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BLOW-UP RATE FOR PARABOLIC PROBLEMS WITH
NONLOCAL SOURCE AND BOUNDARY FLUX

ARNAUD ROUGIREL

Abstract. We determine the blow-up rate and the blow-up set for a class of

one-dimensional nonlocal parabolic problems with opposite source term and

boundary flux. As a consequence, it is shown that the solutions approach
negative infinity in the interior of the domain and positive infinity at one

boundary point.

1. Introduction

In some nonlinear evolution equations, solutions develop singularities in finite
time and can not be continued beyond that time. Such phenomenon is called blow-
up and the time at which blow-up occurs is called the blow-up time [8]. The blow-up
set is the set of all points x such that the solution blows up at the place x and at
time T . By the blow-up rate we mean any approximation of the solution near the
blow-up time by unbounded quantities. The solution can be estimated for instance
pointwise or with respect to the L∞ norm.

In this paper, we study of the blow-up rate of the following one-dimensional
nonlocal problem,

ut − uxx = −a
(∫

Ω

u(x, t)dx
)

in (0, `)× (0, T ),

u(0, t) = 0 on (0, T ),

ux(`, t) = a
(∫

Ω

u(x, t)dx
)

on (0, T ),∫
Ω

u(x, t)dx ≥ 0 on (0, T ),

u(·, 0) = u0(·) in (0, `),

(1.1)

where `, T are positive numbers, Ω = (0, `) and a(·) is a numerical function defined
on [0,∞). The function a(·) could be for instance a power function.

Nonlocal problems can arise in applications either by assuming from the start
that there exists some global interaction between the variables involved or as the
result of some simplification of standard local models (see [6]). In the first case,
there are, for instance, the examples of heat conduction (see [4] for the above
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problem and [7]) or population models in biology, where it can be assumed that
there exists some global mechanism which is important in the process of evolution
described (see [2], [3], [9]). We refer to [12] for an example where the second
situation occurs.

We would like to point out some structural difficulties appearing in Problem
(1.1) namely the presence of two nonlinear terms and the mixed boundary condi-
tions. Moreover some usual and useful tools do not apply here: there is no global
Liapunov’s functional and the maximum principle does not hold. More precisely,
there exit sign changing solutions having positive initial conditions (see Remark
5.2). This phenomenon is essentially due to the fact that the nonlinear terms are
nonlocal and have different signs.

The study of blow-up rate for parabolic equations has produced a huge literature
which can be divided into three parts depending on the presence of nonlinear terms
in the equation or/and in the boundary conditions. We briefly state some results
for these three types of problems. First consider problems with a source term.

If Ω is a bounded domain of Rn and p > 1 is a number satisfying (n−2)p < n+2
then the blow-up rate for the problem

ut −∆u = up in Ω× (0, T ),

u(·, t) = 0 on ∂Ω× (0, T ),

u(·, 0) = u0(·) ≥ 0 in Ω,

is given by the estimates

c

(T − t)
1

p−1
≤ sup

Ω
u(·, t) ≤ C

(T − t)
1

p−1
,

where c and C are positive constants [10]. Nonlocal equations of the form

ut −∆u =
(∫

Ω

| u(x, t) |r dx
)p/r

in Ω× (0, T ),

u(·, t) = 0 on ∂Ω× (0, T ),

u(·, 0) = u0(·) in Ω,

where 1 ≤ r < ∞, p > 1 have the same blow-up rate [16].
For problems with nonlinear boundary conditions such as

ut −∆u = 0 in Ω× (0, T ),
∂u

∂n
= uq on ∂Ω× (0, T ),

u(·, 0) = u0(·) ≥ 0 in Ω,

the blow-up rate is

c

(T − t)
1

2(q−1)
≤ sup

Ω
u(·, t) ≤ C

(T − t)
1

2(q−1)

provided, for instance, that Ω is a smooth bounded domain of Rn, q > 1, (n−2)q < n
and ∆u0 ≥ 0 (see [11]). The case where Ω = Rn

+ is addressed in [5].
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An example of problems with both source term and boundary flux is

ut − uxx = −λup in (0, 1)× (0, T ),

ux(0, t) = 0 on (0, T ),

ux(1, t) = u(1, t)q on (0, T ),

u(·, 0) = u0(·) ≥ 0 in Ω.

If u0 is positive, increasing, verifies a compatibility condition, and u0xx − λup
0 ≥

α > 0, then the blow-up rate of any blowing-up solution is given by

c

(T − t)α
≤ sup

Ω
u(·, t) ≤ C

(T − t)α
,

where

α = min
( 1
p− 1

,
1

2(q − 1)
)

(see [13]). We remark that 1/(p−1) (resp. 1/2(q−1)) is the blow-up rate exponent
coming from the source term (resp. the boundary flux) and that the blow-up rate
is independent of the sign of the real parameter λ.

Let us state now our main result in the simple situation where a is a power
function.

Theorem 1.1. Let p > 1, a(s) = sp for all s ≥ 0, ` ∈ (0, 3π
10 ), u0 ≥ 0 in Ω and u be

the maximal solution to Problem (1.1) defined on some finite time interval [0, T ).
Then u blows up at time T ,

∫ `

0
u(x, t)dx → +∞ as t → T and the blowup rate at

the point x = ` is given, for t close to T , by

c

(T − t)
p+1

2(p−1)

≤ u(`, t) ≤ C

(T − t)
p+1

2(p−1)

, (1.2)

where c and C are positive numbers independent of time. In addition, for any
compact subset K and for t close to T ,

−C

(T − t)
1

p−1
≤ u(x, t) ≤ −c

(T − t)
1

p−1
∀x ∈ K, (1.3)

where c, C are positive numbers independent of K and t.

The plan for this paper is as follows: In section 2, we recall some results about
solutions which blow up in finite time. The blow-up rate for the integral of the
solution is computed in section 3. In section 4, the main result, namely Theorem
4.3, is stated and proved. It gives the blow-up rate of the solution to Problem (1.1).
The section 5 is devoted to some remarks and applications of the main result.

Let us explain briefly the ideas of the proof of Theorem 4.3. For let us denote
by u the solution to Problem (1.1). We compute the blow-up rate of u1, the
first coordinate of u in some spectral basis of L2(Ω) and prove, roughly speaking,
the equivalence between u1 and

∫
Ω

udx near the blow-up time. Estimates for the
integral then follow. Using these estimates and assuming the monotonicity of the
function a, we deduce the blow-up rate of the solution u.

Time independent constants will be denoted by c, C, c1, . . . . Different constants
may be indicated by the same symbol if no confusion can occur.
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2. Existence of blowing-up solutions

Existence and uniqueness of a maximal solution to problem (1.1) follow from the
classical theory of parabolic equations. We would like to address here the issue of
the existence of blowing-up solutions. Since a is defined only on [0,∞), it could
happen that

∫ `

0
u(x, T )dx vanishes at the end point T of the maximal existence

time interval. Moreover, as explain above, u can change its sign hence it is not
clear that there exist solutions which blow up in finite time. Nevertheless this is
true for small `. Indeed, let us first assume that

the function a is defined and locally Lipschitz continuous on [0,∞) (2.1)

and there exist two constants p ≥ 1 and C0 > 0 such that

|a(s)| ≤ C0(1 + |s|p) ∀s ∈ [0,∞). (2.2)

Then the function

a(s) =

{
a(s) if s ≥ 0,

a(0) otherwise,
(2.3)

is clearly locally Lipschitz continuous on R and satisfies the growth condition (2.2)
on R. Hence according to [14, Theorem 1.1], we have the following theorem.

Theorem 2.1. Under the assumptions and notation (2.1)-(2.3), let us assume in
addition that the initial condition u0 belongs to L2(Ω). Then the problem

ut − uxx = −a
(∫

Ω

u(x, t)dx
)

in (0, `)× (0, T ),

u(0, t) = 0 on (0, T ),

ux(`, t) = a
(∫

Ω

u(x, t)dx
)

on (0, T ),

u(·, 0) = u0(·) in (0, `),

(2.4)

has a unique maximal weak solution u defined on Ω× [0, T ). Moreover, if T is finite
then

lim
t→T

|u(·, t)|L2(Ω) = +∞.

We refer the reader to [4] for the definition of the maximal weak solution to the
above problem.

Theorem 4.2 in [4] gives sufficient conditions ensuring that the integral of the
solution to (2.4) remains positive hence under the assumptions of this theorem,
the solutions to Problems (1.1) and (2.4) coincide. Using also [14, Theorems 2.1
and 2.2], we obtain the existence of blowing-up solutions for Problem (1.1). More
precisely, we have the

Theorem 2.2. There exists `1 ∈ [ 3π
10 ,∞] such that if

(i) Ω = (0, `) with ` ∈ (0, `1),
(ii) the function a satisfies (2.1)-(2.2), is non-negative, non-decreasing on the

interval (0,+∞) and
∫ +∞ ds

a(s) < +∞,
(iii) the initial condition u0 is equal to βφ where β ∈ R and φ is a function of

L2(Ω) satisfying one of the two following conditions:
(1) There exists α > 0 such that φ ≥ α a.e. in Ω; or



EJDE–2003/98 BLOW-UP RATE FOR PARABOLIC PROBLEMS 5

(2) φ is continuous on Ω, positive on (0, `], differentiable from the right at
0 and satisfies φ(0) = 0, φ′(0+) > 0,

then there exists a positive number β1 such that for all β ≥ β1, the weak solution
to Problem (1.1) blows up in finite time in L2 norm.

Some blow-up results for large ` are stated in [15].

3. Blowup rate for the integral

In this section, we will assume that

a satisfies (2.1), is positive, non-decreasing on (0,∞) (3.1)

and ∫ +∞ ds

a(s)
< +∞. (3.2)

These assumptions allow us to introduce the function A defined by

A(u) =
∫ ∞

u

ds

a(s)
∀u ∈ (0,∞). (3.3)

Remark 3.1. The function A maps (0,∞) onto (0, A(0)), is continuous and de-
creasing on (0,∞). Thus the inverse function A−1 of A is well defined on (0, A(0))
and its limit at 0 is +∞. If A(0) is finite then we extend A−1 by zero outside of
(0, A(0)], hence (A−1)′ is a non-negative piecewise continuous function on (0,∞).

Theorem 3.2. Let us assume the following:
(i) Ω = (0, `) with ` < 3π/10.
(ii) The function a satisfies the assumptions (2.2), (3.1) and (3.2).
(iii) The solution u to Problem (1.1) blows up in finite time T in L2 norm.

Then there exist positive constants c and C such that for t close to T , it holds that

cA−1
(
C(T − t)

)
≤

∫
Ω

u(x, t)dx ≤ CA−1
(
c(T − t)

)
. (3.4)

To prove this result, we introduce some auxiliary functions and notation and
then state three lemmas.

The weak formulation of (1.1) reads
d

dt

∫
Ω

uϕdx +
∫

Ω

uxϕxdx = a
(∫

Ω

u(x, t)dx
)(

ϕ(`)−
∫

Ω

ϕdx
)
,

for all test function ϕ belonging to {ϕ ∈ H1(Ω) : ϕ(0) = 0}. Taking ϕ = ϕk the
kth element of the normalized spectral basis (with non-negative integral) associated
with the Laplacian operator with homogeneous mixed boundary conditions, we get

u′k(t) + λkuk(t) = a
(∫

Ω

u(x, t)dx
)
D(ϕk), (3.5)

where uk(t) denotes the kth coordinate of u(t) in the basis (ϕk)k≥1 and

D(ϕk) = ϕk(`)−
∫

Ω

ϕkdx =

√
2
`

(
(−1)k+1 − 1√

λk

)
. (3.6)

Note that, in our one-dimensional setting, we have clearly

λk =
π2

4`2
(2k − 1)2, ϕk(x) =

√
2
`

sin
(√

λkx
)

=

√
2
`

sin
( π

2`
(2k − 1)x

)
(3.7)
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and therefore

ϕk(`) =

√
2
`
(−1)k+1,

∫
Ω

ϕkdx =

√
2
`

1√
λk

. (3.8)

Lemma 3.3. Let ` ∈ (0, 3π/10) and u be the solution to Problem (1.1). Then, for
some positive constants c and C independent of time,

cu1(t) ≤
∫

Ω

u(x, t)dx + C ∀t ∈ [0, T ). (3.9)

Proof. Let t ∈ [0, T ). From (3.5), we deduce the following representation of uk,

uk(t) = e−λktu0k
+

∫ t

0

e−λk(t−s)a
(∫

Ω

u(x, s)dx
)
dsD(ϕk), (3.10)

where u0k
is the kth coordinate of the initial condition i.e. u0k

=
∫
Ω

u0(x)ϕk(x)dx.
For any integer n ≥ 1, let us consider the sum

Sn(t) =
n∑

k=1

uk(t)
∫

Ω

ϕkdx.

With (3.10), denoting

Ek = D(ϕk)
∫

Ω

ϕkdx =
2
`

( (−1)k+1

√
λk

− 1
λk

)
(3.11)

and

Ik =
∫ t

0

e−λk(t−s)a
(∫

Ω

u(x, s)dx
)
ds,

we write Sn(t) in the form

Sn(t) =
n∑

k=1

e−λktu0k

∫
Ω

ϕkdx +
n∑

k=1

IkEk = S1
n(t) + S2

n(t), (3.12)

where S1
n(t) and S2

n(t) are defined in an obvious way.
Considering first the sum S2

n(t), a direct computation leads to (see (3.11) and
(3.7)),

Ek + Ek+1 =
π2

2`4λkλk+1

(
π(4k2 − 1)− 2(4k2 + 1)`

)
,

for k ≥ 1 odd. Thus

` <
3π

10
=⇒ Ek + Ek+1 > 0 ∀k ≥ 1, odd. (3.13)

In particular, for k = 1, there exists a positive constant ε depending only on ` such
that

E1 + E2 ≥ εE1. (3.14)

Furthermore, k 7→ Ik is non-increasing. It follows that for all k ≥ 1 odd,

Ik+1Ek+1 ≥ IkEk+1, (3.15)

since Ek+1 ≤ 0. Hence, for every even integer n ≥ 4, writing S2
n(t) under the form

S2
n(t) = I1E1 + I2E2 +

n−1∑
k=3,odd

IkEk + Ik+1Ek+1
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and using (3.15), it appears

S2
n(t) ≥ I1(E1 + E2) +

n−1∑
k=3,odd

Ik(Ek + Ek+1).

Now Ik ≥ 0 thus with (3.14) and (3.13), we obtain

S2
n(t) ≥ εI1E1. (3.16)

Going back to (3.12) we get with (3.16) and next (3.10),

Sn(t) ≥S1
n(t) + εI1E1

≥S1
n(t)− εe−λ1tu01

∫
Ω

ϕ1dx + ε
(
e−λ1tu01

∫
Ω

ϕ1dx + I1E1

)
≥S1

n(t)− εe−λ1tu01

∫
Ω

ϕ1dx + ε

∫
Ω

ϕ1dx u1(t).

Now, S1
n(t) − εe−λ1tu01

∫
Ω

ϕ1dx is the integral over Ω of the solution wn to the
linear problem

wn
t − wn

xx = 0 in (0, `)× (0, T ),

wn(0, t) = 0, wn
x (`, t) = 0 on (0, T ),

wn(x, 0) = (1− ε)u01ϕ1(x) +
n∑

k=2

u0k
ϕk(x) in (0, `).

(3.17)

Classically, the L2-norm |wn(·, t)|L2(Ω) of wn(·, t) can be estimated by
|wn(·, 0)|L2(Ω) which is bounded up to a constant by |u0|2,Ω. Thus for some positive
constant C > 0 independent of time,∣∣∫

Ω

wn(x, t)dx
∣∣ ≤ C ∀n ≥ 1. (3.18)

Hence, Sn(t) ≥ −C + cu1(t) for all t ∈ [0, T ) and letting n → ∞, we arrive at
(3.9). �

Lemma 3.4. Let ` ∈ (0,∞) and u be the solution to Problem (1.1). Then, for a
positive constant C, ∫

Ω

u(x, t)dx ≤ Cu1(t) + C ∀t ∈ [0, T ). (3.19)

Proof. Using the notation of the previous lemma, we have

Sn(t) =
∫

Ω

ϕ1dx u1(t) +
n∑

k=2

e−λktu0k

∫
Ω

ϕkdx +
n∑

k=2

IkEk.

Let us show that this last sum is non-positive if n is odd. Indeed
n∑

k=2

IkEk =
n−1∑

k=2,even

IkEk + Ik+1Ek+1 ≤
n−1∑

k=2,even

Ik+1(Ek + Ek+1) ≤ 0,

since Ek ≤ 0 and Ek + Ek+1 ≤ 0 for all k even and all ` > 0. Using also (3.17),
(3.18) with ε = 1, we obtain Sn(t) ≤

∫
Ω

ϕ1dx u1(t)+C and the result follows letting
n →∞. �



8 ARNAUD ROUGIREL EJDE–2003/98

Lemma 3.5. Under the assumptions of Theorem 3.2, it holds that, as t → T ,

u1(t) =
∫

Ω

u(x, t)ϕ1(x)dx →∞ and
∫

Ω

u(x, t)dx →∞. (3.20)

Moreover, there exist c and C positive, such that for t close to T ,

0 ≤ cu1(t) ≤
∫

Ω

u(x, t)dx ≤ Cu1(t). (3.21)

Proof. Putting k = 1 in (3.5) we get

u′1(t) + λ1u1(t) = a(
∫

Ω

u(x, t)dx)D(ϕ1). (3.22)

By (3.9), (3.1) and D(ϕ1) > 0,

u′1(t) + λ1u1(t) ≥ a
(
(cu1(t)− C)+

)
D(ϕ1) ∀t ∈ [0, T ),

where (·)+ denotes the positive part of the argument. Setting, for s ∈ R, f(s) :=
D(ϕ1)a

(
(cs− C)+

)
− λ1s, the above inequality reads

u′1(t) ≥ f(u1(t)) ∀t ∈ [0, T ). (3.23)

Since u blows up in L2 norm at time T and
∫
Ω

u(x, t)dx ≥ 0, it follows in a standard
way that

lim sup
t→T

∫
Ω

u(x, t)dx = +∞. (3.24)

Thus by (3.19) and (3.2), there exists a time t1 ∈ [0, T ) such that u1(t1) is larger
than any zero of f and f(u1(t1)) > 0. We then deduce with (3.23) that u1 is
increasing on [t1, T ). Thus u1 admits a limit in T which must be +∞ due to (3.19)
and (3.24). Now with (3.9) we have then

∫
Ω

u(x, t)dx → ∞. (3.21) follows easily
from (3.20), (3.9) and (3.19) which completes the proof of the lemma. �

Proof of Theorem 3.2. Due to (3.20)-(3.22), (3.1) and (3.2), we deduce that, for
some time t1 ∈ [0, T ), it holds that u′1(t) ≥

D(ϕ1)
2 a(cu1(t)) on [t1, T ); we recall that

D(ϕ1) defined by (3.6) is positive since ` < 3π
10 . Integrating this inequality on [t, T1]

for any t, T1 ∈ [t1, T ) with t < T1, we have

A
(
cu1(t)

)
−A

(
cu1(T1)

)
≥ cD(ϕ1)

2
(T1 − t),

where A is defined by (3.3). When T1 → T , we get by (3.20)

A
(
cu1(t)

)
≥ cD(ϕ1)

2
(T − t) ∀t ∈ [t1, T ).

Since A−1 is decreasing,

u1(t) ≤ CA−1
(
c(T − t)

)
∀t ∈ [t1, T ),

which together with (3.21) provides the upper bound of
∫
Ω

u(x, t)dx claimed in
(3.4) for a new constant C. The lower bound is obtained in the same manner.
Indeed, from (3.21) and (3.1), we deduce that a(

∫
Ω

u(x, t)dx) ≤ a(Cu1(t)) on [t1, T ).
Combining this with (3.22) leads to

u′1(t) ≤ D(ϕ1)a(Cu1(t)) ∀t ∈ [t1, T ).

Hence, in view of Remark 3.1,
∫
Ω

u(x, t) ≥ c′A−1
(
C ′(T − t)

)
thanks to (3.21).

Moreover we may assume c = c′ and C = C ′ in (3.4) since A−1 is non-increasing. �
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4. Blow-up rate for the solution

Taking advantage of the semi-linear structure of Problem (1.1) and using the
results of the previous section, we are led to study, by the superposition principle,
three simpler linear problems. Each has only one non-trivial term coming respec-
tively from the contribution of the source term or the boundary flux or the initial
condition. The third problem gives rise, of course, to bounded quantities and the
first one can be treated using results of [16]. Indeed, let f be a numerical function
defined on [0, T ) and let us consider the problem

ut − uxx = −f(t) in (0, `)× (0, T ),

u(0, t) = 0 on (0, T ),

ux(`, t) = 0 on (0, T ),

u(·, 0) = 0 in (0, `).

(4.1)

Then we have the following statement.

Theorem 4.1. Let f be a positive function, continuous on [0, T ) and locally Hölder
continuous on (0, T ). Assume that the solution u to (4.1) satisfies

lim
t→T

|u(·, t)|L∞(Ω) = ∞.

Then

lim
t→T

u(x, t)∫ t

0
f(s)ds

= −1,

uniformly on compact subsets of (0, `].

Proof. It is well know that the problem

ξt − ξxx = −f(t) in (0, 2`)× (0, T ),

ξ(0, t) = 0 on (0, T ),

ξ(2`, t) = 0 on (0, T ),

ξ(·, 0) = 0 in (0, 2`),

has a unique classical solution. Moreover it is symmetric with respect to ` thus
ξ = u on (0, `)× (0, T ). We conclude using [16, Theorem 4.1]. �

Hence it remains to examine the second problem. For this end, we consider the
problem

ut − uxx = 0 in (0, `)× (0, T ),

u(0, t) = 0 on (0, T ),

ux(`, t) = g(t) on (0, T ),

u(·, 0) = 0 in (0, `),

(4.2)

where g is a numerical function defined on [0, T ).

Theorem 4.2. Let us assume that g is a continuous function defined from [0, T )
into [0,∞) and for t close to T ,

g(t) ≤ C1 exp
( `2

8(T − t)
)
. (4.3)
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Then the solution u to (4.2) satisfies, for all t ∈ [0, T ),

−C +
∫ t

0

g(s)√
π(t− s)

ds ≤ u(`, t) ≤ C + C

∫ t

0

sup[0,s] g√
t− s

ds. (4.4)

If, instead of (4.3), we suppose that for t close to T ,

g(t) ≤ C1

(T − t)β
, (4.5)

where β > 0, then for each compact subset K of Ω,

sup
K×[0,T )

u < ∞. (4.6)

Proof. Let

K(x, t) =
1√
4πt

exp
(
−x2

4t

)
.

According to [1, Theorem 7.1.1], the solution to (4.2) has the form

u(x, t) = −2
∫ t

0

∂xK(x, t− s)ϕ1(s)ds + 2
∫ t

0

K(x− `, t− s)ϕ2(s)ds, (4.7)

where ϕ1, ϕ2 are piecewise-continuous solutions to

ϕ1(t) = −2
∫ t

0

K(−`, t− s)ϕ2(s)ds,

ϕ2(t) = 2
∫ t

0

∂xxK(`, t− s)ϕ1(s)ds + g(t).
(4.8)

To solve (4.8), we put

~ϕ =
(

ϕ1

ϕ2

)
, H(t) =

(
0 −2K(−`, t)

2∂xxK(`, t) 0

)
, ~g =

(
0
g

)
.

Then (4.8) is equivalent to

~ϕ(t) =
∫ t

0

H(t− s)~ϕ(s)ds + ~g(t). (4.9)

Since the kernel H is smooth on [0,∞) and g is continuous on [0, T ′] for all T ′ ∈
(0, T ), this equation has a unique continuous solution ~ϕ on [0, T ′]. Moreover ~ϕ can
be clearly extended into a solution on [0, T ). Also

‖~ϕ(t)‖ ≤ C sup
[0,t]

g ∀t ∈ (0, T ), (4.10)

where ‖~ϕ‖2 := ϕ2
1 + ϕ2

2. Indeed since H is bounded, we deduce from (4.9) that

‖~ϕ(t)‖ ≤ C

∫ t

0

‖~ϕ(s)‖ds + sup
[0,t]

‖~g‖.

By Gronwall’s Lemma, ‖~ϕ(t)‖ ≤ sup[0,t] ‖~g‖ exp(CT ), for t < T and (4.10) follows.
Now we can give the lower bound for u(`, ·). The choice x = ` in (4.7) implies

u(`, t) = −2
∫ t

0

∂xK(`, t− s)ϕ1(s)ds +
∫ t

0

ϕ2(s)√
π(t− s)

ds. (4.11)
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Let us estimate the first integral above. According to (4.3), for s < t < T ,

g(s) ≤ C1 exp
( `2

8(t− s)
)
. (4.12)

Hence, by (4.10),

‖~ϕ(s)‖ ≤ C1 exp
( `2

8(t− s)
)
. (4.13)

Thus ∣∣∫ t

0

∂xK(`, t− s)ϕ1(s)ds
∣∣ ≤ C

∫ t

0

1
(t− s)3/2

exp
(
− `2

8(t− s)
)
ds

which is bounded on [0, T ]. Let us consider the second integral in (4.11) denoted
by I2. Going back to the second equation of (4.8), we obtain with (4.13),

ϕ2(t) ≥ −C + g(t).

Thus

I2 ≥ −C

∫ t

0

ds√
π(t− s)

+
∫ t

0

g(s) ds√
π(t− s)

and the left hand side of (4.4) follows. To get the upper bound, we go back to
(4.11) and recall that its first integral is bounded. Combining this with (4.10), we
arrive at

u(`, t) ≤ C + C

∫ t

0

sup[0,s] g ds
√

t− s
,

for a new constant C and (4.4) is proved.
Let us prove (4.6). From the integral representation (4.7) and (4.10), (4.5), we

deduce, arguing as above, that u is bounded on K × [0, T ). This completes the
proof of the theorem. �

Let us now state our main result.

Theorem 4.3. Assume the following:
(i) Ω = (0, `) with ` < 3π/10.
(ii) The function a satisfies (3.1) and for all C ∈ (1,∞),

lim sup
s→+∞

a(Cs)
a(s)

< ∞, (4.14)

lim sup
C→+∞

lim inf
s→+∞

a(Cs)
Ca(s)

= ∞. (4.15)

(iii) The solution u to Problem (1.1) blows up in finite time T in L2 norm.
Then there exist positive constants c and C such that for t close to T , it holds that

c

∫ t

0

−(A−1)′
(
C(T − s)

)
√

t− s
ds ≤ u(`, t) ≤ C

∫ t

0

−(A−1)′
(
c(T − s)

)
√

t− s
ds. (4.16)

Additionally, for any compact subset K of Ω, with t close to T ,

−CA−1
(
c(T − t)

)
≤ u(x, t) ≤ −cA−1

(
C(T − t)

)
, (4.17)

for all x ∈ K.

We refer the reader to Remark 3.1 for the definition of A−1.
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Lemma 4.4. If a satisfies the assumption (ii) of the above theorem then there exist
positive constants p, ε and s0 such that

s1+ε ≤ a(s) ≤ sp ∀s ≥ s0. (4.18)

Proof. By (4.14) with C = 2 and (3.1), there exists a positive number M > 1 such
that

a(2s) ≤ Ma(s) ∀s ≥ 1. (4.19)
For fixed s ≥ 1, there exits n ∈ N \ {0} satisfying 2n−1 ≤ s ≤ 2n. Since a is
non-decreasing, we have with (4.19),

a(s) ≤ a(2n) ≤ Mn−1a(2). (4.20)

Now, from 2n−1 ≤ s and M > 1, we deduce that

a(s) ≤ a(2)s(log M)/(log 2).

Thus the right hand side of (4.18) holds with p = log M
log 2 + 1 and for some s0 > 1.

Let us prove its left hand side. According to (4.15), there exist C > 1 and s2 > 0
such that

a(Cs) ≥ 2Ca(s) ∀s ≥ s2.

For fixed s ≥ s2, there exits n ∈ N satisfying

Cns2 ≤ s ≤ Cn+1s2.

Hence

a(s) ≥ 2nCna(s2) =
a(s2)
2C

2n+1Cn+1 ≥ a(s2)
2Cs2

2n+1s.

Now from s ≤ Cn+1s2 and C > 1, we deduce that log(s/s2)/ log C ≤ n + 1.
Therefore,

a(s) ≥ a(s2)
2Cs2

s
( s

s2

)log 2/ log C
.

The expected estimate of a(s) follows setting ε = log 2
2 log C and for some s0 > s2. �

Lemma 4.5. Let us suppose that a satisfies the assumption (ii) of Theorem 4.3.
Then, for all c, C > 0, there exist M,β > 0 such that

a(cA−1(t)) ≤ t−β , (4.21)

A−1(ct) ≤ MA−1(Ct), (4.22)

for t > 0 close to 0.

Proof. In order to obtain (4.21), by Lemma 4.4, it is sufficient to show that

cp
(
A−1(t)

)p ≤ t−β ,

or equivalently, since A is decreasing, that

A
(1
c
t−β/p

)
≤ t. (4.23)

Now, by Lemma 4.4,

A
(1
c
t−β/p

)
=

∫ ∞

1
c t−β/p

ds

a(s)
≤

∫ ∞

1
c t−β/p

ds

s1+ε
= Ct

β
p ε.

Thus (4.23) holds if t
β
p ε−1 ≤ 1

C for t close to 0. Choosing β = p
ε +1, this inequality

holds true if t is small enough.
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Let us show (4.22). By (4.15), there exists M = M(C/c) such that

lim inf
s→+∞

a(Ms)
Ma(s)

≥ 2C/c.

Hence there exists sM > 0 such that
M

a(Ms)
≤ c

Ca(s)
∀s > sM .

Therefore, for t close to 0, we have

A(MA−1(Ct)) =
∫ ∞

MA−1(Ct)

ds

a(s)
=

∫ ∞

A−1(Ct)

Mds

a(Ms)
≤ c

C

∫ ∞

A−1(Ct)

ds

a(s)
= ct

and (4.22) follows since A−1 is non-increasing. �

Proof of Theorem 4.3. Using Theorem 3.2, we choose t1 in [0, T ) such that (3.4)
holds on (t1, T ) and

C(T − t1) < A(0), (4.24)
where C is the constant appearing in (3.4). Denoting by u the solution to (1.1) on
Ω× (0, T ), we define

T1 = T − t1, v(x, t) = u(x, t + t1) ∀(x, t) ∈ Ω× (0, T1).

Let us prove the right hand side of (4.16). For for all t ∈ [0, T1), we set

f(t) = a
(
cA−1

(
C(T1 − t)

))
, g(t) = a

(
CA−1

(
c(T1 − t)

))
, (4.25)

where the constants c, C are given by (3.4) and denote by u1 (resp. u2) the solution
to (4.1) (resp. (4.2)) on (0, T1). Let us also define u3 to be the solution to

u3
t − u3

xx = 0 in (0, `)× (0, T1),

u3(0, t) = 0 on (0, T1),

u3
x(`, t) = 0 on (0, T1),

u3(·, 0) = u(·, t1) in (0, `).

According to Theorem 3.2, v satisfies by the maximum principle,

v ≤ u1 + u2 + u3 on [0, `]× (0, T1). (4.26)

Since u1 is non-positive and u3 is bounded, we have

u1 + u3 ≤ C ′ on [0, `]× (0, T1). (4.27)

Let us estimate u2(`, t). By Lemma 4.5, (4.3) holds with g defined by (4.25). Hence,
since g is non-decreasing, it follows from Theorem 4.2 that

u2(`, t) ≤ C ′ + C ′
∫ t

0

g(s)√
t− s

ds ∀t ∈ [0, T1). (4.28)

By (4.26), (4.27) and the maximum principle for Problem (4.2), we have∫
Ω

v(x, t)dx ≤
∫

Ω

u2(x, t)dx + |Ω|C ′ ≤ |Ω|u2(`, t) + |Ω|C ′.

Then u2(`, t) → +∞ according to Lemma 3.5. Hence with (4.28)∫ t

0

g(s)√
t− s

ds →∞ when t → T1.
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Combining this with (4.26)-(4.28) leads to

v(`, t) ≤ 2C ′
∫ t

0

g(s)√
t− s

ds ∀t ∈ [t2, T1).

Now by (4.14), (4.24) and (3.1), there exists M depending on C such that for every
s ∈ (0, T1),

g(s) = a
(
CA−1

(
c(T1 − s)

))
≤ Ma

(
A−1

(
c(T1 − s)

))
= −M(A−1)′

(
c(T1 − s)

)
.

Hence for a new constant C,

u(`, t) = v(`, t− t1) ≤ C

∫ t−t1

0

−(A−1)′
(
c(T1 − s)

)
√

t− t1 − s
ds ∀t ∈ [t1 + t2, T ).

By a change of variable and since −(A−1)′ is non-negative (see Remark 3.1), we
have

u(`, t) ≤ C

∫ t

t1

−(A−1)′
(
c(T − s)

)
√

t− s
ds

≤ C

∫ t

0

−(A−1)′
(
c(T − s)

)
√

t− s
ds ∀t ∈ [t1 + t2, T ),

which gives the right hand side of (4.16). To obtain the lower bound, we exchange
f and g in (4.25), impose furthermore, t1 ≥ t0 where t0 will be fixed below and
define the auxiliary functions ui in the same way. We then get u1 + u2 + u3 ≤ v.
Arguing as above and using Theorem 4.1, it comes (maybe for a new T1),

−2
∫ t

0

f(s) ds +
∫ t

0

g(s)√
π(t− s)

ds− C ′ ≤ v(`, t). (4.29)

Let us prove that there exist M = M(C, c) and t2 ∈ [0, T ) such that

a
(
CA−1

(
c(T − s)

))
≤ Ma

(
cA−1

(
C(T − s)

))
∀s ∈ [t2, T ). (4.30)

Indeed, by (4.22), there exists M1 > 0 such that

A−1(ct) ≤ M1c

C
A−1(Ct),

for t close to 0. Hence by (4.14) and (3.1), there exist M > 0 and t2 ∈ [0, T ) such
that for all t ∈ (0, T − t2],

a(CA−1(ct)) ≤ a(M1cA
−1(Ct)) ≤ Ma(cA−1(Ct)). (4.31)

As a consequence, (4.30) follows setting t = T − s in (4.31). Defining t3 by
(2

√
π(T − t3))−1 = 2M , we set t0 = max(t2, t3). Then f ≤ Mg in [0, T1) and

for t ∈ [0, T1), it holds that∫ t

0

−2f(s) +
1
2

g(s)√
π(t− s)

ds ≥
(
−2M +

1
2
√

πT1

) ∫ t

0

g(s) ds ≥ 0.

Hence going back to (4.29), we obtain, for t in [0, T1),

1
2
√

πT1

∫ t

0

g(s) ds− C ′ ≤
∫ t

0

g(s)
2
√

π(t− s)
ds− C ′ ≤ v(`, t). (4.32)

Now, we claim that ∫ T1

0

g(s) ds = +∞. (4.33)
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Indeed, by (4.14), (4.24) and (3.1), there exists M > 0 such that for every s ∈ [0, T1),

g(s) = a
(
cA−1

(
C(T1 − s)

))
≥ 1

M
a

(
A−1

(
C(T1 − s)

))
= − 1

M
(A−1)′

(
C(T1 − s)

) (4.34)

and by a change of variable∫ t

0

g(s) ds ≥ 1
MC

{
A−1(C(T1 − t))−A−1(CT1)

}
. (4.35)

Then (4.33) follows since A−1(0) = +∞ . Combining (4.32) and (4.33), we obtain

1
4

∫ t

0

g(s)√
π(t− s)

ds ≤ v(`, t) for t close to T1.

Now, the left hand side of (4.16) follows easily due to (4.34). It then remains to
prove (4.17) but we will only prove its right hand side since the left hand side can
be proved in the same way. Let K be any given compact subset of Ω. Then we go
back to (4.26) with f and g defined by (4.25) and T1 satisfying (4.24). It follows
from Lemma 4.5, Theorem 4.2 and the boundedness of u3 that

u2 + u3 ≤ CK on K × (0, T1),

where CK is independent of time. Moreover with (4.35) (recall that f and g have
been permuted in (4.35)),

−
∫ t

0

f(s) ds ≤ 1
MC

(
A−1(CT1)−A−1(C(T1 − t))

)
.

Thus, using Theorem 4.1 and A−1(0) = +∞, there exists a time t4 ∈ [t1, T ) such
that (see (4.26)),

v ≤ −cA−1(C(T1 − t)) on K × (t4, T1).

We then go back to u which completes the proof of the theorem. �

5. Remarks and applications

As a consequence of Theorem 4.3, we have the following statement.

Corollary 5.1. Under the assumptions of Theorem 4.3, let u be a solution to
Problem (1.1) which blows up in finite time T in L2 norm. Then the blow up set
of u is (0, `]. Moreover, u(`, t) → +∞ and for all x ∈ (0, `),

u(x, t) → −∞ when t → T.

Remark 5.2. Combining Theorem 2.2 and Corollary 5.1 leads to the existence
of sign changing solutions for Problem (1.1). More precisely, for each blowing up
solution u with positive initial condition and for all compact subset K of Ω, there
exits a time tK such that

u < 0 on K × [tK , T ).

Remark 5.3. There exist functions satisfying the assumption (ii) of Theorem 4.3.
For instance, let us consider two polynomials P and Q with non-negative coefficients
and denote their degrees respectively by m and n. Let us assume that m ≥ 2 and
Q 6≡ 0. Then the function

a(s) = P (s)Q
(
log(s + 1)

)
, s ≥ 0
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satisfies assumption (ii) of Theorem 4.3. Indeed (3.1) clearly holds. Moreover, for
C > 1, we have when s →∞

a(Cs)
a(s)

'
Cm logn

(
Cs + 1

)
logn(s + 1)

' Cm,

which implies (4.14) and (4.15).

Let us consider the particular case where a is a power function.

Proof of Theorem 1.1. If a(s) = sp then we have

A(t) =
1

p− 1
t1−p, A−1(t) = (p− 1)

1
1−p t

1
1−p .

Therefore, (1.3) follows from (4.17). Let us show the left hand side of (1.2). Setting
α = p+1

2(p−1) , we have∫ t

0

(T − s)
p

1−p

(t− s)1/2
ds ≥

∫ t

0

(T − s)
p

1−p

(T − s)1/2
ds =

1
α

(T − t)−α − 1
α

T−α. (5.1)

The lower bound of u(`, t) in (1.2) then follows from (4.16). It remains to prove
the upper bound. After a change of variable, the first integral of (5.1) is equal to∫ t

0

s−1/2(T − t + s)−α−1/2ds

=
∫ T−t

0

s−1/2(T − t + s)−α−1/2ds +
∫ t

T−t

s−1/2(T − t + s)−α−1/2ds.

Let us denote by I1 and I2 the first and second integrals of this sum. Then

I1 ≤ (T − t)−α−1/2

∫ T−t

0

s−1/2ds = 2(T − t)−α

and, for t > T/2,

I2 ≤
∫ t

T−t

s−α−1ds ≤ 1
α

(T − t)−α.

The expected estimate follows from the above inequalities and (4.16). �

Let us focus now on the case where Ω is a unbounded domain by considering for
instance the problem

ut − uxx = 0 in (0,∞)× (0, T ),

ux(0, t) = −
(∫ ∞

0

u(x, t)dx
)p on (0, T ),

u(·, 0) = u0(·) in (0,∞).

(5.2)

Then using methods similar to those of sections 3 and 4, one can prove the following
theorem.

Theorem 5.4. Let us assume the following:
(i) u0 ∈ C([0,∞)) ∩ L1(0,∞), u0 ≥ 0, u0 6≡ 0.
(ii) u0x

∈ L1(0,∞) ∩ L∞(0,∞).
(iii) p ∈ (1,∞).

Then it holds that
(i) The solution u to (5.2) blows up in finite time in L1 norm.
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(ii) The blow-up set of u is {0}.
(iii) There exist positive constants c and C such that for t ∈ [0, T ),

c

(T − t)
p+1

2(p−1)

≤ u(0, t) ≤ C

(T − t)
p+1

2(p−1)

.

Remark 5.5. If Ω = RN
+ = {(x1, . . . , xN ) | x1 > 0} and N ≥ 2 then the solution

(if it exists) to the problem

ut −∆u = 0 in Ω× (0, T ),

∂nu = −ux1 =
(∫

Ω

u(x, t)dx
)p on ∂Ω× (0, T ),

u(·, 0) = u0(·) in Ω,

is not integrable in RN
+ if u0 ≥ 0, u0 6≡ 0. Indeed the solution v to

vt −∆v = 0 in Ω× (0, T ),

∂nv = −vx1 =
(∫

Ω

u(x, t)dx
)p on ∂Ω× (0, T ),

v(·, 0) = 0 in Ω,

satisfies v(x1, . . . , xN ) = v(x1) and u ≥ v. Thus
∫
Ω

u ≥
∫
Ω

v = ∞.
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