin{equation} \label{e:U.Lower} \int_{r_0}^\infty a(r) \,{\rm d}r < \infty \quad\mbox{for every } r_0 > 0 . \end{equation} % \end{lemma} % \begin{proof} The function $A(r)$ is nondecreasing for $r_0\leq r < \infty$. Now, suppose that $\lim_{r\to \infty} A(r) = +\infty$. From equation \eqref{eq:U(r)} we deduce % \begin{equation} \label{ineq:U(r)} 0 \leq U(r) - U(r_0)\, e^{- A(r)} \leq \int_{r_0}^\infty m(s)\, s^{p-1}\, e^{ - ( A(r) - A(s) ) } \,{\rm d}s \quad\mbox{for } r\geq r_0 . \end{equation} % Due to our hypothesis \eqref{hyp:m=0}, we are allowed to apply Lebesgue's dominated convergence theorem to the last integral to obtain, as $r\to \infty$, $0\leq \lim_{r\to \infty} U(r)\leq 0$, i.e., $\lim_{r\to \infty} U(r) = 0$. This shows that, given any number $\eta$ such that $0 < \eta < N-p$, there exists a number $r_\eta\geq r_0$ such that $$ a(r) = \frac{p-1}{r} \Big( \frac{N-p}{p-1} - U(r)^{ \frac{1}{p-1} } \Big) \geq \frac{N - p - \eta}{r} \quad\mbox{for all } r\geq r_\eta . $$ Since $r_0$ is arbitrary, $r_0 > 0$, we may take $r_0 = r_\eta$. Upon integration, we get % \begin{equation} \label{ineq:A(r)} A(r)\geq (N - p - \eta) \int_{r_0}^r \frac{ {\rm d}s }{s} = \log \left( (r/r_0)^{N - p - \eta} \right) \quad\mbox{for all } r\geq r_0 . \end{equation} % We apply inequalities \eqref{ineq:m=0} and \eqref{ineq:A(r)} to equation \eqref{eq:U(r)} to obtain for all $r\geq 0$, % \begin{equation} \label{est:|U|} \begin{split} U(r)&\leq U(r_0) \big(\frac{r}{r_0}\big)^{ - (N - p - \eta) } + C \int_{r_0}^r \frac{ s^{p-1} }{ (1+s)^{p+\delta} } \big(\frac{r}{s}\big)^{ - (N - p - \eta) } \,{\rm d}s \\ & \leq U(r_0) \big(\frac{r}{r_0}\big)^{ - (N - p - \eta) } + \frac{ C\, r^{ - (N - p - \eta) } }{ N - p - \eta - \delta } \left( r^{ N - p - \eta - \delta } - r_0^{ N - p - \eta - \delta } \right) . \end{split} \end{equation} % Note that in inequality~\eqref{ineq:m=0}, the constant $\delta > 0$ may be chosen arbitrarily small; we choose it such that $0 < \delta < N - p - \eta$. Hence, \eqref{est:|U|} yields $$ U(r)\leq C_0\, r^{-\delta} \quad\mbox{for all } r\geq r_0 , $$ where $C_0 > 0$ is a constant. With our definition of $U$ we have equivalently $$ - \frac{u'(r)}{u(r)} \leq C_0^{ \frac{1}{p-1} }\, r^{ - 1 - \frac{\delta}{p-1} } \quad\mbox{for all } r\geq r_0 . $$ Upon integration we get $$ {}- \log \frac{u(r)}{u(r_0)} \leq C_0' \big( r_0^{ - \frac{\delta}{p-1} } - r^{ - \frac{\delta}{p-1} } \big) \quad\mbox{for all } r\geq r_0 , $$ where $C_0'> 0$ is a constant. Recalling $u(r)\to 0$ as $r\to \infty$, we arrive at $+\infty\leq C_0'\, r_0^{ - \frac{\delta}{p-1} }$ which is absurd. The proof of the lemma is complete. \end{proof} Finally, we determine the limit of the function $U$ at infinity. %%%%% LEMMA - Limit of U(r) \begin{lemma}\label{lem-U.Limit} We have % \begin{equation} \label{e:U.Limit} \lim_{r\to \infty} U(r) = c_{N,p} = \big(\frac{N-p}{p-1}\big)^{p-1} . \end{equation} \end{lemma} % \begin{proof} The limit \[ A(\infty)\eqdef \lim_{r\to \infty} A(r) = \int_{r_0}^\infty a(r) \,{\rm d}r \] exists and satisfies $0\leq A(\infty) < \infty$, by \eqref{def:A(r)} and~\eqref{e:U.Lower}. We apply this fact and hypothesis \eqref{hyp:m=0} to equation \eqref{eq:U(r)} to obtain the existence of the limit % \begin{equation} \label{lim:U(r)} U(\infty)\eqdef \lim_{r\to \infty} U(r) = U(r_0)\, e^{- A(\infty)} + \int_{r_0}^\infty m(s)\, s^{p-1}\, e^{ - ( A(\infty) - A(s) ) } \,{\rm d}s , \end{equation} % using Lebesgue's dominated convergence theorem. We have $U(\infty)\leq c_{N,p}$ by~\eqref{e:U.Upper}. However, if $U(\infty) < c_{N,p}$ then there exist constants $\gamma > 0$ and $r_1\geq r_0$ such that $$ a(r) = \frac{p-1}{r} \Big( \frac{N-p}{p-1} - U(r)^{ \frac{1}{p-1} } \Big) \geq \frac{\gamma}{r} \quad\mbox{for all } r\geq r_1 . $$ But this inequality contradicts~\eqref{e:U.Lower}. We have proved~\eqref{e:U.Limit}. \end{proof} Finally, we are ready to derive formulas \eqref{e:u.infty} and~\eqref{e:u'.infty}. \begin{proof}[Proof of Proposition~\ref{prop-Asympt}] We combine \eqref{def:A(r)} and \eqref{e:U.Lower} to conclude that the limit $$ c_0\eqdef \lim_{r\to \infty} \log \Big( { u(r)\, r^{ \frac{N-p}{p-1} } } \Big\slash { u(r_0)\, r_0^{ \frac{N-p}{p-1} } } \Big) $$ exists and satisfies $0\leq c_0 < \infty$. The desired formula \eqref{e:u.infty} follows immediately with $c\eqdef e^{c_0}\, u(r_0)\, r_0^{ \frac{N-p}{p-1} } > 0$. % The convergence formula \eqref{e:U.Limit} reads % \begin{equation} \label{e:u'/u.infty} {}- r \,\frac{u'(r)}{u(r)} \,\longrightarrow\, \frac{N-p}{p-1} \quad\mbox{as } r\to \infty . \end{equation} % We combine this result with \eqref{e:u.infty} to get~\eqref{e:u'.infty}. % The proposition is proved. \end{proof} \subsection*{Acknowledgment} This work was supported in part by le Minist\`ere des Affaires \'Etrang\`eres (France) and the German Academic Exchange Service (DAAD, Germany) within the exchange program ``PROCOPE''. A part of this research was performed when P.~T.\ was a visiting professor at CEREMATH, Universit\'e Toulouse~1 -- Sciences Sociales, Toulouse, France. A part of the research reported here was performed when Peter Tak\'a\v{c} was a visiting professor at CEREMATH, Universit\'e Toulouse~1 -- Sciences Sociales, Toulouse, France. The authors express their thanks to an anonymous referee for careful reading of the manuscript and a couple of pertinent references. \begin{thebibliography}{00} \bibitem{Anane-1} A. Anane, {\it Simplicit\'e et isolation de la premi\`ere valeur propre du $p$-laplacien avec poids}, Comptes Rendus Acad. Sc. Paris, S\'erie I, {\bf 305} (1987), 725--728. \bibitem{BergSchecht} M.~S. Berger and M.~Schechter, {\it Embedding theorems and quasilinear elliptic boundary value problems for unbounded domains}, Trans. Amer. Math. Soc., {\bf 172} (1972), 261--278. \bibitem{Drabek-1} P. Dr\'abek, {\sl ``Solvability and Bifurcations of Nonlinear Equations''}, Pitman Research Notes in Mathematics Series, Vol.~{\bf 264}. Longman Scientific {\&} Technical, U.K., 1992. \bibitem{DrabGirgMan} P. Dr\'abek, P. Girg, and R.~F. Man\'asevich, {\it Generic Fredholm alternative\--type results for the one\--dimensional $p$-Laplacian}, Nonlinear Diff. Equations and Appl., {\bf 8} (2001), 285--298. \bibitem{DrabHolub} P. Dr\'abek and G. Holubov\'a, {\it Fredholm alternative for the $p$-Laplacian in higher dimensions}, J. Math. Anal. Appl., {\bf 263} (2001), 182--194. \bibitem{FGdT} J. Fleckinger, J.-P. Gossez, and F. de~Th\'elin, {\it Antimaximum principle in $\mathbb{R}^N$: local versus global}, J. Differential Equations, {\bf 196} (2004), 119--133. \bibitem{FHdT} J.~Fleckinger, E.~M. Harrell and F.~de Th\'elin, {\it Asymptotic behavior of solutions for some nonlinear partial differential equations on unbounded domains}, Electr. J.~Diff. Equations {\bf 77} (2001), 1--14. \bibitem{FMST} J. Fleckinger, R.~F. Man\'asevich, N.~M. Stavrakakis, and F. de~Th\'elin, {\it Principal eigenvalues for some quasilinear elliptic equations in $\mathbb{R}^N$}, Advances Diff. Equations, {\bf 2} (1997), 981--1003. \bibitem{FleckTakac-1} J. Fleckinger and P. Tak\'a\v{c}, {\it An improved Poincar\'e inequality and the $p$-Laplacian at resonance for $p>2$}, Advances Diff. Equations, {\bf 7}(8) (2002), 951--971. \bibitem{FucikNSS} S. Fu\v{c}\'{\i}k, J. Ne\v{c}as, J. Sou\v{c}ek, and V. Sou\v{c}ek, {\sl ``Spectral Analysis of Nonlinear Operators''}, Lecture Notes in Mathematics, Vol.~{\bf 346}. Springer\--Verlag, New York\--Berlin\--Hei\-del\-berg, 1973. \bibitem{GilbargTrud} D.~Gilbarg and N.~S. Trudinger, {\sl ``Elliptic Partial Differential Equations of Second Order''}, Springer-Verlag, New York--Berlin--Heidelberg, 1977. \bibitem{Kato} T. Kato, {\sl ``Perturbation Theory for Linear Operators''}, in {\em Grundlehren der ma\-the\-ma\-ti\-schen Wissenschaften}, Vol.~{\bf 132}. Springer\--Verlag, New York\--Berlin\--Hei\-del\-berg, 1980. \bibitem{Kufner} A. Kufner, {\sl ``Weighted Sobolev Spaces''}, John Wiley {\&} Sons Ltd., New York, 1985. \bibitem{Lindqvist} P. Lindqvist, {\it On the equation $\mathrm{div}(\vert\nabla u\vert^{p-2} \nabla u)$ $+$ $\lambda \vert u\vert^{p-2} u$ $= 0$}, Proc. Amer. Math. Soc., {\bf 109}(1) (1990), 157--164. \bibitem{ManTakac} R.~F. Man\'asevich and P. Tak\'a\v{c}, {\it On the Fredholm alternative for the $p$-Laplacian in one dimension}, Proc. London Math. Soc., {\bf 84} (2002), 324--342. \bibitem{NiSerrin} W.-M. Ni and J.~B. Serrin, {\it Existence and nonexistence theorems for ground states of quasilinear partial differential equations. The anomalous case.} Rome, Accad. Naz. dei Lincei, Atti dei Convegni {\bf 77} (1986), 231--257. \bibitem{PinoDrabMan} M.~A. del~Pino, P. Dr\'abek, and R.~F. Man\'asevich, {\it The Fredholm alternative at the first eigenvalue for the one\--dimensional $p$-Laplacian}, J. Differential Equations, {\bf 151} (1999), 386--419. \bibitem{Rabin} P.~H. Rabinowitz, {\sl ``Minimax Methods in Critical Point Theory with Applications to Differential Equations''}, CBMS Series in Mathematics, Vol.~{\bf 65}, Amer. Math. Soc., Providence, R.I., 1986. \bibitem{Schecht-1} M. Schechter, {\it On the essential spectrum of an elliptic operator perturbed by a potential}, J. Analyse Math., {\bf 22} (1969), 87--115. \bibitem{Schecht-2} M. Schechter, {\sl ``Spectra of Partial Differential Operators''}, North\--Holland Publ. Co., New York\--Amsterdam\--Oxford, 1971. \bibitem{StavrThelin} N.~M. Stavrakakis and F. de~Th\'elin, {\it Principal eigenvalues and antimaximum principle for some quasilinear elliptic equations in $\mathbb{R}^N$}, Math. Nachrichten, {\bf 212} (2000), 155--171. \bibitem{Takac-1} P. Tak\'a\v{c}, {\it On the Fredholm alternative for the $p$-Laplacian at the first eigenvalue}, Indiana Univ. Math. J., {\bf 51}(1) (2002), 187--237. \bibitem{Takac-2} P. Tak\'a\v{c}, {\it On the number and structure of solutions for a Fredholm alternative with the $p$-Laplacian}, J. Differential Equations, {\bf 185} (2002), 306--347. \bibitem{Tolksdorf-1} P. Tolksdorf, {\it On the Dirichlet problem for quasilinear equations in domains with conical boundary points}, Comm. P.D.E., {\bf 8}(7) (1983), 773--817. \bibitem{Vazquez} J.~L. V\'azquez, {\it A strong maximum principle for some quasilinear elliptic equations}, Appl. Math. Optim., {\bf 12} (1984), 191--202. \bibitem{Yosida} K. Yosida, {\sl ``Functional Analysis''}, 6th Ed., in {\em Grundlehren der ma\-the\-ma\-ti\-schen Wissenschaften}, Vol.~{\bf 123}. Springer\--Verlag, New York\--Berlin\--Hei\-del\-berg, 1980. \end{thebibliography} \end{document}