\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2004(2004), No. 140, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2004 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2004/140\hfil A linear model] {A linear model for the dynamics of fish larvae} \author[N. Ghouali \& T. M. Touaoula \hfil EJDE-2004/140\hfilneg] {Noureddine Ghouali, Tarik Mohamed Touaoula} % in alphabetical order \address{Noureddine Ghouali \hfill\break Department of Mathematics, University of Tlemcen \\ BP 119, Tlemcen 13000, Algeria} \email{n\_ghouali@mail.univ-tlemcen.dz} \address{Tarik Mohamed Touaoula \hfill\break Department of Mathematics, University of Tlemcen \\ BP 119, Tlemcen 13000, Algeria} \email{touaoulatarik@yahoo.fr} \date{} \thanks{Submitted July 10, 2004. Published November 26, 2004.} \subjclass[2000]{35G10} \keywords{Parabolic equations; characteristic curve; dynamics of the fish larvae} \begin{abstract} We consider a linear model for the growth and the dispersion of fish larvae of certain species. Dispersion is modeled as entailed by the combination of transport and vertical diffusion. We generalize the work of Boushaba, Arino and Boussouar \cite{Bous}, \cite{Bous1} in the sense that horizontal velocities are uniform throughout the water column; but we deal with vertical component velocity and vertical diffusion depending on the space variables and on time, which was not the case in \cite{Bous}, \cite{Bous1}. This new vision leads us to non-autonomous problems, the aim of this work is to show the existence, uniqueness, and positivity of solutions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{definition}[theorem]{Definition} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \section{Introduction.}\label{sec:s0} In this paper, we introduce a mathematical model for the dynamics of the fish larvae of certain species. This model takes into account both the physical and biological effects. For the physical part, the model considered here stresses two main factors: 1) Transport entailed by the currents: the currents are computed using Navier-Stokes equations and are introduced in the equations of the larvae as functions of space and time with sufficient regularity to allow existence and uniqueness of stream lines. 2) Vertical diffusion induced by vertical mixing in the upper part of the water column. For the biological part the main parameters are a function which gives the instantaneous rate of progression within the stages from the egg fertilization to the end of the yolk-sac period. The model is expressed in a generality which encompasses a large variety of situations. The motivation at the origin of this work is the study of the dynamics of the Bay of Biscay anchovy \cite{Arino}, that is to say, a region of the Atlantic ocean close to the French coast, bordered eastward by the continental shelf. The Bay of Biscay goes from the Northern Spanish coast up to about 46$^{0}$ in ``latitude''. In this region at the end of May , a thermocline establishes itself: the top of the thermocline is roughly at the same distance $z_{therm}$ from the surface. The thermocline divides the water column into three regions: the upper part, from the surface to $% z_{therm}$ deep, the so called mixed layer. This is where the larvae grow. Below is the thermocline, a rather thin layer where the temperature loses rapidly a few degrees and the vertical mixing coefficient is negligibly small. Below the thermocline is another well mixed layer where the temperature is only slowly changing with depth. This region is of no concern to us for the rest of the study, which will be confined to the mathematical issues related to the above mentioned model. The domain of study has notably been restricted to the upper layer, the so called mixed layer of the water column. The purpose of this work is to perform a mathematical analysis of the model, notably, show existence, uniqueness and positivity of solutions. In a previous work coauthored by Boushaba, Boussouar; and Arino \cite {Bous1}, a simplified version of the model of the phytoplankton had been investigated. It was assumed that the diffusion rate and the vertical current does not depend on time and the horizontal current is uniform throughout the water column. Under this assumption, it was possible to uncouple the vertical and the horizontal components in the following sense: the study was restricted to each of the horizontal streamlines: the restriction to such a line reduces the functions of time horizontal components to functions of time so that the full model reduces on such a line to a diffusion equation in the vertical variable coupled with a first order growth equation. Our purpose in this work is to extend this method to the more realistic situation where the diffusion rate and the vertical current depends also on time and the horizontal current is uniform throughout the water column. The idea we exploit here is the same in the first time, that is to uncouple the vertical and the horizontal components but the restriction on such a line gives equations of parabolic type with time dependent coefficients. The study of such equations takes up the main part in this work. Time dependence is dealt with using results on time-dependent evolution equations by Acquistapace \cite{Ac1,Ac,Ac2} and several other authors (Lunardi \cite{Lunardi}, Tanabe \cite{Tana}). A valuable source of information of this work was a monograph by Tanabe \cite{Tana}. The main result of this part, stated in theorem \ref{th:harnack1}, ensures that, under some conditions on the coefficients of the equation, the Cauchy problem associated with the equation has a unique classical solution, which moreover is nonnegative if the initial value is non negative. The paper is organized as follows. Section 2 is devoted to recall some important theorems. Section 3 is devoted to a detailed presentation of the model. Section 4 is devoted to proving existence, uniqueness and positivity of solution of our problem. \section{Notation and preliminary results}\label{sec:s1} Let $Y$ be a Banach space and $[a,b]$ a finite interval of the real line, then we define the space $$ C([a,b];Y)=\{f:[a,b]\to Y: f \mbox{ is continuous}\}. $$ Note that $C([a,b];Y)$ is a Banach space with the norm $$ \|f\|_{C([a,b];Y)}=\sup_{s\in [a,b]}\|f(s)\|_Y. $$ We also consider the space $C^1([a,b];Y)$ consisting of functions $f\in C([a,b];Y)$ such that $f$ is strongly differentiable in $[a,b]$ and $f'\in C([a,b];Y)$, with the norm $$ \|f\|_{C^1([a,b];Y)}=\|f\|_{C([a,b];Y)}+\|f'\|_{C([a,b];Y)}. $$ Let ${\theta} \in ]0,1[$ then we define the following Holder type spaces \begin{align*} C^{\theta}([a,b];Y) &=\{f\in C([a,b];Y): [f]_{C^{\theta}([a,b];Y)} =\sup\{\frac{\|f(s)-f(t)\|_Y}{|t-s|^{\theta}}\\ &\quad t,s \in [a,b], t\neq s \} <\infty \}, \end{align*} which is equipped with the norm $$ \|f\|_{C^{\theta}([a,b];Y)}=\|f\|_{C([a,b];Y)}+[f]_{C^{\theta}([a,b];Y)}\,. $$ Also let $$ C^{1,\theta}([a,b];Y)=\{f \in C^1([a,b];Y): f' \in C^{\theta}([a,b];Y)\}, $$ with norm $$ \|f\|_{C^{1,\theta}([a,b];Y)}=\|f\|_{C([a,b];Y)}+\|f'\|_{C^{\theta}([a,b];Y)}. $$ We consider the problem \begin{equation} \begin{gathered} u_{t}(t,x)-a(t,x)u_{xx}(t,x)-b(t,x)u_{x}(t,x)-c(t,x)u(t,x)=0, \\ (t,x)\in [0,T]\times[0,1] \\ \alpha_0(t)u(t,0)-\beta_0(t)u_x(t,0)=\alpha_1(t)u(t,1)+\beta_1(t)u_x(t,1)=0, \quad t\in [0,T],\\ u(0,x)=\Phi(x), \quad x\in [0,1], \end{gathered} \label{10} \end{equation} under the following assumptions: \begin{equation} \begin{gathered} a,b,c \in C([0,T]\times[0,1]), \\ a(.,x),b(.,x),c(.,x)\in C^{1,\delta}([0,T];\mathbb{R}) \\ \mbox {with norms indpendent of $x\in [0,1]$, for some $\delta \in ]0,1[$,} \\ a>0, c\leq 0 \quad \mbox{in } [0,T]\times[0,1], \end{gathered} \label{l1} \end{equation} To recall some propositions, we set $E=C([0,1])$, $\|u\|_E=\sup_{x\in [0,1]}|u(x)|$, and define for each $t \in(0,T)$, \begin{equation} \begin{gathered} \label{ll1} D(A(t))=\{u\in C^2([0,1]): \alpha_0(t)u(0)-\beta_0(t)u'(0) =\alpha_1(t)u(1)+\beta_1(t)u'(1)=0,\} \\ A(t)u=a(t,.)u''+b(t,.)u'+c(t,.)u\,. \end{gathered} \end{equation} \begin{proposition}[\cite{Ac}] \label{th:harnack} Let $a,b,c$ be as in \eqref{10}, \eqref{l1}, and suppose that $u\in C^2([0,1])$ is a solution of \begin{equation} \begin{gathered} \lambda u-a(t,.)u''-b(t,.)u'-c(t,.)u=f \in C([0,1]),\\ \alpha_0(t)u(0)-\beta_0(t)u'(0)=z_0 \in \mathbb{C}, \\ \alpha_1(t)u(1)+\beta_1(t)u'(1)=z_1 \in \mathbb{C}, \end{gathered} \label{ll11} \end{equation} where $t\in [0,T]$ is fixed and $\lambda$ is a complex number lying in the sector $$ \Sigma_K:=\{z\in \mathbb{C}: \mathop{\rm Re} z\geq 0\}\cup \{z \in \mathbb{C}: |\mathop{\rm Im} z|>K|\mathop{\rm Re} z| \}\quad (K>0.) $$ Then there exists $M>0$, depending on $K,a,b,c$, but independent of $t$ such that \begin{equation} (1+|\lambda|)\|u\|_E+(1+|\lambda|^{1/2})\|u'\|_E+\|u''\|_E \leq M(\|f\|_E+(1+|\lambda|^{1/2})(|z_0|+|z_1|)). \end{equation} \end{proposition} As a consequence of the above proposition we have the following result. \begin{proposition}[\cite{Ac}]\label{th:harna1} Let $a,b,c$ be as in \eqref{10}, \eqref{l1}; let $\{A(t)\}_{t\in [0,T]}$ be defined by (\ref{ll1}). Then we have: \begin{itemize} \item[(i)] $[0,\infty[ \subseteq \rho(A(t))$ for all $t\in [0,T]$; where $\rho (A(t))$ is the resolvent set of $A(t)$ and $R(\lambda ,A(t))=(\lambda I-A(t))^{-1}$. \item[(ii)] $\Sigma_K\subseteq \rho(A(t))$ and for each $K>0$ there exists $M(K)>0$ (depending also on $a,b,c$) such that $$ \|R(\lambda,A(t))\|_{\mathcal{L}(E)}\leq \frac{M(K)}{1+|\lambda|}\quad \forall \lambda \in \Sigma_K, \forall t \in [0,T], $$ where $\Sigma_K$ is defined above. \end{itemize} \end{proposition} \begin{definition}[\cite{Tana}] \rm A classical solution of (\ref{10}) is a function \[ u\in C([0,T],E)\cap C((0,T],D(A(t)))\cap C^{1}((0,T],E), \] such that $u(0)=x$, $u'(t)-A(t)u(t)=0$ in $(0,T]$. \end{definition} Let us assume the following hypotheses: \begin{itemize} \item[(AT1)] For each $t\in [ 0,T]$, $A(t):D(A(t))\subseteq E\to E$ is a closed linear operator and there exists $M>0$ and $\theta \in ( \frac{\pi }{2},\pi) $ such that \begin{gather*} \rho (A(t)) \supseteq S_{\theta}: =\{ \lambda \in \mathbb{C}:\lambda \neq 0 ,| \arg \lambda | <\theta \}\cup \{0\}, \\ \| R(\lambda ,A(t))\| \leq \frac{M}{1+| \lambda | } \quad \forall \lambda \in S_{\theta}\cup \{0\},\;\forall t\in [ 0,T], \end{gather*} \item[(AT2)] There exist $B>0$ and $\delta_{1},\dots ,\delta _{k},\nu _{1},\dots ,\nu _{k}$ with $0\leq \nu _{i}<\delta _{i}\leq 2$ such that \[ \| A(t)R(\lambda ,A(t))( ( A(s)) ^{-1}-( A(t)) ^{-1}) \| \leq B\sum_{i=1}^{k}| t-s| ^{\delta _{i}}| \lambda | ^{\nu _{i}-1}, \] for all $\lambda \in S_{\theta }-\{0\},\;0\leq s0$. \end{itemize} \begin{theorem}\label{th:harnack1} Assume (H2)--(H4) hold. If the positive function $\bar{B}$ is in $C([0,z^{\ast}])$, then problem (\ref{3}) has a unique non-negative classical solution. \end{theorem} \begin{proof} Without loss of generality we can assume that $\gamma\geq 0$, otherwise we can replace $\gamma$ by $\gamma+\omega\geq 0$ see Remark \ref{rm:3}. The main idea is to use theorem \ref{th:2}. The first assertion (AT1) follows from the proposition \ref{th:harna1}. Concerning the second assertion (AT2), for $f\in C([0,z^{\ast }])$, $t,s\in G_{1}$, where $G_1$ is some neighborhood of $\tau=0$, $\lambda \in S_{\theta }-\{0\}$, we set $v=\nolinebreak (A(s))^{-1}f$ and $u=R(\lambda ,A(t))(\lambda -A(s))v$, then we have to estimate the $C([0,z^*])$-norm of \[ u-v=(A(t)) R(\lambda ,A(t))(A(t))^{-1}-(A(s))^{-1})f. \] Now $u-v\in C^{2}([0,z^{\ast }])$ and $u$ and $v$ solve \begin{equation} \begin{gathered} \lambda u-A(t,.)u=\lambda v-f, \\ \bar{h}(t,0)u'(0)=\bar{h}(t,z^*)u'(z^*)=0, \end{gathered} \label{610} \end{equation} and \begin{equation} \begin{gathered} A(s,.) v=f, \\ \bar{h}(s,0)v'(0)=\bar{h}(s,z^*)v'(z^*)=0, \end{gathered} \label{611} \end{equation} respectively. This shows that \begin{equation} \begin{gathered} \lambda (u-v)-A(t,.)(u-v)=(A(t,.)-A(s,.))v,\;\;\; \\ \bar{h}(t,0)(u'-v')(0)= (\bar{h}(s,0)-\bar{h}(t,0))v'(0), \\ \bar{h}(t,z^*)(u'-v')(z^*)=(\bar{h}(s,z^*)-\bar{h}(t,z^*))v'(z^*). \end{gathered} \label{612} \end{equation} Applying Proposition \ref{th:harnack} to (\ref{611}) with $\lambda=0$, we have \begin{equation} \| v\|_E\leq c\| f\| _E. \label{A15} \end{equation} Using again the proposition \ref{th:harnack} to (\ref{612}), we get \begin{align*} | \lambda | \| u-v\| _E &\leq M(\|(A(s,.)-A(t,.))v\|_E+(1+|\lambda|^{1/2})\\ &\quad \times \big(|(\bar{h}(s,0)-\bar{h}(t,0))v'(0)|+|(\bar{h}(s,z^*) -\bar{h}(t,z^*))v'(z^*)|\big))\,. \end{align*} Using hypothesis (H3) and by virtue of (\ref{A15}), \[ \| u-v\| _E\leq c(|t-s|| \lambda|^{-1}|t-s| ^{\delta } | \lambda |^{-1}+|t-s||\lambda |^{-1/2})\|f\| _E. \] Hence the hypothesis (AT2) holds. Since $D(A(0))$ is dense in $C([0,z^{* }])$ see \cite{Ac}, then according to Theorem \ref{th:2}, for $\bar{B}\in $ $C([0,z^{*}])$ we have existence and uniqueness of a classical solution of problem (\ref{3}). It remain to see that the solution is positive which can be proved by the standard argument. If $u$ is solution of problem (\ref{3}), we set $u=u^{+}-u^{-}$ where $u^{+}$ and $u^{-}$ are respectively the positive and negative part of $u$, so multiplying the equation (\ref{3}) by $u^{-}$, and integrating over $(0,z^*)$ we have $$ \int_{0}^{z^{\ast}}(\frac{\partial u}{\partial \tau} u^{-} + \bar{h}(\tau,z)\frac{\partial u}{\partial z} \frac{\partial u^-}{\partial z}+\bar{V}_{3}(\tau,z) \frac{\partial u}{\partial z}{u^{-}}+ \bar{\gamma}(\tau,z)uu^-) dz=0, $$ hence $$ -\frac{1}{2}\frac{d}{d\tau}\|u^{-}(\tau)\|_{L^2(0,z^*)}^2 \geq c_0\int_{0}^{z^{*}}| \frac{\partial u^{-}}{\partial z}|^2dz-m_3\int_{0}^{z^*} \frac{\partial u^{-}}{\partial z}u^{-}dz +m_4\int_{0}^{z^*}|u^{-}|^2dz, $$ with \[ m_{3}=\sup_{\tau,z}| \bar{V}_{3}(\tau,z)| ,\quad m_{4}=\inf_{\tau,z}| \bar{\gamma}(\tau,z)|. \] Since \[ \int_{0}^{z^{\ast }}\frac{\partial u^{-}}{\partial z}u^{-}dz\leq \int_{0}^{z^{\ast }}\big( \rho | \frac{\partial u^{-}}{\partial z}|^{2} +\frac{1}{\rho }| u^{-}| ^{2}\big) dz,\quad \forall \rho >0, \] it follows that \begin{align*} &\frac{1}{2}\frac{d}{d\tau}\|u^{-}(\tau)\|_{L^2(0,z^*)}^2+(c_0-m_3\rho)\| \frac{\partial u^{-}(\tau)}{\partial z}\|_{L^2(0,z^*)}^2\\ &+(m_4-\frac{m_3}{\rho}+\omega)\|u^{-}(\tau)\|_{L^2(0,z^*)}^2\\ & \leq \omega \|u^{-}(\tau)\|_{L^2(0,z^*)}^2, \end{align*} choosing $\rho$ and $\omega$ such that $$ c_0-m_3\rho >0 \quad\mbox{and}\quad m_4-\frac{m_3}{\rho}+\omega >0, $$ so \[ \frac{1}{2}\frac{d}{d\tau}\|u^{-}(\tau)\|_{L^2(0,z^*)}^2\leq \omega \|u^{-}(\tau)\|_{L^2(0,z^*)}^2, \] then \[ \|u^{-}(\tau)\|_{L^2(0,z^*)}^2\leq \|u^{-}(0)\|_{L^2(0,z^*)}^2 e^{ 2\omega \tau}, \] which gives $u^{-}(\tau)=0$ provided $B\geq 0$, then the solution is positive. \end{proof} Recall that for $z\in [ 0,z^{\ast }] $ the system \begin{gather*} t=T(\tau ,t_{0},x_{0},y_{0}), \quad s=S(\tau ,t_{0},x_{0},y_{0}), \\ x=X(\tau ,t_{0},x_{0},y_{0}), \quad y=Y(\tau ,t_{0},x_{0},y_{0}), \end{gather*} is a solution of the characteristic system (\ref{caracte}) emanating from the point $\tilde{\zeta}$. We have also \begin{gather*} t_{0}=T(0,t_{0},x_{0},y_{0}), \quad 1=S(0,t_{0},x_{0},y_{0}), \\ x_{0}=X(0,t_{0},x_{0},y_{0}), \quad y_{0}=Y(0,t_{0},x_{0},y_{0})\,. \end{gather*} If \[ \mathop{\rm Jac}(T,S,X,Y):=\left| \begin{matrix} \frac{\partial T}{\partial \tau } & \frac{\partial T}{\partial t_{0}} & \frac{\partial T}{\partial x_{0}} & \frac{\partial T}{\partial y_{0}} \\ \frac{\partial S}{\partial \tau } & \frac{\partial S}{\partial t_{0}} & \frac{\partial S}{\partial x_{0}} & \frac{\partial S}{\partial y_{0}} \\ \frac{\partial X}{\partial \tau } & \frac{\partial X}{\partial t_{0}} & \frac{\partial X}{\partial x_{0}} & \frac{\partial X}{\partial y_{0}} \\ \frac{\partial Y}{\partial \tau } & \frac{\partial Y}{\partial t_{0}} & \frac{\partial Y}{\partial x_{0}} & \frac{\partial Y}{\partial y_{0}} \end{matrix} \right| _{\tau =0}\neq 0, \] then the Jacobian does not vanish in a neighborhood of the initial curve. Therefore, the local inversion theorem guarantees that we can solve for $(\tau ,t_{0},x_{0},y_{0})$ as function of $(t,s,x,y)$ near the initial curve; that is, there exists a neighborhood $G_{1}$ of $(0,t_{0},x_{0},y_{0})$ and a neighborhood $G$ of $(t,s,x,y)$ such that \[ (T,S,X,Y):G_{1}\to G \] is a diffeomorphism. Then \begin{gather*} \tau =\psi _{1}(t,s,x,y), \quad t_{0}=\psi _{2}(t,s,x,y), \\ x_{0}=\psi _{3}(t,s,x,y), \quad y_{0}=\psi _{4}(t,s,x,y), \end{gather*} and for initial data \begin{gather*} 0=\psi _{1}(t_{0},1,x_{0},y_{0}), \quad t_{0}=\psi _{2}(t_{0},1,x_{0},y_{0}), \\ x_{0}=\psi _{3}(t_{0},1,x_{0},y_{0}), \quad y_{0}=\psi _{4}(t_{0},1,x_{0},y_{0}). \end{gather*} Once problem (\ref{3}) is solved, we have \[ l(t,s,x,y,z)=\bar{l}(\psi _{1},\psi _{2},\psi _{3},\psi _{4},z),\; \] in a neighborhood of $G$. Indeed, by differentiation we obtain that \begin{gather*} \frac{\partial l}{\partial t} =\frac{\partial \bar{l}}{\partial \tau } \frac{\partial \psi _{1}}{\partial t}+\frac{\partial \bar{l}}{\partial t_{0}} \frac{\partial \psi _{2}}{\partial t}+\frac{\partial \bar{l}}{\partial x_{0}} \frac{\partial \psi _{3}}{\partial t}+\frac{\partial \bar{l}}{\partial y_{0}} \frac{\partial \psi _{4}}{\partial t}, \\ f\frac{\partial l}{\partial s} =f( \frac{\partial \bar{l}}{\partial \tau }\frac{\partial \psi _{1}}{\partial s}+\frac{\partial \bar{l}}{\partial t_{0}}\frac{\partial \psi _{2}}{\partial s}+\frac{\partial \bar{l}}{\partial x_{0}}\frac{\partial \psi _{3}}{\partial s}+\frac{\partial \bar{l}}{\partial y_{0}}\frac{\partial \psi _{4}}{\partial s}) , \\ V_{1}\frac{\partial l}{\partial x} = V_{1}( \frac{\partial \bar{l}}{ \partial \tau }\frac{\partial \psi _{1}}{\partial x}+\frac{\partial \bar{l}}{ \partial t_{0}}\frac{\partial \psi _{2}}{\partial x}+\frac{\partial \bar{l}}{ \partial x_{0}}\frac{\partial \psi _{3}}{\partial x}+\frac{\partial \bar{l}}{ \partial y_{0}}\frac{\partial \psi _{4}}{\partial x}) , \\ V_{2}\frac{\partial l}{\partial y} = V_{2}( \frac{\partial \bar{l}}{ \partial \tau }\frac{\partial \psi _{1}}{\partial y}+\frac{\partial \bar{l}}{ \partial t_{0}}\frac{\partial \psi _{2}}{\partial y}+\frac{\partial \bar{l}}{ \partial x_{0}}\frac{\partial \psi _{3}}{\partial y}+\frac{\partial \bar{l}}{ \partial y_{0}}\frac{\partial \psi _{4}}{\partial y})\,. \end{gather*} Thus \begin{align*} \frac{\partial l}{\partial t}+f\frac{\partial l}{\partial s}+V_{1}\frac{ \partial l}{\partial x}+V_{2}\frac{\partial l}{\partial y} &= \frac{\partial \bar{l}}{\partial \tau } \big(\frac{\partial \psi _{1}}{\partial t}+f\frac{\partial \psi _{1}}{\partial s} +V_{1}\frac{\partial \psi _{1}}{\partial x} +V_{2}\frac{\partial \psi _{1}}{\partial y}\big)\\ &\quad+ \frac{\partial \bar{l}}{\partial t_{0}} \big(\frac{\partial \psi _{2}}{\partial t}+f\frac{\partial \psi _{2}}{\partial s} +V_{1}\frac{\partial \psi _{2}}{\partial x} +V_{2}\frac{\partial \psi _{2}}{\partial y}\big)\\ &\quad + \frac{\partial \bar{l}}{\partial x_{0}}\big(\frac{\partial \psi _{3}}{\partial t}+f\frac{\partial \psi _{3}}{\partial s}+V_{1}\frac{\partial \psi _{3}}{ \partial x}+V_{2}\frac{\partial \psi _{3}}{\partial y}\big)\\ &\quad+ \frac{\partial \bar{l}}{\partial y_{0}} \big(\frac{\partial \psi _{4}}{\partial t} +f\frac{\partial \psi _{4}}{\partial s} +V_{1}\frac{\partial \psi _{4}}{\partial x} +V_{2}\frac{\partial \psi _{4}}{\partial y}\big). \end{align*} Then \begin{align*} \frac{\partial l}{\partial t}+f\frac{\partial l}{\partial s}+V_{1}\frac{ \partial l}{\partial x}+V_{2}\frac{\partial l}{\partial y} &=\frac{\partial \bar{l}}{\partial \tau } \big(\frac{\partial T}{\partial \tau }\frac{\partial \psi _{1}}{\partial t}+\frac{\partial S}{\partial t_{0}}\frac{\partial \psi _{1}}{\partial s}+\frac{\partial X}{\partial x_{0}}\frac{\partial \psi _{1}}{ \partial x}+\frac{\partial Y}{\partial y_{0}}\frac{\partial \psi _{1}}{ \partial y}\big)\\ &\quad + \frac{\partial \bar{l}}{\partial t_{0}} \big(\frac{\partial T}{\partial \tau } \frac{\partial \psi _{2}}{\partial t}+\frac{\partial S}{\partial t_{0}}\frac{ \partial \psi _{2}}{\partial s}+\frac{\partial X}{\partial x_{0}}\frac{ \partial \psi _{2}}{\partial x}+\frac{\partial Y}{\partial y_{0}}\frac{ \partial \psi _{2}}{\partial y}\big)\\ &\quad + \frac{\partial \bar{l}}{\partial x_{0}} \big(\frac{\partial T}{\partial \tau } \frac{\partial \psi _{3}}{\partial t}+\frac{\partial S}{\partial t_{0}}\frac{ \partial \psi _{3}}{\partial s}+\frac{\partial X}{\partial x_{0}}\frac{ \partial \psi _{3}}{\partial x}+\frac{\partial Y}{\partial y_{0}}\frac{ \partial \psi _{3}}{\partial y}\big)\\ &\quad +\frac{\partial \bar{l}}{\partial y_{0}} \big(\frac{\partial T}{\partial \tau } \frac{\partial \psi _{4}}{\partial t}+\frac{\partial S}{\partial t_{0}}\frac{ \partial \psi _{4}}{\partial s}+\frac{\partial X}{\partial x_{0}}\frac{ \partial \psi _{4}}{\partial x}+\frac{\partial Y}{\partial y_{0}}\frac{ \partial \psi _{4}}{\partial y}\big). \end{align*} For $Z=(T,S,X,Y)^{T}$ and $\psi =(\psi _{1},\psi _{2}, \psi _{3}, \psi _{4})^{T}$, we have $(Z\circ \psi )(t,s,x,y)=(t,s,x,y)$ which implies \begin{equation} \mathop{\rm Jac}(Z).\mathop{\rm Jac}(\psi )=\mathop{\rm Id}{}_{4}\,. \label{Id4} \end{equation} By identification in (\ref{Id4}), we find \begin{gather*} \frac{\partial T}{\partial \tau }\frac{\partial \psi _{1}}{\partial t}+ \frac{\partial S}{\partial t_{0}}\frac{\partial \psi _{1}}{\partial s}+ \frac{\partial X}{\partial x_{0}}\frac{\partial \psi _{1}}{\partial x}+ \frac{\partial Y}{\partial y_{0}}\frac{\partial \psi _{1}}{\partial y}=1, \\ \frac{\partial T}{\partial \tau }\frac{\partial \psi _{2}}{\partial t}+ \frac{\partial S}{\partial t_{0}}\frac{\partial \psi _{2}}{\partial s}+ \frac{\partial X}{\partial x_{0}}\frac{\partial \psi _{2}}{\partial x}+ \frac{\partial Y}{\partial y_{0}}\frac{\partial \psi _{2}}{\partial y}=0, \\ \frac{\partial \psi _{3}}{\partial t}+f\frac{\partial \psi _{3}}{\partial s }+V_{1}\frac{\partial \psi _{3}}{\partial x}+V_{2}\frac{\partial \psi _{3} }{\partial y}=0, \\ \frac{\partial T}{\partial \tau }\frac{\partial \psi _{4}}{\partial t}+ \frac{\partial S}{\partial t_{0}}\frac{\partial \psi _{4}}{\partial s}+ \frac{\partial X}{\partial x_{0}}\frac{\partial \psi _{4}}{\partial x}+ \frac{\partial Y}{\partial y_{0}}\frac{\partial \psi _{4}}{\partial y}=0\,. \end{gather*} Therefore, \[ \frac{\partial l}{\partial t}+f\frac{\partial l}{\partial s}+V_{1}\frac{% \partial l}{\partial x}+V_{2}\frac{\partial l}{\partial y}=\frac{\partial \bar{l}}{\partial \tau }\,. \] In addition, \[ \frac{\partial l}{\partial z}=\frac{\partial \bar{l}}{\partial z}, \] for the initial data \begin{align*} l(t,1,x,y,z) &=\bar{l}(\psi _{1}(t,1,x,y),\psi _{2}(t,1,x,y),\psi _{3}(t,1,x,y),\psi _{4}(t,1,x,y),z), \\ &=\bar{l}(0,t,x,y,z), \\ &=\bar{B}(t,x,y,z), \\ &=B(T(0,t,x,y),X(0,t,x,y),Y(0,t,x,y),z), \\ &=B(t,x,y,z)\,. \end{align*} Then $l$ is a unique solution of (\ref{1}). So the solution $l$ of (\ref{1}) can be determined in terms of the solution $\bar{l}$ of (\ref{3}). \subsection*{Acknowledgments} The authors wish to thank the anonymous referee for his/her helpful suggestions and comments. \begin{thebibliography}{00} \bibitem{Ac1} P. Acquistapace; \emph{Evolution operators and strong solutions of abstract linear parabolic equations}, Differential Integral Equations Vol. 1 (1988), 433-457. \bibitem{Ac} P. Acquistapace, B. Terreni; \emph{Existence and sharpe regularity results for linear parabolic non-autonomous integro-differential equations}, Isr. J. Math. Vol. 53, No. 3, 1986, 257-303. \bibitem{Ac2} P. Acquistapace, B. Terreni; \emph{A unified approach to abstract linear nonautonomous parabolic equations}, Rend. Sem. Math. Univ. Padova 78 (1987), 47-107. \bibitem{Arino} O. Arino, A. Boussouar, P. Prouzet; \emph{Modeling of the larval stage of the anchovy of the Bay of Biscay. Estimation of the rate of recruitement in the juvenile stage}, Projet 96/048 DG XIV. \bibitem{Bous} K. Boushaba, \emph{Mathematical modeling of oceanic plankton}, PhD Thesis University of Cadi Ayyad, Morocco, 2001. \bibitem{Bous1} K. Boushaba, O.Arino, A. Boussouar; \emph{A mathematical model of the dynamics of the phytoplankton-nutrient system}, Journal of Non linear Analysis and Application, Real World Applications 1 (2000) 69-87. \bibitem{Brezis} H. Brezis; Analyse fonctionnelle th\'{e}orie et application, Masson, 1983. \bibitem{Lunardi} A. Lunardi; \emph{Analytic Semigroups and Optimal Regularity in Parabolic Problems}, Birkhauser, 1995. \bibitem{Motos} L. Motos; \emph{Estimacion de la biomasa desovante de la poblacion de anchoa de Vizcaya, Engraulis encrasicolus, a partir de su produccion de huevos, Bases metodologicas y aplicacion}, PhD thesis, Univ. Pais Vasco (1994). \bibitem{Tana} H. Tanabe; \emph{Functional Analytic Methods for Partial Differential Equations}, Marcel Dekker, 1997. \end{thebibliography} \end{document}