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QUALITATIVE PROPERTIES OF SOLUTIONS FOR
QUASI-LINEAR ELLIPTIC EQUATIONS

ZHENYI ZHAO

Abstract. For several classes of functions including the special case f(u) =

up−1−um, m > p−1 > 0, we obtain Liouville type, boundedness and symme-

try results for solutions of the non-linear p-Laplacian problem −∆pu = f(u)
defined on the whole space Rn. Suppose u ∈ C2(Rn) is a solution. We have

that either (1) if u doesn’t change sign, then u is a constant (hence, u ≡ 1
or u ≡ 0 or u ≡ −1); or (2) if u changes sign, then u ∈ L∞(Rn), moreover

|u| < 1 on Rn; or (3) if |Du| > 0 on Rn and the level set u−1(0) lies on one

side of a hyperplane and touches that hyperplane, i.e., there exists ν ∈ Sn−1

and x0 ∈ u−1(0) such that ν · (x− x0) ≥ 0 for all x ∈ u−1(0), then u depends

on one variable only (in the direction of ν).

1. Introduction

In this paper we consider the problem
−∆pu = f(u) in Ω

u > 0 in Ω
u = 0 on ∂Ω,

(1.1)

where ∆p denotes the p-Laplacian operator ∆p = div(|Du|p−2Du), p > 1, Ω =
RN , N ≥ 2, and f(u) is locally Lipschitz continuous.

In the case p = 2, several results have been obtained starting with the famous
paper by Gidas, Ni and Nirenberg [28] where, among other things, it is proved
that, if Ω is a ball and p = 2, solutions of (1.1) are radially symmetric and strictly
radially decreasing. This paper had a big impact not only in virtue of the several
monotonicity and symmetry results that it contains, but also because it brought to
attention the moving plane method which, since then, has been largely used in many
different problems. This method, which is essentially based on maximum principles,
goes back to Alexandrov [1] and was first used by Serrin in [34]. The moving
plane method has been improved and simplified by Berestycki and Nirenberg in
[11] with the aid of the maximum principle in small domains. Recently, In a series
papers, Berestycki, Caffarelli and Nirenberg [6, 7, 8] began to study the qualitative
properties of solutions when Ω is unbounded, for example slab, half plane, and Rn.
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When Ω = Rn, it is related to the following conjecture of De Giorgi [19]: If u is
a solution of the scalar Ginzburg-Landau equation

∆u + u(1− u2) = 0 on Rn

such that |u| ≤ 1 and ∂nu > 0 on Rn, and

lim
xn→±∞

u(x′, xn) = ±1,∀x ∈ Rn−1

then all level sets of u are hyperplanes, at least for n ≤ 8. Here ∂nu denotes the
partial derivative of u with respect to xn, the last component of x, and x′ denotes
the first n − 1 components of x. When n = 2, this conjecture was completely
resolved by Ghoussoub and Gui [27]. When n = 3, it was very recently proved by
Ambrosio and Cabre [3]. Both solutions of the conjecture are based on a Liouville-
type theorem due to Berestycki,Caffarelli and Nirenberg [8]. The first partial answer
to the De Giorgi conjecture is from the work of 1980 by Modica and Mortola [31].
In 1985, Modica [30] found a pointwise gradient bound for all bounded solutions.
This estimate was further generalized by Caffarelli, Garofalo and Segala [13] to
more general nonlinear partial differential equations which include the p-Laplacian.
Under more assumptions on the solutions, for example, if u(x) = u(x′, xn) → ±1
as xn → ±∞ holds uniformly for x′ ∈ Rn−1, the conclusion of this conjecture was
confirmed in [5, 9, 26] for any n ≥ 2. The conjecture in its original form however,
remains open for n > 3. We refer to [2] for a fuller account of the history and
progress about this conjecture. Du and Ma [23] recently removed the boundedness
condition |u| ≤ 1 in De Giorgi’s conjecture. This point has already been observed
by Farina [26], but his conclusion does not seem to include those nonlinearities
covered by Du and Ma’s result.

Very little is known about the monotonicity and symmetry of solutions of (1.1)
when p 6= 2. In this case the solutions can only be considered in a weak sense
since, generally they belong to the space C1,α(Ω)(See [21] and [36]). Anyway this is
not a difficulty because the moving plane method method can be adapted to weak
solutions of strictly elliptic problems in divergence form(See [14] and [16]).

The real difficulty with problem (1.1), for p 6= 2, is that the p-Laplacian operator
is degenerate in critical points of the solutions, so that comparison principle(which
could substitute the maximum principles in order to use the moving plane and
sliding method when the operator is not linear) are not available in the same as
for p = 2. Actually counterexamples both to validity of comparison principles and
to the symmetry results are available(see [12])for any p with different degrees of
regularity of f .

A first step towards extending the moving plane method to solutions of prob-
lems involving the p-Laplacian operator has been done in [16]. In that paper the
author mainly proves some weak and strong comparison principles for solutions of
differential inequalities involving the p-Laplacian. Using these principles he adapts
the moving plane method to solutions of (1.1) getting some monotonicity and sym-
metry results in the case 1 < p < 2. The symmetry result is not complete and relies
on the assumption that the set of the critical points of u does not disconnect the
caps which are constructed by the moving plane method. In [17] the author got
monotonicity and symmetry for solutions u of (1.1) in smooth domains in the case
1 < p < 2 without extra assumptions on u.
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We now state the main results.We restrict our attention on the following equation

∆pu + up−1 − um = 0, on Rn (1.2)

where m > p− 1 > 0.

Theorem 1.1 (Liouville Type Property). Suppose u ∈ C2(Rn) is a solution of
(1.2). Furthermore u doesn’t change sign. Then u is a constant (hence,u ≡ 1,or
u ≡ 0,or u ≡ −1).

Theorem 1.2 (Global Boundedness). Suppose u ∈ C2(Rn) is a changing-sign
solution of (1.2). Then u ∈ L∞(Rn), moreover |u| < 1 on Rn.

Theorem 1.3 (One-dimensional Property). Suppose that u ∈ C2(Rn) solves (1.2)
on Rn and |Du| > 0. If u−1(0) lies on one side of a hyperplane and touches that
hyperplane, i.e., there exists ν ∈ Sn−1 and x0 ∈ u−1(0) such that ν · (x − x0) ≥ 0
for all x ∈ u−1(0),then u depends on one variable only (in the direction of ν).

Similar results to our Theorems 1.1 and 1.2 are obtained by Dancer and Du [15],
Du and Gu [22] by different methods.

Now we compare our results with the very interesting works of P.Pucci, J.Serrin,
and H.Zou [32, 33, 35]. In their papers [32, 33], the aim is to find conditions which
make the Maximum Principle to be true. So they have to assume the behavior at
infinity or at some point of solutions. Since one of our aim is to get Liouville type
result, we need only to use the Comparison Principles (see Theorem 2.1-2.4 below).
In the paper [35], the authors consider the radial symmetry of the solutions with
the assumption about the behavior at infinity of the solutions. But in our Theorem
1.3, we study the one dimensional property of solutions under different conditions
of the solutions.

Throughout this paper, for simplicity, we assume that u ∈ C2(RN ). The rest of
this paper is organized as follows. Some preliminary results are given in section2.
In section 3, we prove Theorem 1.1. Theorem 1.2 is proved in section 4. In section
5, we prove two lemmas which are needed in the proof of Theorem 1.3. Theorem
1.3 is proved in section 6.

2. Preliminary Results

In this section, we collect the related weak and strong comparison principles.
Let Ω be a domain in RN , N ≥ 2, and let u, v ∈ C2(Ω) be solutions of

−∆pu ≤ f(u) in Ω

−∆pv ≥ f(v) in Ω
(2.1)

For a set A ⊆ Ω we define
MA = MA(u, v) = sup

A
(|Du|+ |Dv|)

mA = mA(u, v) = inf
A

(|Du|+ |Dv|)
(2.2)

Firstly we state the weak maximum principles.

Theorem 2.1 (Weak Comparison Principle). Let u, v be solutions of (2.1) in a
bounded domain Ω and f ∈ C[0,∞), f(0) = 0 and f is non-decreasing on some
interval [0, δ]. Suppose also that u and v are continuous in D, with v < δ in Ω and
u ≥ v on ∂Ω. Then u ≥ v in Ω.
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Theorem 2.2 (Weak Comparison Principle). Let u, v be respective solutions of
(2.1) in D(maybe unbounded). Suppose that u and v are continuous in D,that
mD > 0,and that u ≥ v on ∂D. Then u ≥ v in D

Theorem 2.3 (Weak Comparison Principle). Suppose that 1 < p < 2, then there
exist α, M > 0, depending on p, |Ω|, MΩ and the L∞ norms of u and v such that:
if an open set Ω′ ⊆ Ω satisfies Ω′ = A1 ∪ A2, |A1 ∩ A2| = 0, |A1 < α|,MA2 < M
then u ≤ v on ∂Ω′ implies u ≤ v in Ω′

For a proof,see [18]

Theorem 2.4 (Weak comparison Principle). Suppose that p > 2 and mΩ > 0,there
exist δ,m > 0 depending on p, |Ω|,mΩ such that the following holds: if Ω′ = A1∪A2

with |A1 ∩A2| = 0, |A1 < δ| and mA2 > m then u ≤ v on ∂Ω′ implies u ≤ v in Ω′

For a proof, see [16] Now, we state a comparison principle in slab.

Lemma 2.5. Let w be a function satisfying Lw ≤ 0 in Ω = Rn−1 × (b, c), where
b, c ∈ R and where

Lw = αij(x)∂ijw + βj∂ju + γ(x)u .

Assume that the coefficients αij(x), βj(x) are uniformly continuous in Ω and that
the αij satisfy

∃c′0 ≥ c0 > 0,∀x ∈ Rn,∀ξ ∈ Rn, c0|ξ|2 ≤ αij(x)ξiξj ≤ c′0|ξ|2.
Furthermore, assume that

−C ≤ γ(x) ≤ 0 for all x ∈ Ω

for some positive real number C. The function w is required to be continuous in Ω
and to satisfy Lw ∈ L∞(Ω) and m ≤ w ≤ M in Ω for some m,M ∈ R. If w ≥ 0
on ∂Ω, then w ≥ 0 in Ω

For the proof of this lemma, we can refer to Lemma 3.1 of [9]. From the maximum
principle, we can get the following comparison result.

Theorem 2.6. Let f be a Lipschitz-continuous function, non-increasing on the
intervals [−1,−1+δ] and [1−δ, 1] for some δ > 0. Assume that u1, u2 are solutions
of

∆pui + f(ui) = 0 in Ω
and are such that |ui| ≤ 1(i = 1, 2). Furthermore, assume that

u2 ≥ u1 on ∂Ω

and that either u2 ≥ 1 − δ in Ω or u1 ≤ −1 + δ in Ω, Where Ω = Rn−1 × (b, c).
Then u2 ≥ u1.

Next we deal with a form of a strong comparison theorem.First we prove the
following Harnack type comparison inequality

Lemma 2.7 (Harnack type comparison inequality). Suppose u, v satisfy

−div A(x,Du) + Λu ≤ − div(x,Dv) + Λv, u ≤ v in Ω (2.3)

where Λ ∈ R and u, v ∈ W 1,∞
loc (Ω) if p 6= 2;u, v ∈ W 1,2

loc (Ω) if p = 2. Suppose
B(x, 5δ) ⊆ Ω for some δ > 0 and,if p 6= 2, infD(|Du| + |Dv|) > 0. Then, for any
positive number s < n

n−2 we have

‖v − u‖Ls(B(x,2δ)) ≤ cδN/2 inf
B(x,δ)

(v − u)
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where c is a constant depending on N, p, s, c2, δ and, if p 6= 2, also on m =
infB(x,5δ)(|Du|+ |Dv|) and MB(x,5δ)

This lemma implies the following strong comparison principle:

Theorem 2.8. Let u, v ∈ C2(Ω) be solutions of (2.1)with 1 < p < ∞, 0 < u ≤ vin
Ω and f be locally Lipschitz-continuous in (0,∞). Define

Zu
v = {x ∈ Ω : |Du| = |Dv| = 0} (Zu

v = ∅ for p = 2)

If there exists x0 ∈ Ω \ Zu
v such that u(x0) = v(x0), then u ≡ v in the connected

component of Ω \ Zu
v containing x0.

For a proof, see [16]

3. Liouville Type Property

In this section, we prove a generalization of Theorem 1.1.

Theorem 3.1 (Liouville Type Property). Let u ∈ C2(Rn) be a nonnegative solution
of

∆pu + λup−1 − um = 0 on Rn

where λ is positive, p > 1 is a constant and m > p− 1. Then u must be a constant.

The basic ingredients in the proof consist of the following three lemmas. For use
in later sections and possible future applications,these lemmas are given in much
more general form than what is required in the proof of Theorem 3.1.

We consider the problem

∆pu + α(x)up−1 − β(x)um = 0 on Rn (3.1)

Here p > 1 is a constant and m > p− 1.

Lemma 3.2 (Comparison Principle). Suppose that Ω is a bounded domain in RN ,
α(x) and β(x) are continuous functions on Ω with ‖α‖∞ < ∞ and β(x) positive,
p > 2. Let u1, u2 ∈ C2(Ω) be positive in Ω and satisfy

∆pu1 + α(x)up−1
1 − β(x)um

1 ≤ 0 ≤ ∆pu2 + α(x)up−1
2 − β(x)um

2 , x ∈ Ω (3.2)

and lim supx→∂Ω(u2 − u1) ≤ 0, and α(x) ≤ β(x). Then u2 ≤ u1 in Ω

Proof. Let ε1 > ε2 > 0 and denote wi = (ui+εi)−1((u2+ε2)2−(u1+ε1)2)+(i = 1, 2).
Observe wi be C2 nonnegative functions on Ω and vanishing near ∂Ω. Using (3.2),
applying integration by parts and subtracting, we obtain

−
∫

Ω

[|∇u2|p−2∇u2∇w2 − |∇u1|p−2∇u1∇w1]dx

≥
∫

Ω

β(x)[um
2 w2 − um

1 w2] +
∫

Ω

α(x)(up−1
1 w1 − up−1

2 w2)
(3.3)

Denote Ω+(ε1, ε2) = {x ∈ Ω : u2(x)+ε2 > u1(x)+ε1} and note that the integrands
in (3.3) vanishing outside this set. The left side of (3.3) equals

−
∫

Ω+(ε1,ε2)

[|∇u1|p−2|∇u2 −
u2 + ε2
u1 + ε1

∇u1|2 + |∇u2|p−2|∇u1 −
u2 + ε2
u1 + ε1

∇u2|2]

−
∫

Ω+(ε1,ε2)

(|∇u2|p−2 − |∇u1|p−2)(∇u2∇u2 −∇u1∇u1)dx

(3.4)
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Noting that w1 > w2 in Ω+(ε1, ε2). We conclude that the left side of (3.4) is not
positive. On the other hand as ε1 → 0 the right side of (3.3) converges to∫

Ω+(0,0)

[β(x)(um−1
2 − um−1

1 )− α(x)(up−1
2 − up−1

1 )](u2
2 − u2

1)

while last term in (3.3) converge to 0. Unless Ω+(0, 0) is empty, the limiting value
of the right side of (3.3) is positive. Since this leads to a contradiction we conclude
that u2 ≤ u1in Ω �

Lemma 3.3 (Locally uniformly Boundedness). u ∈ C2 is a positive solution of
(3.1). Then we have the bound

max
G

u(x) ≤ c0

For every compact subset G ⊂ Rn and c0 is a constant.

Proof. Suppose that maxGu(x) = ux0 for some x0 ∈ G. If |Du(x0)| = 0, Then
u ≤ maxG(α(x)/β(x))m−p+1. Otherwise, we may assume that there is a ball B2r :=
B2r(x0) ⊂ Rnwith center x0 ⊂ G such that

max
Ḡ

= max
Br

u(x) := M(r) and min
B2r

|Du| > 0

Since,on B2r, we have
∆pu ≥ −α(x)u

Then as pointed out in [23], u locally uniformly bounded. �

Lemma 3.4. Let Ω be a bounded domain in Rn with smooth boundary. Suppose
α and β are smooth positive functions on Ω̄, and let µ1 denote the first eigenvalue
of −∆pu = µα(x)up−1 on Ω under Dirichlet boundary conditions on ∂Ω. Then the
problem

−∆pu = µu[α(x)up−2 − β(x)um−1], u|∂Ω = 0
has a unique positive solution for every µ > µ1,and the unique positive solution uµ

satisfies uµ → [α(x)/β(x)]1/(m−p+1)

Proof. The existence from a simple upper and lower solution argument. clearly
any constant greater that or equal to M = maxΩ̄[α(x)/β(x)]1/(m−p+1) is an upper
solution. Let φ be a positive eigenfunction corresponding to µ1, then for each fixed
µ > µ1 and all small positive ε, εφ < M and is a lower solution. Thus there is
at least one positive solution. If u1 and u2 are two positive solutions, we apply
comparison principle to conclude that u1 ≤ u2 and u2 ≤ u1 both hold on Ω. Hence
u1 = u2. This proves the uniqueness.

Given any compact subset K of Ω and any small ε > 0 such that ε < υ0 =
[α(x)/β(x)]1/(m−p+1) on Ω, we let υε = υ0 + ε , and find that vε(α(x)vp−2

ε −
β(x)υm−1

ε ) ≤ −δ on Ω for some positive constant δ = δ(ε) and −∆pυε ≥ −c on Ω
for some positive constant c = c(ε). It follows that for all large µ, υε is an upper
solution of our problem.

On the other hand, Let φ be the positive eigenfunction corresponding to µ1

with ‖φ‖∞ = 1. then we can find a small neighborhood of ∂Ω in Ω, say U , such
that φ is very small in U so that for all µ > µ1 + 1,−∆pφ = µ1α(x)φp−1 ≤
µφ(α(x)φp−2 − β(x)φm−1) on U . By shrinking U further if necessary, we can
assume that Ū ∩K = ∅ and φ < v0− ε on U . Now we can choose a smooth function
wε on Ω such that wε = φ on U , wε = v0 − ε on K and v0 − ε/2 > wε > 0 on the
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rest of Ω. It is easily seen that such wε is a lower solution of our problem for all
large µ. since wε < µε, we deduce wε ≤ uµ < υε on Ω for all large µ. In particular,

[α(x)/β(x)]1/(m−p+1) + ε ≥ uµ ≥ [α(x)/β(x)]1/(m−p+1) − ε

on K for all large µ. this is to say that uµ → (α/β)1/(m−p+1) as µ →∞ uniformly
on K, as required. �

Lemma 3.5. Let Ω be an arbitrary domain in Rn and suppose that there exists a
large solution of the equation ∆pu = um in Ω. Let Ξ be a compact subset of ∂Ω and
let P ∈ Ξ. Suppose that,for every δ > 0,there exists an open,connected neighborhood
of P ,say QP with C2 boundary, such that,

• ΩP = QP ∩ Ω is a simply connected domain.
• QP ⊂ Ξσ = {x : dist(x,Ξ) < σ} and ∂Ω ∩ Ω̄P = ∂Ω ∩QP

Then there exists δ0 > 0(which depends on Ξ but not on P ) such that,if ΩP is
contained in Ξδ0 ,the following statements hold.

(a) There exists a large solution of (3.1) in ΩP ;
(b) There exists a positive solution v of (3.1) in ΩP such that

v(x) →∞ locally uniformly as x → Γ1 = ∂Ω ∩QP (3.5)

v ∈ C(ΩP ∪ Γ2) and v = 0 on Γ2 = Ω ∩ ∂QP (3.6)

Proof. (a) Let b = 2 supΩ β(x) and let c = sup{−α(x)tp−1 − 1
2btm : t > 0, x ∈ Ω}.

Then, every positive solution u of (3.1) satisfies

∆pu ≤ bum + c

Let U be a large solution of ∆pu = 2bum in Ω. This means that u is a solution of
∆pu = 2bum with boundary value u = +∞ on ∂Ω. Let M = inf{U(x) : x ∈ Ω∩Ξ}
and choose δ0 sufficiently small so that bMm ≥ c. Then

∆pU ≥ bUm + c in ΩP (3.7)

Let {Θn} be an increasing sequence of domains with C2 boundary such that

Θ̄n ⊂ Θn+1 ⊂ ΩP and Θn ↑ ΩP . (3.8)

Let un and V be large solutions of (3.1) in Θn and QP respectively. By comparison
principle {un} is monotone decreasing and un ≥ V in Θn. By the comparison
principle, (3.7) and (3.8) un ≥ U in Θn. Hence lim un is a large solution of (3.1) in
ΩP

(b) For the proof of the second statement we may assume (in view of (a)) that there
exists a large solution of (3.1) in Ω. Now, Let {Θn} be an increasing sequence of
domain with C2 boundary such that,

Θn ⊂ ΩP ,Θn ↑ ΩP and ΩP \Θn ⊂ Kn = {x : dist(x, Γ1) < 2−n}.

Denote Γ1,n = ∂Θn ∩Kn,Γ2,n = ∂Θn ∩ (K̄n)c. Thus Γ2,n ⊂ Γ2,n+1 ⊂ Γ2. We shall
also assume that the sets Γ1,n are disjoint.

For each n,consider a sequence of functions {ϕn,k}∞k=1 on ∂Θn satisfying the
following properties.

• ϕn,k = k on Γ1,n;ϕn,k = 0 for x ∈ Γ2,n such that dist(x,Γ1,n) > 2−n;
• 0 ≤ ϕn,k ≤ k everywhere; ϕn,k ∈ C2(∂Θn);
• ϕn,k ≥ ϕn−1,k on Γ2,n and ϕn,k ≤ ϕn,k−1 on ∂Θn
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Let vn,k be a solution of (3.1) in Θn in Θn such vn,k = ϕn,k on ∂Θ. By comparison
principle {vn,k}∞k=1 is monotone increasing and by Lemma 3.2 the sequence is locally
bounded. Hence vn = limk→∞ vn,k is a solution of (3.1) in Θn such that

vn →∞ as x → Γ1,n; vn ∈ C(Θn ∪ Γ2,n)
vn = 0 on Γ2,n

(3.9)

Furthermore,by their construction,vn,k ≥ vn+1,k so that {vn} is monotone decreas-
ing. Consequently v = limn→∞ vn is a solution of (3.1) in ΩP . If V is a large
solution of (3.1) in QP , vn + V is a supersolution of (3.1) in Θn which blows up on
∂Θn. Hence vn +V ≥ U , where U is a large solution of (3.1) in Ω. Thus v +V ≥ U
and this implies (3.5) Finally by (3.9), v satisfies (3.6) �

Lemma 3.6. The problem

−∆pu = µu[α(x)p−2 − β(x)um−1], u|∂Ω = ∞ (3.10)

has a unique positive solution for each µ > 0, and the unique positive solution uµ

satisfies uµ → (α/β)1/(m−p+1) uniformly on any compact subset of Ω as µ →∞

Here and throughout this paper, by u|∂Ω, we mean u(x) →∞ as d(x, ∂Ω) → 0.
We also write x → ∂Ω when d(x, ∂Ω) → 0.

Proof. 1. Existence: The existence follows from a simple upper and lower solution
argument. Suppose µ > 0. For any positive integer n > M = maxΩ̄(α/β)1/(m−p+1),
the problem

−∆pu = µu(αup−2 − βum−1), u|∂Ω = n

has a unique positive solution. Indeed u ≡ 0 and u ≡ n are lower and upper solution
to this problem,and hence there is at least one positive solution. By comparison
principle,there is at most one positive solution. Therefore there is a unique positive
solution. Denoting this solution by un, we find, by comparison principle, that un

increases with n. By Lemma 3.3 we can find a uniform upper bound for un on
any compact subset of Ω, then by a standard regularity argument,uµ = limn→∞un

would be a positive solution of (3.10).
2. Uniqueness: Suppose that u is a large solution of (3.10). Note that for every

ε > 0 there exists βε > 0 such that

k(1− ε)um ≤ ∆pu ≤ k(1 + ε)um in {x ∈ Ω : dist(x, ∂Ω) > βε}

Let P ∈ ∂Ω and assume (as we may) that the set Qp mentioned above is an
open,bounded spherical cylinder centered at P , with axis parallel to the ξn axis.
Thus,

Qp = {η : |η′| < ρP , |ηN | < τP }

where η = ξ − P and η′ = (η1, . . . , ηN−1). By appropriately choosing σP and τP

we may also assume that ∂Ω is bounded away from the ’top’ and ’bottom’ of the
cylinder QP and that ∂Ω ∪ Q̄P = ∂Ω

⋂
QP . finally we assume that ρP and τP are

sufficiently small so that Lemma 3.5 can be applied to QP and so that

k(P )(1− ε)um(x) ≤ ∆pu ≤ k(P )(1 + ε)um(x)
∀x ∈ Θ = QP ∩ Ω.

(3.11)
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Therefore there exists a solution v of the problem

∆pv = vm and v > 0 in Θ = QP ∩ Ω

v(x) →∞ locally uniformly as x → QP ∩ ∂Ω

v(x) → 0 locally uniformly as x → ∂QP ∩ Ω

Next denote

v1 = (k(P )(1− ε))−1/(m−1)v

v2 = (k(P )(1 + ε))−1/(m−1)v

and let w be the large solution of (3.10) in QP . We claim that

v2 < u < v1 + w in Θ (3.12)

To verify this claim,let ξ denote the unit vector parallel to the axis of QP such
that P + ξ is outside Ω and set Θσ = {x − σξ : x ∈ Θ, σ > 0}. If f is a function
defined in Θ, set fσ(x) = f(x + σξ) for x ∈ Θσ. Assume that σ is a sufficiently
small positive number so that Θσ ⊂⊂ Ω. Then v1,σ + wσ is a supersolution in
Θσ and hence v1,σ + wσ > u there. On the other hand, by(3.11), v2,−σ < u on
∂(Θ−σ ∩ Ω) and hence v2,−σ < u in Θ−σ ∩ Ω. Thus,for 0 < σ sufficiently small,
v2,−σ < u < u1,σ + wσ in Θ−σ ∩ σ and hence,letting σ tend to zero, we obtain
.Finally,since w is bounded in every compact subset of QP , it follows that

u(x)/(k(x)−1/(m−1)v(x)) → 1 locally uniformly as x → QP ∩ ∂Ω (3.13)

Therefore if u1 and u2 are tow positive solutions of (3.10) ,then

lim
x→∂Ω

u1(x)/u2(x) = 1

It follows that for any ε > 0,

lim
x→∂Ω

[(1 + ε)u1 − u2] = ∞

As (1 + ε)u1 is an upper solution to (3.10), we can apply comparison principle to
conclude that (1 + ε)u1 ≥ u2 on Ω. As ε > 0 is arbitrary, we deduce u2 ≥ u1. Thus
u1 = u2 on Ω. This proves the uniqueness.
3. Asymptotic behavior. Now we know that the positive solution uµ constructed
above is the unique positive solution. Let K be an arbitrary compact subset of
Ω, v0 = (α/β)1/(m−p+1) and ε > 0 any small positive number satisfying ε < v0

on Ω. It is easily seen that ,for all large u,wε = v0 − ε is a lower solution for the
problem satisfied by un with un > wε.

On the other hand,fix a µ0 > 0 then we can find a small neighborhood U of ∂Ω
in Ω such that u0 = uµ0 > v0 + ε on U . Therefore,

−∆pu0 = µ0u0(αup−2
0 − βum−1

0 ) ≥ µu0(αup−2
0 − βum−1

0 )

on U for all µ > µ0. Now let us choose a smooth function vε satisfying vε = u0 on
U ,vε = v0 + ε on K and vε = v0 + ε/2 on the rest of Ω. Then it is easily checked
that vε is an upper solution for the equation of un provided that µ is large enough.
As wε > vε on Ω,we must have wε ≤ un ≤ vε on Ω for all large µ and every large
n. It follows that wε ≤ uµ ≤ vε on Ω. This implies that uµ → v0 on K as µ →∞,
as required. The proof of the lemma is now complete. �

Remark. In the above argument, we used the idea of [10]. However, our case is
more complicated. We have to overcome this difficulty.



10 ZHENYI ZHAO EJDE–2003/99

Proof of Theorem 3.1. Let us first observe that a nonnegative entire solution of
∆p(u) + λup−1 − um−1 is either identically zero or positive everywhere,due to the
Harnack inequality. therefore,we need only consider positive solutions.

Set Ω = {x : |Du(x)| = 0}. if Ω = Rn,we are done. It is easy to see that
Ω is closed. Let x0 be an arbitrary point in Rn, we will show that u(x0) =
λ1/(m−p+1),using only pointwise convergence of vα and wα. For α > 0 let us define

uα(x) = u(x0 + α(x− x0)) (3.14)

It easily checked that uα satisfies

∆pu + αp(λup−1 − um)

Let B denote the a ball with center x0 and B ∩Ω = ∅. By Lemma 3.4, for large α,
the problem

∆pv + αp(vp−1 − vm), v|∂B = 0
has a unique positive solution vα and as α →∞, vα → λ1/(m−p+1) at x = x0 ∈ B.
Applying comparison principle we see that uα ≥ vα on B, and hence

u(x0) = uα(x0) ≥ vα(x0)

Letting α →∞ in the above inequality we conclude that u(x0) ≥ λ1/(m−p+1).
Let wα be the unique positive solution of

∆pw + αp(wp−1 − wm), w|∂B = ∞

by Lemma 3.6 we know that as α → ∞, wα(x) → λ1/(m−p+1) at x = x0 ∈ B.
Applying comparison principle we can see that uα ≤ wα on B. Thus

u(x0) = uα(x0) ≤ wα(x0)

Letting α → ∞ we obtain u(x0) ≤ λ1/(m−p+1). Therefore u(x0) = λ1/(m−p+1).As
x0 is arbitrary, we conclude that u ≡ λ1/(m−p+1). �

Remark: We believe this result is also true when p-Laplacian is replaced by the
MCO div( ∇u√

1+|∇u|2
).

4. Global Boundedness and Related Results

In this section, we prove general result which contains Theorem 1.2 as a special
case.

Let us observe the following result for the ODE problem

u′ = f(u), u(0) = u0. (4.1)

Lemma 4.1. Suppose f is C1 and satisfies

f(0) = f(1) = 0, f(u) > 0 ∀u ∈ (0, 1), f(u) < 0 ∀u > 1

Then for any u0 > 0, the unique solution u(t) of (4.1) satisfies limt→∞ u(t) = 1.

Proof. If u0 = 1, we have u(t) ≡ 1 and there is nothing to prove. If 0 < u0 < 1,
then u(t) is increasing and upper bounded by 1. Therefore limt→∞ u(t) = u(∞)
exists and satisfies u(∞) ∈ (0, 1]. But then u(∞) must be a positive root of f .
Therefore u(∞) = 1. The case u0 > 1 follows from a similar analysis, except that
now u(t) is decreasing. �

Theorem 4.2. Let u ∈ C2(Rn) be a solution of (1.2). Then the conclusions in
Theorem 1.2 hold.
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Proof. Let us first observe that it suffices to show |u| ≤ 1 in Rn. Indeed, if |u(x0)| =
1 say u(x0) = −1,then, w := u + 1 satisfies

−div(|∇w|p−2∇u) = f(w − 1), w ≥ 0, w(x0) = 0 .

Hence, it follows from the strong maximum principle that w ≡ 0, contradicting our
assumption that u changes sign.

We now prove |u| ≤ 1 on Rn. Set D = {x : |Du(x)| = 0} it is easily seen that
|u| ≤ 1 on D. On Rn \D, let g(u) = −ur, p− 1 < r < m, we can use the proof of
Theorem 1 of [20] to conclude that the problem

∆pv = g(v), v|∂B = ∞

has a unique positive solution v,where B stands for a ball centered at the origin
with small radius. We claim that u ≤ c = minB v(x) on Rn \ D. Otherwise, We
can find x0 ∈ Rn \D such that u(x0) > c. Define v(x) = v(x − x0). We find that
the set {x ∈ B(x0) : u(x) > v(x)} has a component Ω whose closure lies entirely
in the open ball B(x0) = {x : x − x0 ∈ B}. On Ω, we have u(x) > v(x) ≥ c > M
where M satisfies −ur(M) = up−1(M)−um(M) and ∆pu+g(u) ≥ 0 = ∆pv+g(v).
Moreover, u = v on ∂Ω. As g(u) is decreasing for u > M , from comparison
principle, we deduce that u ≡ v in Ω. This contradiction shows that we must have
u ≤ c on Rn.

Applying the above argument to w = −u which satisfies

∆pw = g(w), g(w) = −f(−w),

we deduce that u ≥ −c on Rn. Therefore,

−c ≤ u(x),∀x ∈ Rn \D.

Let uc and u−c denote the unique solution of

u′ = f(u), u(0) = u0

with u0 = c and u0 = −c, respectively. Then it follows from Lemma 4.1 that
uc(t) → 1 and u−c(t) → −1 as t → +∞. One the other hand, u, uc, u−c are all
bounded solutions of the parabolic problem

ut − div(|∇u|p−2∇u) = f(u) .

Since uc(0) ≥ u(x) ≥ u−c(0) on Rn \D, by the parabolic maximum principle and
the boundedness of u, uc, u−c, we conclude that u−c(t) ≤ u(x) ≤ uc(t) for all t > 0.
Letting t → ∞, we obtain −1 ≤ u(x) ≤ 1, as required. This finishes our proof of
Theorem 4.2. �

5. Some Lemmas

In this section, we prove two lemma which are needed in the proof of Theorem
1.3. Consider the solutions of the problem

∆pu + f(u) = 0 in Rn (5.1)

and that satisfy |u| ≤ 1 together with the asymptotic conditions

u(x′, xn) → ±1 as xn → ±∞ uniformly in x′ = (x1, . . . , xn−1), (5.2)

|Du| > 0 . (5.3)
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Assume that the function f = f(u) is Lipschitz-continuous on [−1, 1], and that
there exists δ > 0 such that

f is non-increasing on [−1,−1 + δ] and on [1− δ, 1]. (5.4)

Lemma 5.1. Let u be a solution of (5.1), (5.2) and (5.3) such that |u| ≤ 1. Then
u(x′, xn) = u0(xn)

The proof uses a sliding method and a version of comparison principle in slab;
i.e., Theorem 2.6.

Proof. Let us now consider a solution of (5.1), (5.2) and (5.3) such that |u| ≤ 1, and
let f satisfy (5.4). We are first going to prove that u is increasing in any direction
v = (v1, . . . , vn) such that vn > 0. In order to do so, for any t ∈ R, we define the
function ut by ut(x) = u(x + tv).

From (5.2), there exists real a > 0 such that u(x′, xn) ≥ 1− δ for all x′ ∈ Rn−1

and xn ≥ a and u(x′, xn) ≤ −1 + δ for all x′ ∈ Rn−1 and xn ≤ −a. For any
t ≥ 2a/vn, the functions u and ut are such that

ut(x′, xn) ≥ 1− δ for all x′ ∈ Rn−1 and for all xn ≥ −a,

u(x′, xn) ≤ −1 + δ for all x′ ∈ Rn−1 and for all xn ≤ −a,

ut(x′,−a) ≥ u(x′,−a) for all x′ ∈ Rn−1 and for all xn ≤ −a,

We now apply comparison principle in slabs of the type

Ωh = Rn−1 × (−a, h)

with h > −a.
Due to (5.2), there exists a function ε(h) ≥ 0 such that ut(x′, h) − u(x′, h) ≥

−ε(h) for all x′ ∈ Rn−1 and ε(h) → 0 as h → +∞. Choose any h > −a and set

w = ut(x) + ε(h) .

Then w, u fulfill the assumption of Theorem 2.6. We have w ≥ u in Ωh. By passing
to the limit h →∞, we conclude that

ut(x′, xn) ≥ u(x′, xn) for all x′ ∈ Rn−1 and xn ≥ −a.

Similarly, we could show that

ut ≥ u(x′, xn) for all x′ ∈ Rn−1 and xn ≤ −a

whence ut ≥ u in Rn

Let us now decrease t. We claim that ut ≥ u for all t > 0. Indeed, define
τ = inf{t > 0, ut ≥ uin Rn}. By continuity, we see that uτ ≥ u in Rn. Let us now
argue by contradiction and suppose that τ > 0. Two cases may occur.
Case 1. Suppose that

inf
Rn−1×[−a,a]

(uτ − u) > 0. (5.5)

From standard elliptic estimates, u is globally Lipschitz-continuous. Hence, there
exists a real η0 small enough, which can be chosen smaller than τ , such that for all
τ ≥ t > t− η0, we have

ut(x′, xn)− u(x′, xn) > 0 for all x′ ∈ Rn−1 and xn ∈ [−a, a]

Since u ≥ 1− δ in Rn−1 × [a,+∞) it follows that

ut(x′, xn)− u(x′, xn) > 0 for all x′ ∈ Rn−1 and xn ∈ [−a, a].
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We may now apply Theorem 2.6 in the two half-space Ω+ = {xn > a} and Ω− =
{xn < −a}. We then infer that, for all η ∈ [0, η0], uτ−η(x′, xn) ≥ u(x′, xn) for all
x′ ∈ Rn−1 and for all xn ∈ (−∞,−a)

⋃
(a,+∞) and so for all xn ∈ R owing to

(5.2). This is contradiction with the minimality of τ . Hence (5.5) is ruled out.
Case 2. Suppose

inf
Rn−1×[−a,a]

(uτ − u) = 0. (5.6)

Then there exists a sequence xk
k∈N ∈ Rn−1 × [−a, a] such that uτ (xk)− u(xk) → 0

as k → +∞. We normalize u by translation on Rn by setting uk(x) = u(x + xk).
Then by standard elliptic estimate we may assume that uk converges to a solution
u∞ of (5.1) as k → ∞. We have uτ

∞(0) = u∞(0) and uτ
∞ ≥ u∞ because uτ

k ≥ uk

for any k ∈ N . We have

∆pu
(τ∞) + f(uτ

∞) = ∆pu∞ + f(u∞) in Rn

uτ
∞ ≥ u∞ in Rn

uτ
∞(0) = u∞(0)

Strong Comparison Principle yields uτ
∞(x) ≡ u∞(x). This means that u∞(x) ≡

u∞(x + τv). Letting ξ = τv, we see that u∞ is periodic with respect to the vector
ξ. Recalling that −a ≤ xk

n ≤ a, we see that the function u∞ also satisfies the
uniform limiting conditions (5.2). hence, since ξn > 0, the function u∞ cannot be
ξ − periodic. So Case 2 is also ruled out.

Therefore, we have proved that τ = 0. the function u is then increasing in any
directionv = (v1, . . . , vn) such that vn > 0. From the continuity of ∇u, we deduce
that ∂vu ≥ 0 for any v such that vn = 0. If vn = 0,by taking v and −v, we find
that ∂vu = 0. Since this is true for all v with vn = 0. Since this is true for all v
with vn = 0, this implies that u(x) = u(xn).

Since the solutions of (5.1) are unique up to translations,it then follows that the
solutions u of (5.1), (5.2) such that |u| ≤ 1 are unique up to translations of the
origin. The proof is complete. �

Lemma 5.2. Let f be a Lipschitz continuous function which is positive over (0,1),
and satisfies f(1) = 0, f(t) ≥ δ0t on (0, t0) for some small δ0 > 0 and t0 > 0. If u
is C2 on the half plane ΣM := {x ∈ Rn : xn > M} and satisfies

∆pu + f(u) ≤ 0, 0 < u ≤ 1on ΣM

then u(x′, xn) → 1 uniformly in x′ ∈ Rn−1 as xn → +∞

To prove this lemma, we need following lemmas.

Lemma 5.3. Let u be a positive function in some domain (open connected set) D
satisfying

∆pu + f(u) ≤ 0 in D

with f locally Lipschitz continuous. Let B be a ball with closure B in D, and
suppose z is a function in C(B) satisfying

z ≤ u in B

∆pz + f(z) ≥ 0 wherever z > 0 in B
z ≤ 0 on ∂B
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Then, for any continuous one-parameter family of Euclidean motions(i.e., transla-
tions and rotations) A(t) for 0 ≤ t ≤ T with A(0) = Id and A(t)B ⊂ D,∀t, we
have for all t ∈ [0, t]:

zt(x) := z(A(t)−1x) < u(x)in Bt := A(t)B (5.7)

Proof. For all t ≥ 0, zt we have

∆pz(t) + f(z(t)) ≥ 0 wherever zt > 0 in Bt

zt ≤ 0 on ∂B

Thus in Bt, z(t), z satisfies ∆pzt + f(zt) ≥ ∆pz + f(z) wherever zt > 0 in Bt and

zt < u on ∂Bt (5.8)

Since z0 ≤ u in B, it follows by the comparison principle that z0 < u in B.
To prove (5.7) we argue by contradiction. Suppose there is a first t such that

the graph of zt touches that of u in Bt at some point x0. Then, for that t, zt ≤ u
in Bt, zt(x0) = u(x0). The strong comparison principle implies that zt ≡ u in G
where G is the component containing x0 of the set of points in Bt where zt > 0.
Consequently, by (5.8), any x̃ ∈ ∂G lies in Bt. Hence zt(x̃) > 0 and zt(x) > 0 for x
near x̃, which shows that x̃ ∈ G. We have reached a contradiction. Hence, for all
t ∈ [0, T ], the graph of zt always lies below that of u in Bt. �

Lemma 5.4. There exist ε1, R0 > 0 with R0 depending only on n and δ0 of Lemma
5.2 such that

u(x) > ε1 if dist(x,Γ) > R0

Proof. Let BR0 be a ball with R0 so large that the principal eigenvalue λ1 =
λ1(BR0) of ∆p in BR0 under Dirichlet boundary conditions satisfies

λ1 = λ1(BR0) < δ0.

Let ϕ1 be the eigenfunction of −∆p in BR0 , i.e.,

ϕ1 > 0,−∆pϕ1 = λ1ϕ
p−1
1 in BR0

ϕ1 = 0 on ∂BR0

with max ϕ1 = 1. then for 0 < ε ≤ s0 the function z = εϕ1 is a subsolution of our
equation, i.e.,

∆pz + f(z) ≥ 0 in BR0

z = 0 on ∂BR0

Let us choose a = (0, an) with an large enough so that BR0(a) lies in Ω. For
B = BR0(a), set ε0 = minB̄ u (clearly ε0 > 0), and set ε1 = min(ε0, s0). Since
maxB̄ ϕ1 = 1, it follows that

ε1ϕ1(x− a) ≤ u(x) in BR0(a).

In view of Lemma 5.3, we find then that ∀y ∈ Ω with dist(y, Γ) > R0

ε1ϕ1(x− a) < u(x) in BR0(y).

In particular, we have u(y) > ε1, thereby proving Lemma 5.4 �

Using Lemma 5.4, we prove a result that implies Lemma 5.2
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Lemma 5.5. Let y be a point with dist(y, Γ) > R0. By Lemma 5.4, ε1 ≤ u(y). Set

δ = δ(y) = min{f(s) : s ∈ [ε1, u(y)]}
There is a constant C1 depending only on n such that

C1δ ≤ [dist(y, Γ)−R0]−2 (5.9)

Proof. We first choose C1. Let v be the solution in B1(0) of

∆pv = −1 in B1(0)

v = 0 on ∂B1(0)

We take C1 = maxB1(0) v = v(x0). We assume that (5.9) does not hold and argue
by contradiction;i.e., we assume

C1δ > [dist(y, Γ)−R0]−2

Fix R < dist(y, Γ)−R0 such that C1δ > R−1. Since ∆pu < 0 at y, u cannot achieve
a local minimum there. choose a point y1 close to y with u(y1) < u(y) and such
that dist(y1,Γ) > R0 + R. By Lemma 5.4, u ≥ ε1 in BR(y1) =: B.

Let z be the solution in B of
∆pz = −δ in B

z = 0 on ∂B
(5.10)

By scaling, one finds that

max z = z(y1) = C1δR2

For 0 < τ small, τz < u in B. As we increase τ , there is necessarily a first value-
which we call τ -for which the graph of τz touches that of u at some point x0. Since
z = 0 on ∂B, x0 in B. Now

u(x0) = τz(x0) ≤ τz(y1) = τC1δR2 ≤ u(y1) < u(y) < 1 (5.11)

and hence τ < 1. Thus

w := τz − u ≥ 0in B,w(x0) = τz(x0)− u(x0) = 0 (5.12)

By (5.10), u(x0) < u(y), and so in a neighborhood, say N , of x0, u < u(y). By
the definition of δ, it follows that ∆p ≤ −δ in the neighborhood N , and since
τ < 1,∆p(τz) > ∆pu > 0 in this neighborhood N . this contradicts the fact that
τz − u has a local maximum at x0 �

Proof of Lemma 5.2. Since dist(x, Γ) →∞, from (5.9) follows that min[ε1,u(x)] f →
0 which implies that u(x) → 1 uniformly in Ω �

6. Odd Nonlinearity and Related Results

In this section, we prove a generalization of Theorem 1.3.

Theorem 6.1. Suppose f is Lipschitz continuous and satisfies

f(−1) = f(0) = f(1) = 0, tf(t) > 0 when 0 < |t| < 1,

and for small positive constants δ0, t0 and δ

f(t)
t

≥ δ0 when 0 < |t| < t0

f is non-increasing on [−1,−1 + δ] ∪ [1− δ, 1].
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Furthermore, assume that f(t) is odd in t. Then the statement in Theorem 1.3
holds for any solution u ∈ C2(Rn) of (5.1), (5.2), (5.3) satisfying |u| ≤ 1

Proof. After a rotation and a translation, we may assume that the hyperplane is
given by xn = 0, u(0) = 0 and u−1(0) ⊂ {x : xn ≤ 0}. We may assume that
u(x′, xn) > 0,∀x′ ∈ Rn−1,∀xn > 0; the other possibility that u(x′, xn) < 0,∀x′ ∈
Rn−1,∀xn > 0 can be handled analogously.

For τ ≥ 0, let us define

uτ (x′, xn) = −u(x′, 2τ − xn).

Since f is odd, we easily see that

−∆puτ = f(uτ )

clearly u|xn=τ ≥ 0 ≥ uτ |xn=τ .
We want to show that for every τ ≥ 0, u ≥ uτ on the half space{x : xn ≥ τ}.

Since u(x) > 0 when xn > 0, it follows from Lemma 5.2 that u(x
′
, xn) → 1 as

xn → ∞ uniformly in x
′ ∈ Rn−1. Therefore, for large τ we can apply comparison

principle to
Ω := {x : xn > τ}

to conclude that u ≥ uτ on Ω. Now define

τ0 = inf{τ ∈ [0,∞) : u(x′, xn) ≥ uτ (x
′
, xn),∀x

′
∈ Rn−1,∀xn ≥ τ}.

Claim: τ0 = 0. Otherwise,τ0 > 0 and u(x) ≥ uτ0(x) on the set Ω0 := {x : xn ≥ τ0}.
Clearly u, uτ0 satisfied

∆pu + f(u) = ∆puτ + f(uτ )
Since u > 0 > uτ0 on ∂Ω0, by the definition of τ0,we have two possibilities.

(a) u(x0) = uτ (x0) for some x0 ∈ Ω0, or
(b) u(x) > uτ (x) > 0 in Ω0 and u(zk) − uτ (zk) → 0 for some zk ∈ Ω̄0 with

|zk| → ∞.
If case(a) occurs, then the Harnack inequality forces w ≡ 0 on Ω0, which is im-
possible as w > 0 on ∂Ω0. If (b) occurs, we set uk(x) = u(x + zk). By standard
elliptic estimates, up to extraction of a subsequence, uk converges in C2

loc(Rn) to a
solution u∗ of (5.1) as k →∞. Moreover,

v := u∗ − u∗τ0

satisfies v(0) = 0 and

∆pu
∗ + f(u∗) = ∆pu

∗
τ0

+ f(u∗τ0
), v ≥ 0,∀x ∈ Ω∗

where Ω∗ = {x : xn > τ∗} with τ∗ ∈ [−∞, 0] determined by (passing to a subse-
quence when necessary)

τ∗ = − lim
k→∞

d(zk, ∂Ω0).

If 0 ∈ Ω∗ then we obtain from the Harnack inequality that v ≡ 0 on Ω∗, i.e.,

u∗(x
′
, xn) = −u∗(x′, 2τ0 − xn),∀x

′
∈ Rn−1,∀xn > τ∗ .

Taking xn = τ0 we deduce u∗(x′, τ0) = 0. This implies that d(zk, ∂Ω0) is bounded,
for otherwise, due to u(x′, xn) → 1 uniformly in x′ ∈ Rn−1 as xn → +∞, we would
have u∗ ≡ 1. The boundedness of {d(zk, ∂Ω0)} and the fact that u(x′, xn) → 1
uniformly in x′ ∈ Rn−1 as xn → +∞ imply u∗(x′, xn) → 1 uniformly in x′ ∈ Rn−1

as xn → +∞. This together with comparison principle implies that u∗(x′, xn) → −1
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uniformly in x′ ∈ Rn−1 as xn → −∞. Hence we can use Lemma 5.1 to conclude that
u∗(x) = u∗(xn) and is increasing in xn. On the other hand,since uk(0) = u(zk) > 0,
we have u∗(0) ≥ 0, a contradiction to the monotonicity of u∗(x0) and u∗(τ0) = 0

If 0 ∈ ∂Ω∗, we necessarily have {d(zk, ∂Ω0)} → 0 and hence τ∗ = 0,Ω∗ =
{x : xn > 0}. As before,this implies u∗(x′, xn) → 1 uniformly in x′ as xn → ∞.
Moreover for anyη ≥ −τ0, since uk(x′, η) = u((x′, η) + zk) ≥ 0 , we deduce

u∗(x′, η) ≥ 0,∀x′ ∈ Rn−1.

In particular,
u∗(0, xn) ≥ 0,∀xn ≥ τ0 (6.1)

As v(0) = 0, we have u∗(0) = −u∗(0, 2τ0). Therefore we necessarily have u∗(0) =
u∗(0, 2τ0) = 0. In view of (6.1),the function g(t) := u∗(0, t) has a local minimum at
t = 0 and att = 2τ0.Therefore,g′(0) = g′(2τ0) = 0.This implies that∂nv(0) = 0.Since
v satisfies

∆pu
∗ + f(u∗) = ∆pu

∗
τ + f(u∗τ ) ≥ 0,∀x ∈ Ω∗, v(0) = 0, 0 ∈ ∂Ω∗

an application of the strong comparison principle gives v ≡ 0, i.e., u∗(x′, xn) =
−u∗(x′, 2τ0−xn) for all x′ ∈ Rn−1 and all xn ≥ 0. We can now argue as in the case
that 0 ∈ Ω∗ to conclude that u∗(x) = u∗(xn) and is increasing in xn. But this is
in contradiction with our earlier observation that u∗(0) = u∗(2τ0).This proves our
claim.

From τ0 = 0 we obtain u(x
′
, xn) ≥ −u(x

′
,−xn) for all x

′ ∈ Rn−1and xn ≥ 0.
Hence we must have u(x

′
, xn) = −u(x

′
,−xn) for allx

′ ∈ Rn−1 and all xn > 0.
Recall that we have u(x

′
, xn) → −1 uniformly in x

′
as xn → −∞. Therefore we

can use Lemma 5.1 and conclude. The proof of Theorem 1.3 is complete. �
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