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LARGE ENERGY SIMPLE MODES FOR A CLASS OF
KIRCHHOFF EQUATIONS

MARINA GHISI

Abstract. It is well known that the Kirchhoff equation admits infinitely many

simple modes, i.e., time periodic solutions with only one Fourier component
in the space variable(s). We prove that for some form of the nonlinear term

these simple modes are stable provided that their energy is large enough. Here

stable means orbitally stable as solutions of the two-modes system obtained
considering initial data with two Fourier components.

1. Introduction

Let H be a real Hilbert space, with norm | · | and scalar product 〈·, ·〉. Let A be a
self-adjoint linear positive operator on H with dense domain D(A) (i.e., 〈Au, u〉 > 0
for all u ∈ D(A)). We consider the evolution problem

u′′(t) +m(|A1/2u(t)|2)Au(t) = 0, (1.1)

where m : [0,+∞) → (0,+∞) is a C1 function. Equation (1.1) is an abstract
setting of the hyperbolic PDE with a non-local non-linearity of Kirchhoff type

utt −m
( ∫

Ω

|∇u|2 dx
)
∆u = 0, in Ω× R, (1.2)

where Ω ⊆ Rn is an open set, ∇u is the gradient of u with respect to space variables,
and ∆ is the Laplace operator. When Ω is an interval of the real line, this equation
is a model for the small transversal vibrations of an elastic string.

When H admits a complete orthogonal system made of eigenvectors of A (this is
the case e.g. in (1.2) if Ω is bounded), (1.1) may be thought as a system of ODEs
with infinitely many unknowns, namely the components of u.

Many papers have been written about equations (1.1) and (1.2) after Kirchhoff’s
monograph [7]. The interested reader can find appropriate references in the surveys
[1] and [8]. We just state that, at the present, the existence of global solutions for
all initial data in C∞ or in Sobolev spaces is still an open problem.

In this paper, we consider a particular class of global solutions of (1.1). Let us
assume that λ is an eigenvalue of A, and eλ is a corresponding eigenvector, which
we assume normalized so that |eλ| = 1. If the initial data are multiples of eλ, say
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u(0) = w0eλ, u′(0) = w1eλ, then the solution of (1.1) remains a multiple of eλ for
every t ∈ R; i.e., we have that u(t) = w(t)eλ, where w(t) is the solution of the ODE

w′′(t) + λm(λw2(t))w(t) = 0, w(0) = w0, w′(0) = w1.

Such solutions are called simple modes of equation (1.1), and are known to be time
periodic under very general assumptions on m.

In this paper, we are interested to stability of high energy simple modes for
particular choices of m. This program is too optimist since stability problems are
often hard already for systems with 3 unknowns, and we have seen that (1.1) has
infinitely many degrees of freedom. For this reason we limit ourselves to consider
the two-mode system

w′′(t) + λm(λw2(t) + µz2(t))w(t) = 0,

z′′(t) + µm(λw2(t) + µz2(t))z(t) = 0,
(1.3)

where µ 6= λ is another eigenvalue of A, corresponding to an eigenvector eµ such
that |eµ| = 1, and u(t) = w(t)eλ+z(t)eµ. It is clear that simple modes are particular
solutions of this system, corresponding to initial data with z(0) = z′(0) = 0. What
we actually study is the stability of simple modes as solutions of (1.3).

To simplify the notation, let us set

ν :=
µ

λ
, u(t) :=

√
λw

( t√
λ

)
, v(t) :=

√
µ z

( t√
λ

)
,

so that (1.3) is equivalent to

u′′(t) +m(u2(t) + v2(t))u(t) = 0,

v′′(t) + ν m(u2(t) + v2(t))v(t) = 0.
(1.4)

This system (as well as (1.3) and (1.1)) are Hamiltonian, with conserved energy

H(u, u′, v, v′) :=
1
2

{
[u′]2 +

[v′]2

ν
+M(u2 + v2)

}
, (1.5)

where M(r) =
∫ r

0
m(s) ds. As far as we know, stability of simple modes was studied

in at least four papers (see section 2.2.1 for precise definitions).
• Dickey [3] proved that simple modes are linearly stable provided that their

energy is small enough. Roughly speaking, linearly stable means that
v(t) ≡ 0 is a stable solution for the linearization of the second equation
in (1.4).

• In [4] it was proved that simple modes as solutions of (1.3) are orbitally sta-
ble provided that their energy is small enough. Roughly speaking, orbitally
stable means that every solution (u(t), v(t)) of system (1.4) with initial data
near (u0, u1, 0, 0) remains close to the periodic orbit of the simple mode for
every t ∈ R.

• Cazenave and Weissler [2] assumed that there exists α > 0 such that

lim
σ→+∞

m(σr)
m(σ)

= rα,

uniformly on bounded intervals (e. g. m(r) = 1 + rα). They showed that
if

ν ∈
⋃

m∈N
((m+ 1) ((α+ 1)m+ 1) , (m+ 1) ((α+ 1)m+ 1 + 2α)) ,
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then every simple mode of (1.4) with large enough energy is unstable. If
α = 1, and Ω is an interval of the real line, this result implies the instability
of every simple mode of (1.2) with large enough energy.

• In [5] it was proved that if m is nondecreasing and for every r ∈ [0, 1) one
has

lim
σ→+∞

m(σr)
m(σ)

= 0,

then every simple mode of (1.1) with large enough energy is unstable.

Remark 1.1. Let m > 0 be a continuous function such that for all r ∈ (0, 1) there
exists

lim
σ→+∞

m(σr)
m(σ)

.

Since this limit is a multiplicative function, then there are only three possibilities:
• The limit is rα for some α > 0.
• The limit is 0 for every r ∈ (0, 1).
• The limit is 1 for every r ∈ (0, 1).

In [2] and in [5], the first two cases were treated (and proved instability). Here
we treat the third case and prove orbital stability. Our main result is the following.

Theorem 1.2. Let ν 6= 1 be a positive real number. Let m : [0,+∞) → (0,+∞)
be a smooth function with m′(x) > 0 for all x > 0 such that

(H1) There exists a constant c such that, for every real k > 0, supy∈(0,1)
ym′(ky)
m′(k) ≤

c
(H2) For every y ∈ (0, 1) limk→+∞

m′(ky)
m′(k) = 1

y .

Then there exists k0 > 0 such that, if H(u0, u1, 0, 0) > k0, then the simple mode of
(1.4) with u(0) = u0, u′(0) = u1 is orbitally stable.

Let us remark that any function with m′ > 0 such that xm′(x) → l > 0 as
x→ +∞ (e. g. log(2 + x2)) satisfies (H1) - (H2).

We conclude with a few comments on Theorem 1.2.
• Since there exists limr→+∞m(r), by (H2) we get limk→+∞m(ky)/m(k) = 1

for every y > 0.
• Assumption m′(x) > 0 for all x > 0 is not essential but this would only

complicate proofs without introducing new ideas.
• To prove orbital stability we use KAM theory to Poincaré map (see section

2.2). Smoothness of m is used only to give the smoothness required by
KAM theory. To this end, m ∈ C5 is enough.

• Since (1.4) is reversible (if (u(t), v(t)) is any solution, then (u(−t), v(−t))
is another solution), then a consequence of Theorem 1.2 is the following:
“if the energy of a two-mode solution of (1.4) is large enough, then it is not
possible that asymptotically all this energy is absorbed by one of the two
components”.

This paper is organized as follows: in section 2 we rescal the problem and give
preliminaries on stability and Poincaré map; in section 3 we state our results; in
section 4 we give the proofs. Section 4 is divided in four parts: in the first two
parts we prove all we need about function m and simple mode; in the third part
we get the proof of Theorem 3.2 and in the last one we prove Theorem 3.3.
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2. Preliminaries

2.1. Rescaling. In this section we rescale the solutions of (1.4) and find an equiv-
alent system, in which is simpler to work. Given k > 0, let us consider the simple
mode uk of system (1.4) which solves

u′′k(t) +m(u2
k(t))uk(t) = 0, uk(0) = k, u′k(0) = 0. (2.1)

We recall that uk is a periodic function, and so we can assume uk(0) > 0 and
u′k(0) = 0 without loss of generality. Moreover assuming that k is large is equivalent
to assuming that the energy of uk is large.

Let τk be the period of uk. Applying conservation low (1.5) it is easy to see that

τk = 4
∫ k

0

1√
M(k2)−M(y2)

dy = 4k
∫ 1

0

1√
M(k2)−M(k2y2)

dy. (2.2)

Now let (uk, vk) be the solution of (1.4) with initial data uk(0) = a1k, u
′
k(0) = b1k,

vk(0) = x1, v
′
k(0) = y1. Setting

wk(t) =
uk(τkt)
k

, zk(t) = vk(τkt),

it turns out that (wk, zk) is the solution of

w′′k(t) + τ2
km(k2w2

k(t) + z2
k(t))wk(t) = 0, wk(0) = a, w′k(0) = b

z′′k (t) + ντ2
km(k2w2

k(t) + z2
k(t))zk(t) = 0, zk(0) = x, z′k(0) = y

(2.3)

where a = a1, b = τkb1, x = x1 and y = τky1. In the sequel we study the stability of
simple modes of (2.3). Indeed following result holds, whose simple proof is omitted
(see also Definition 2.2 below).

Theorem 2.1. Let k > 0 be fixed and let uk be defined in (2.1). If Uk(t) =
uk(τkt)/k is orbitally stable as solution of (2.3) then uk is orbitally stable as solution
of (1.4).

We remark that for (2.3), we can write the conserved energy as

Hk(wk, w
′
k, zk, z

′
k) =

1
2

{
[w′k]2 +

[z′k]2

k2ν
+
τ2
k

k2
M(k2w2

k + z2
k)

}
.

2.2. Kam Theory and stability. We recall the notion of stability, and then we
describe the Poincaré map Pk associated with a simple mode Uk of system (2.3).

We refer to [6] for general facts about dynamical and Hamiltonian systems, and
to [2, 4] for specific results related to the particular system (2.3). Before we enter
into the details, we fix some notation.

We assume that m : [0,+∞) → (0,+∞) is a nondecreasing function of class C5.
We denote by M2×2 the set of 2×2 matrices. For each A ∈M2×2, aij is the element
in the i-th row and j − th column, unless otherwise stated, and TrA = a11 + a22 is
the trace of A. For every ω ∈ R, Rω denotes the rotation matrix

Rω =
(

cosω sinω
− sinω cosω

)
.
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2.2.1. Stability. In this section we recall some definitions of stability from the clas-
sical theory of Hamiltonian systems. For the sake of simplicity, we adapt definitions
to the case of simple modes for system (2.3). In the phase space R4 we consider
the energy level

Hk :=
{
(x1, x2, x3, x4) ∈ R4 : Hk(x1, x2, x3, x4) = Hk(1, 0, 0, 0)

}
,

and the orbit
Γk := {(Uk(t), U ′k(t), 0, 0) : t ∈ R} .

Definition 2.2. The simple mode Uk is called orbitally stable if, for every ε > 0
there exists δ > 0 such that for every solution (w(t), z(t)) of system (2.3), the
following property holds: if the initial datum (w(0), w′(0), z(0), z′(0)) belongs to a
δ neighborhood of (1, 0, 0, 0), then for every t ∈ R the point (w(t), w′(t), z(t), z′(t))
lies in an ε neighborhood of Γk.

Definition 2.3. The simple mode Uk is called isoenergetically orbitally stable if the
condition of Definition 2.2 is satisfied with the restriction (w(0), w′(0), z(0), z′(0)) ∈
Hk.

Definition 2.4. The simple mode Uk is said to be linearly stable if z(t) ≡ 0 is a
stable solution of the linear equation z′′(t) + ν τ2

km(k2U2
k (t))z(t) = 0, (that is the

linearization of the second equation in (2.3)), i.e., for every ε > 0 there exists δ > 0
such that

‖(z(0), z′(0))‖ < δ =⇒ ‖(z(t), z′(t))‖ < ε, ∀t ∈ R.

It is obvious that orbital stability implies isoenergetical orbital stability. In
non-degenerate situations, isoenergetical orbital stability implies linear stability.
Here “non-degenerate situation” means that (0, 0) is not a parabolic point for the
associated Poincaré map (see section 2.2.2 and 2.2.3 below). It is not essential to
explain now such condition; we just remark that it is satisfied by our large energy
simple modes.

2.2.2. The Poincaré map. Let us consider the open set Uk ⊆ R2 defined by

Uk :=
{
(x, y) ∈ R2 : Hk(0, 0, x, 2π

√
νy) < Hk(1, 0, 0, 0)

}
.

For every (x, y) ∈ Uk, let α(x, y) > 0 be the unique positive number such that

Hk(α(x, y), 0, x, 2π
√
νy) = Hk(1, 0, 0, 0).

Let (w(t), z(t)) be the solution of system (2.3) with initial data

w(0) = α(x, y), w′(0) = 0, z(0) = x, z′(0) = 2π
√
νy.

Finally, let T := T (x, y) be the smallest t > 0 such that w′(t) = 0 and w(t) > 0.
The interested reader can verify that such a T exists for every (x, y) ∈ Uk. On the
other hand the existence of T is classical up to restricting Uk.

The Poincaré map Pk : Uk → R2, relative to the simple mode Uk of (2.3), is
defined by

Pk(x, y) :=
(
z(T ), (4π2ν)−1/2z′(T )

)
.

We point out that both z and T depend on (x, y) and k. When (x, y) = (0, 0), then
w(t) = Uk(t) and z(t) = 0 for every t ∈ R. It follows that Pk(0, 0) = (0, 0), i.e.,
(0, 0) is a fixed point of the Poincaré map.

The interested reader is referred to the quoted literature, and in particular to
[4], for a heuristic description of the Poincaré map.
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Now we recall the classical definition of stability of fixed points for planar maps.

Definition 2.5. Let U ⊆ R2 be an open set containing (0, 0), and let P : U → R2

be a map such that P (0, 0) = (0, 0). The fixed point (0, 0) is said to be stable if for
every ε > 0 there exists δ > 0 such that

(x, y) ∈ U , ‖(x, y)‖ < δ =⇒ ‖Pn(x, y)‖ < ε ∀n ∈ N,

where Pn denotes the n-th iteration of P .

The stability of Uk as a periodic solution is clearly related to the stability of
(0, 0) as a fixed point of Pk. This relation is stated in Theorem 2.7 below.

2.2.3. KAM theory for planar maps. Stability of planar maps has long been studied.
In this subsection we sum the basic results we need in the sequel. Let U ⊆ R2 be an
open set containing (0, 0), and let P : U → U . The theory of planar maps has been
developed for very general maps P ; however we state the results under suitable
assumptions which allow to simplify some notations, and are trivially satisfied in
our case. Therefore let us assume that:

(P1) P ∈ C5(U ,U) and P (0, 0) = (0, 0);
(P2) P is area-preserving;
(P3) if P (x, y) = (a, b), then P (a,−b) = (x,−y);
(P4) P (−x,−y) = −P (x, y).
The first object to look at in order to study the stability of the fixed point (0, 0)

is the differential of P at (0, 0), which we denote by L. It is well known that the
canonical form of L is one of the following three.

•
(
λ 0
0 λ−1

)
for some λ ∈ R, |λ| > 1. In this case (0, 0) is said to be hyperbolic

and it is unstable.

•
(
±1 a
0 ±1

)
for some a 6= 0. In this case (0, 0) is said to be parabolic. The

map L is unstable, but nothing can be said about P . However, we will not
find this degenerate case in this paper.

• Rω for some ω ∈ R. In this case (0, 0) is said to be elliptic. The map L is
stable, but this is in general not enough to guarantee the stability of P .

Therefore, L gives only necessary conditions for stability (i.e., non hyperbolicity).
KAM theory provides sufficient conditions in the case of elliptic fixed points. To
describe such conditions, it is better to write P in polar coordinates up to terms of
order three. If we choose coordinates where L is written in the canonical form of a
rotation, then, in the corresponding polar coordinates, P becomes

P

(
ρ
θ

)
=

(
ρ+ a(θ)ρ3

θ − ω + b(θ)ρ2

)
+ o(ρ3),

where ω is the same as in the linear term L, and a(θ) and b(θ) are trigonometric
polynomials of degree 4. The absence of even powers of ρ in the first component,
and of odd powers of ρ in the second component, is due to (P4). Finally we set

γ(P ) :=
1
2π

∫ 2π

0

b(θ) dθ. (2.4)

Then we have the following KAM result.
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Theorem 2.6. Let P : U → U be a planar map satisfying (P1)–(P4). Let (0, 0) be
an elliptic fixed point, and let ω and γ be defined as above. Let us assume that

(KAM 1) : ehiω 6= 1 for every h ∈ {1, 2, 3, 4};
(KAM 2) : γ(P ) 6= 0.

Then (0, 0) is stable for P according to Definition 2.5.

The following result relates stability, Poincaré maps, and KAM theory. It is the
fundamental tool in our analysis.

Theorem 2.7. Let Uk be a simple mode of system (2.3), and let Pk be the associated
Poincaré map. Then

• Uk is linearly stable if and only if (0, 0) is an elliptic fixed point of Pk;
• Uk is isoenergetically orbitally stable if and only if (0, 0) is a stable fixed

point of the Poincaré map Pk;
• if (0, 0) is an elliptic fixed point of Pk, and Pk satisfies (KAM 1) and (KAM

2), then Uk is orbitally stable.

Thanks to Theorem 2.6 and Theorem 2.7, the orbital stability of a periodic
solution in the four dimensional space can be proved by verifying that a planar
map satisfies two algebraic conditions.

3. Statement of results

Let us denote by Pk : Uk → Uk the Poincaré map associated with Uk as in section
2.2.2, and by Lk its differential in the fixed point (0, 0). In the next result we sum
up the main properties of Pk and Lk.

Theorem 3.1. For every k > 0, let Pk and Lk be as above. Then
(1) Pk satisfies (P1)–(P4);
(2) detLk = 1;
(3) if Lij

k are the entries of Lk, then L11
k = L22

k .

We do not prove such properties, since they are well known in the literature (see
[4]).

Thanks to Theorem 2.1 the main result of this paper (Theorem 1.2) is reduced to
prove that Uk is orbitally stable if k is large. Thanks to Theorem 2.7 and Theorem
2.6, the main result will be proved if we show that Pk satisfies assumptions (KAM
1) and (KAM 2) of Theorem 2.6. Assumption (KAM 1) follows from statements
(1)–(3) of the following result, where the behaviour of Lk for large k is considered.

Theorem 3.2. Let ν 6= 1 be a positive real number. Then there exist k1 > 0,
ω : (k1,+∞) → R, and δ : (k1,+∞) → (0,+∞) such that

(1) for every k ≥ k1 the eigenvalues of Lk are
{
e±iω(k)

}
;

(2) ω(k) → 2π
√
ν as k → +∞;

(3) ω(k) 6= 2π
√
ν for k large enough if 2π

√
ν = hπ for some h ∈ Z;

(4) setting D(k) =
(

1 0
0 δ(k)

)
we have that [D(k)]−1

LkD(k) = Rω(k);

(5) δ(k) → δ > 0 as k → +∞.

Statements (2) and (3) prevent eiω(k) from being a h-th root of 1 for h ∈
{1, 2, 3, 4} and k large. Indeed, if e2π

√
νhi 6= 1 for h ∈ {1, 2, 3, 4}, then by (2)

the same holds true for eω(k)hi, provided that k is large enough; if on the contrary
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e2π
√

νi is a h-th root of 1 for some h ∈ {1, 2, 3, 4}, then for k large eω(k)i is not
because of (3). This shows in particular that (0, 0) is an elliptic fixed point of Pk

for k large. Statement (4) says that Lk can be written in the canonical form by a
diagonal matrix D(k).

The following result implies that Pk satisfies assumption (KAM 2) for k large.

Theorem 3.3. Let γk := γ(Pk) be as in formula (2.4). Then γk 6= 0 for k large
enough.

We have therefore reduced the proof of Theorem 1.2 to the proof of Theorem 3.2
and Theorem 3.3.

4. Proofs

Throughout this section we denote by c various constants depending only on
function m.

4.1. Properties of the function m. In the following lemmata we state all prop-
erties of function m we need in the proofs.

Lemma 4.1. As k → +∞,

λk :=
k2m′(k2)
m(k2)

→ 0. (4.1)

Lemma 4.2. For all y ∈ (0, 1),

m(k2y)
m(k2)

= 1 + λk log y + φk(y)

where:
(m1) |φk(y)| ≤ cλk| log y|,
(m2) for all 0 < a < 1, limk→+∞ supa≤y≤1 λ

−1
k |φk(y)| = 0.

Lemma 4.3. For all x > 0:
(M1) m(x) ≤ c(1 + 8

√
x);

(M2) M(x) = xm(x)−
∫ x

0
sm′(s) ds;

(M3) k2m(k2)(M(k2))−1 = 1 + λk + o(λk);
(M4) limk→+∞M(kx)(M(k))−1 = x;
(M5) sup{(1− y2)M(k2)(M(k2)−M(k2y2))−1 : y ∈ (0, 1)} ≤ c.

In the next lemma we state some properties of τk, as defined in (2.2).

Lemma 4.4. The following equalities hold

τk
√
M(k2)
4k

=
π

2
+
λk

2

∫ 1

0

y2 log y2

(1− y2)3/2
dy + o(λk) =:

π

2
+ λkh0 + o(λk). (4.2)

Moreover
τ2
km(k2) = 4π2 + (4π2 + 16h0π)λk + o(λk).

Proof of Lemma 4.1. Since

λ−1
k =

∫ k2

0
m′(s) ds+m(0)
k2m′(k2)

≥
∫ 1

0

m′(k2y)
m′(k2)

dy,
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for all ε > 0, using hypotheses (H1)–(H2) we get

lim inf
k→+∞

λ−1
k ≥ lim inf

k→+∞

∫ 1

ε

m′(k2y)
m′(k2)

dy =
∫ 1

ε

1
y
dy.

Since ε is arbitrary we have obtained that limk→+∞ λ−1
k = +∞. �

Proof of Lemma 4.2. Firstly let us observe that

m(k2y)−m(k2)
m(k2)

− λk log y = −
∫ 1

y

k2m′(k2s)
m(k2)

ds+
∫ 1

y

λk

s
ds = φk(y).

To prove (m1) it suffices to remark that by hypothesis (H1), we obtain

|φk(y)| ≤ λk

∫ 1

y

1
s

∣∣∣∣m′(k2s)s
m′(k2)

− 1
∣∣∣∣ ds ≤ −λkc log y.

Moreover for y ≥ a > 0 holds true

|φk(y)| ≤ λk

∫ 1

a

1
s

∣∣∣∣m′(k2s)s
m′(k2)

− 1
∣∣∣∣ ds.

Passing now to the limit using Lebesgue’s Theorem for the dominate convergence
and (H2) we have (m2). �

Proof of Lemma 4.3. To prove (M1) it suffices to remark that by (4.1) we have
m′(x)/m(x) ≤ 1/(8x) for large x. To show property (M2) it is enough integrate by
parts the function m. Using property (M2) and hypothesis (H1) we then get:

k2m(k2)
M(k2)

− 1− λk =
∫ 1

0

k4ym′(k2y)
M(k2)

dy − λk

= λk

(∫ 1

0
ym′(k2y)(m′(k2))−1dy

M(k2)(k2m(k2))−1
− 1

)
= λk

( ∫ 1

0
ym′(k2y)(m′(k2))−1dy

1− λk

∫ 1

0
ym′(k2y)(m′(k2))−1dy

− 1
)

= λk

(∫ 1

0
ym′(k2y)(m′(k2))−1dy

1 + o(1)
− 1

)
=: λkRk.

Since by Lebesgue’s Theorem limk→+∞Rk = 0, we have obtained (M3).
Property (M4) follows from L’ Hopital’s Theorem. Finally, to show property

(M5) it is enough to remark that, using Cauchy’s Theorem and the monotonicity
of m we find

M(k2y2)
M(k2)

=
m(ξy2)
m(ξ)

y2 ≤ y2.

�

Proof of Lemma 4.4. Let

ψk(y) =
1√

1− y2
√

1−M(k2y2)/M(k2)(
√

1− y2 +
√

1−M(k2y2)/M(k2))
.
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Applying Lemma 4.3 and Lemma 4.2 it turns out that

τk
√
M(k2)
4k

− π

2

=
∫ 1

0

1√
1−M(k2y2)/M(k2)

− 1√
1− y2

dy

=
∫ 1

0

ψk(y)
(
− y2 +

M(k2y2)
M(k2)

)
dy

=
∫ 1

0

(
y2k2(m(k2y2)−m(k2)) + y2

∫ k2

0

sm′(s) ds−
∫ y2k2

0

sm′(s) ds
) ψk(y)
M(k2)

dy

= −
∫ 1

0

y2
[
1− m(k2y2)

m(k2)

]
(1 + o(1))ψk(y) dy+

+
∫ 1

0

(1 + o(1))
λk

k4

[
y2

∫ k2

0

sm′(s)
m′(k2)

ds−
∫ k2y2

0

sm′(s)
m′(k2)

ds
]
ψk(y) dy

=
∫ 1

0

−y2
[
−λk log y2 − φk(y2)

]
(1 + o(1))ψk(y) dy+

+ λk

∫ 1

0

(1 + o(1))
[
(y2 − 1)

∫ 1

0

sm′(k2s)
m′(k2)

ds+
∫ 1

y2

sm′(k2s)
m′(k2)

ds
]
ψk(y) dy.

Therefore,(τk√
M(k2)
4k

− π

2
− h0λk

)
λ−1

k

=
∫ 1

0

y2 log y2
(
ψk(y)− 1

2(1− y2)3/2

)
dy+

+
∫ 1

0

o(1)y2 log y2ψk(y) + (1 + o(1))y2ψk(y)
φk(y2)
λk

dy+

+
∫ 1

0

(1 + o(1))ψk(y)(1− y2)
[
−

∫ 1

0

sm′(k2s)
m′(k2)

ds+
1

1− y2

∫ 1

y2

sm′(k2s)
m′(k2)

ds
]
.

Let us remark that by Lemma 4.3, properties (M4)–(M5), (1 − y2)3/2ψk(y) is a
bounded function and converges for y ∈ (0, 1) to the function identically = 1/2,
hence, using once more hypotheses (H1)–(H2) and Lemma 4.2, by Lebesgue’s The-
orem we obtain

lim
k→+∞

(τk√
M(k)
4k

− π

2
− h0λk

)
λ−1

k = 0.

In order to prove the second part of the lemma it suffices to observe that

τ2
km(k2) =

(τk√
M(k2)
4k

)2

16k2 m(k2)
M(k2)

= 16(
π

2
+ h0λk + o(λk))2(1 + λk + o(λk)).

�

4.2. Properties of the simple mode Uk. Let us recall that Uk is the solution of
the problem:

U ′′k + τ2
km(k2U2

k )Uk = 0 Uk(0) = 1, U ′k(0) = 0. (4.3)

In the sequel we need the following simple properties of Uk:
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(U1) Uk is a 1-periodic function, and for every t ∈ [0, 1/4],

Uk(t) = Uk(1− t) = −Uk(1/2− t) = −Uk(1/2 + t);

(U2) Uk is decreasing in [0, 1/2] and increasing in [1/2, 1];
(U3) for every t ∈ [0, 1] we have that

|U ′k|2 +
τ2
k

k2

∫ k2U2
k

0

m(s) ds =
τ2
k

k2

∫ k2

0

m(s) ds;

(U4) |Uk(t)| ≤ 1 for every t ∈ [0, 1];
(U5) |U ′k(t)| ≤ τk

k

√
M(k2) for every t ∈ [0, 1].

Properties (U1) and (U2) follow from the symmetries of Uk; (U3) follows from the
conservation of the Hamiltonian for Uk, and (U4) and (U5) are consequences of
(U3).

The simple mode verifies also the following properties.

Lemma 4.5. One has:

(B1) Uk(t) = cos(2πt) + o(1) where o(1) is uniform in t in bounded intervals;
(B2) there exist λ > 0, 0 < t0 < 1/4 and k0 ∈ R such that for all k ≥ k0,

|U ′k(t)| ≥ λ for all t ∈
[
t0,

1
4

]
;

(B3) there exists c(t) ∈ L1([0, 1]) such that for k large: | log(U2
k (t))| ≤ c(t) for

all t ∈ [0, 1].

Throughout the paper we need also some properties of integrals of Uk.

Lemma 4.6. The following inequalities hold true∫ 1

0

∣∣∣∣1− τ2
k

4π2
m(k2Uk(t))

∣∣∣∣ dt ≤ cλk; (4.4)

∫ 1

0

|Uk(t)|
1 + k2U2

k (t)
dt ≤ c

log k
k2

; (4.5)

∫ 1

0

m′(k2Uk(s)2) ds ≤ c

k
. (4.6)

Proof of Lemma 4.5. By Lemma 4.2 and Lemma 4.4 we obtain

U ′′k + (4π2 + o(1))(1 + λk logU2
k + φk(U2

k ))Uk = 0,

that we can rewrite as

U ′′k + 4π2Uk = (4π2 + o(1))(λk logU2
k + φk(U2

k ))Uk + o(1)Uk.

Since, thanks to (m1) and (U4)[
logU2

k +
φk(U2

k )
λk

)
]
Uk

is a bounded function, we get U ′′k + 4π2Uk = o(1). Moreover, setting vk(t) =
Uk(t)− cos(2πt), we find v′′k + 4π2vk = o(1), hence (B1) follows from√

|v′k(t)|2 + 4π2|vk(t)|2 ≤ o(1)t.
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By (B1) there exists t0 ∈ (0, 1/4) such that |Uk(t)| ≤ 1/2 for all t ∈ [t0, 1/4] and
k large. To prove (B2) it is enough to remark that, by Lemma 4.2, Lemma 4.4 we
have

inf
t0≤t≤1/4

|U ′k(t)| = inf
t0≤t≤1/4

∫ 1

U2
k(t)

τ2
km(k2s) ds ≥

∫ 1

1/4

τ2
km(k2s) ds→ 3π2.

Let now t0 be as in (B2). By (B1) and (U4) for large k we get 1 ≥ |Uk(t)| ≥ c > 0
for all t ∈ [0, t0]. Using (B2) and Cauchy’s Theorem, for large k and t ∈ [t0, 1/4]
we get

Uk(t)
1/4− t

= −U ′k(ξt) ≥ λ,

hence ∣∣√Uk(t) log(U2
k (t))√

Uk(t)

∣∣ ≤ c√
1/4− t

.

Then (B3) follows from the symmetries of the function Uk. �

Proof of Lemma 4.6. To show (4.4) it suffices to observe that, by Lemma 4.2,
Lemma 4.4 and Lemma 4.5, we have that∫ 1

0

∣∣1− τ2
k

4π2
m(k2Uk(s))

∣∣ ds =
∫ 1

0

∣∣1− (
1 + (1 + 4

h0

π
)λk + o(λk)

)m(k2Uk(s))
m(k2)

∣∣ ds
≤ cλk

∫ 1

0

1 +
∣∣ log(Uk(s)2) +

φk(Uk(s)2)
λk

∣∣ ds ≤ cλk.

Thanks to (U1), in order to prove (4.5) it is enough to show that∫ 1/4

0

|Uk(t)|
1 + k2U2

k (t)
dt ≤ c

log k
k2

.

Let us take t0 as in Lemma 4.5, (B2) and let us divide the integral as follows∫ 1/4

0

|Uk(t)|
1 + k2U2

k (t)
dt =

∫ t0

0

|Uk(t)|
1 + k2U2

k (t)
dt+

∫ 1/4

t0

|Uk(t)|
1 + k2U2

k (t)
dt.

Now we can estimate the two terms separately. By (U4) and Lemma 4.5, (B1), for
large k we have that: 1 ≥ |Uk(t)| ≥ c for all t ∈ [0, t0], hence∫ t0

0

|Uk(t)|
1 + k2U2

k (t)
dt ≤ c

k2
.

Let λ be as in Lemma 4.5, (B2). Since Uk(1/4) = 0, we get∫ 1/4

t0

|Uk(t)|
1 + k2U2

k (t)
dt = −

∫ 1/4

t0

Uk(t)U ′k(t)
(1 + k2U2

k (t))|U ′k(t)|
dt ≤ 1

λk2
log(1 + k2U2

k (t0)).

To prove (4.6) we can proceed as to prove (4.5). Only we remark that, since by
(4.1) and (M1) one has

m′(z2) ≤ cm(z2)
(1 + z2)

≤ c

1 + z7/4
,
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then in [0, t0] we get m′(k2U2
k (t)) ≤ c/k7/4 and in [t0, 1/4]:∫ 1/4

t0

m′(k2U2
k (s)) ds = −

∫ 1/4

t0

m′(k2U2
k (s))U ′k(s)

|U ′k(s)|
ds ≤ −c

∫ 1/4

t0

m′(k2U2
k (s))U ′k(s)

= − c
k

∫ 0

kUk(t0)

m′(z2) dz ≤ c

k

∫ +∞

0

m′(z2) dz < +∞.

�

4.3. Linear stability.

4.3.1. Preliminary results for k fixed. Let Pk be the Poincaré map associated with
Uk, and let Lk be its differential in (0, 0). Then the linear operator Lk : R2 → R2

can be characterized in the following way.
Given (x, y) ∈ R2, let zk(t) be the solution of the linear problem

z′′k (t) + ν τ2
km(k2U2

k (t))zk(t) = 0, zk(0) = x, z′k(0) = 2π
√
ν y. (4.7)

This problem is the linearization of the second equation of system (2.3). Then we
have that

Lk(x, y) :=
(
zk(1), (4π2ν)−1/2z′k(1)

)
.

We do not give the proof of this characterization, since it is completely analogous
to the proof of [2, Proposition 2.1]. However, Lk is the first term in the Taylor
expansion of Pk and in section 4.4 we find the first three terms of the expansion of
Pk.

The fundamental tool in the analysis of the behaviour of Lk for k large is the
following linear algebra result, whose proof is omitted since it is analogous of the
corresponding one in [4] (Proposition 4.1).

Proposition 4.7. Let k0 > 0, and let A : (k0,+∞) →M2×2. Let us assume that

(i) detA(k) = 1 for every k ≥ k0;
(ii) a11(k) = a22(k) for every k ≥ k0;
(iii) there exist ω0 ∈ R and B ∈ M2×2 such that, for k → +∞, A(k) = Rω0 +

λkB + o(λk);
(iv) ω0 and B satisfy one of the following conditions:

(iv-1) ω0 6= hπ for every h ∈ Z;
(iv-2) ω0 = hπ for some h ∈ Z, TrB = 0, and b12 · b21 < 0.

Then there exist k1 ≥ k0, ω : (k1,+∞) → R, and δ : (k1,+∞) → (0,+∞) such that

(1) for every k ≥ k1 the eigenvalues of A(k) are
{
e±iω(k)

}
;

(2) ω(k) → ω0 as k → +∞;
(3) ω(k) 6= ω0 for k large enough if ω0 = hπ for some h ∈ Z;

(4) setting D(k) =
(

1 0
0 δ(k)

)
we have that [D(k)]−1

A(k)D(k) = Rω(k);

(5) δ(k) → δ as k → +∞ when δ = 1 if ω0 6= hπ for all h ∈ Z and δ =√
−b21/b12 otherwise.

We use also the following lemma.

Lemma 4.8. The following equalities hold true.
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(S1) For all h ≥ 1 we have that

αh :=
∫ π/2

0

sin(2hx)
sinx
cosx

dx = (−1)h+1π

2
.

(S2) If h0 is as in (4.2) then

h0 = −π
2
− 1

2

∫ π/2

0

log(cos2 x) dx.

(S3) For all h ≥ 1, h ∈ N one has∫ π/2

0

2 sin2(hx) log(cos2 x) = (−1)h π

2h
+

∫ π/2

0

log(cos2 x) dx.

Proof of Lemma 4.8. We prove (S1). Obviously we have α1 = π/2; moreover for
h > 1 thesis follows from∫ π/2

0

sin(2(h− 1)x+ 2x)
sinx
cosx

dx

=
∫ π/2

0

2 cos(2(h− 1)x) sin2 x dx+
∫ π/2

0

sin(2(h− 1)x)(2 cos2 x− 1)
sinx
cosx

dx

=
∫ π/2

0

cos(2(h− 1)x)(1− cos 2x) dx+
∫ π/2

0

sin(2(h− 1)x) sin 2x dx− αh−1

= −αh−1 −
∫ π/2

0

cos((2(h− 1) + 2)x) dx+
sin(2(h− 1)x)

2(h− 1)

∣∣∣π/2

0
= −αh−1

To prove (S2) it suffices a change of variables and an integration by parts. To prove
(S3) we need only to remark that∫ π/2

0

2 sin2(hx) log(cos2 x) dx

=
∫ π/2

0

log(cos2 x) dx−
∫ π/2

0

cos(2hx) log(cos2 x) dx

=
∫ π/2

0

log(cos2 x) dx− sin(2hx)
2h

log(cos2 x)
∣∣∣∣π/2

0

− αh

h
.

�

4.3.2. Polar coordinates for zk(t). We write (4.7) as a first order system. To this
end we set xk(t) = zk(t), yk(t) = (ν4π2)−1/2z′k(t), so that (4.7) becomes

x′k(t) =
√
ν4π2 yk(t), y′k(t) = −(ν4π2)−1/2 ν τ2

km(k2U2
k (t))xk(t),

with initial data xk(0) = x, yk(0) = y.
If (x, y) 6= (0, 0), then (xk(t), yk(t)) 6= (0, 0) for every t ∈ R. We can therefore

study this system introducing polar coordinates ρk(t), θk(t) such that

xk(t) = ρk(t) cos θk(t), yk(t) = ρk(t) sin θk(t). (4.8)
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In a standard way it turns out that ρk and θk solve the system

ρ′k = 2π
√
ν ρk sin θk cos θk

{
1− τ2

k

m(k2U2
k )

4π2

}
, (4.9)

θ′k = −2π
√
ν
{

sin2 θk + τ2
k

m(k2U2
k )

4π2
cos2 θk

}
, (4.10)

with initial data ρk(0) = ρ, θk(0) = θ, such that x = ρ cos θ, y = ρ sin θ.

4.3.3. Behaviour of ρk and θk for large k. We look for functions ρ0,k, ρ2,k, θ0,k,
θ2,k such that, as k → +∞:

ρk(t) = ρ0,k(t) + ρ2,k(t)λk + o(λk), (4.11)

θk(t) = θ0,k(t) + θ2,k(t)λk + o(λk), (4.12)

where o(λk) is uniform in t ∈ [0, 1]. We prove that ρ0,k(t) ≡ ρ and ρ2,k(t) solves

ρ′2,k(t) = −ρπ
√
ν
(
1 +

4h0

π
+ log(U2

k (t))
)

sin(2θ − 4π
√
νt) ρ2,k(0) = 0,

while θ0,k(t) = θ − 2π
√
νt, and θ2,k solves

θ′2,k(t) = −2π
√
ν
(
1 +

4h0

π
+ log(U2

k (t))
)

cos2(θ − 2π
√
νt) θ2,k(0) = 0.

Thanks to (4.9) we find:

ρk(t) ≤ c

∫ t

0

ρk(s)
∣∣∣1− τ2

k

m(k2U2
k (s))

4π2

∣∣∣ ds+ ρ,

hence using (4.4) we obtain that, for all t ∈ [0, 1], |ρk(t) − ρ| ≤ cλk. In the same
way we also get |θk(t) + 2π

√
νt− θ| ≤ cλk. Moreover using Lemma 4.2 and Lemma

4.4 for t ∈ [0, 1],
|ρk(t)− ρ− λkρ2,k(t)|

λk

≤ c

λk

∫ t

0

∣∣∣1− τ2
k

m(k2U2
k (s))

4π2
+ λk(1 +

4h0

π
+ log(U2

k (s)))
∣∣∣ ds

+
c

λk

∫ t

0

∣∣∣1− τ2
k

m(k2U2
k (s))

4π2

∣∣∣(|ρk(s)− ρ|+ | sin(2θk(s))− sin(2θ − 4π
√
νs)|) ds

≤ c

λk

∫ t

0

|λko(1) log(U2
k (s))|+ o(λk) + |φk(U2

k (s))| ds

+
c

λk

∫ t

0

(λk + |θk(s)− θ + 2π
√
νs|)

∣∣∣1− τ2
k

m(k2U2
k (s))

4π2

∣∣∣ ds
≤ c

∫ 1

0

∣∣∣1− τ2
k

m(k2U2
k (s))

4π2

∣∣∣ + o(1)(| log(U2
k (s))|+ 1) ds+ c

∫ 1

0

φk(U2
k (s))
λk

ds.

By Lemma 4.2, (m1)–(m2) and Lemma 4.5, (B3), in a standard way we get

lim
k→+∞

∫ 1

0

φk(U2
k (s))
λk

ds = 0,

hence using once more (B3) and (4.4) it turns out that:

lim
k→+∞

sup
t∈[0,1]

|ρk(t)− ρ− λkρ2,k(t)|
λk

= 0,



16 MARINA GHISI EJDE–2003/96

that is (4.11). In a similar way one can prove also (4.12). By Lemma 4.5 we can
now pass to limit using Lebesgue’s Theorem, then

lim
k→+∞

ρ2,k(1) = −π
√
νρ

∫ 1

0

sin(2θ − 4π
√
νt)(1 +

4h0

π
+ log(cos2(2πt)) dt := ρ1,ρ,θ,

lim
k→+∞

θ2,k(1) = −2π
√
ν

∫ 1

0

cos2(θ − 2π
√
νt)(1 +

4h0

π
+ log(cos2(2πt)) dt := θ1,ρ,θ,

hence

ρk(1) = ρ+ λkρ1,ρ,θ + o(λk), and θk(1) = θ − 2π
√
ν + λkθ1,ρ,θ + o(λk). (4.13)

4.3.4. Behaviour of Lk for large k. Now let us denote by Lij
k the entries of the

matrix Lk. Then it holds true that (L11
k , L

21
k ) =

(
zk(1), (4π2ν)−1/2z′k(1)

)
, where zk

has initial data x = 1, y = 0, corresponding to ρ = 1, θ = 0. By (4.8) and (4.13)
we obtain that

L11
k = cos(2π

√
ν) + λk(ρ1,1,0 cos(2π

√
ν) + θ1,1,0 sin(2π

√
ν)) + o(λk),

L21
k = − sin(2π

√
ν) + λk(−ρ1,1,0 sin(2π

√
ν) + θ1,1,0 cos(2π

√
ν)) + o(λk).

Making the same computations with initial data x = 0, y = 1, corresponding to
ρ = 1, θ = π/2, we find that L22

k = L11
k , and

L12
k = sin(2π

√
ν) + λk(ρ1,1,π/2 sin(2π

√
ν)− θ1,1,π/2 cos(2π

√
ν)) + o(λk).

We have thus proved that

Lk = Rω0 + λkB + o(λk),

where ω0 = 2π
√
ν, and B is a matrix whose entries are

b11 = b22 = (ρ1,1,0 cos(2π
√
ν) + θ1,1,0 sin(2π

√
ν)),

b12 = (ρ1,1,π/2 sin(2π
√
ν)− θ1,1,π/2 cos(2π

√
ν)),

b21 = (−ρ1,1,0 sin(2π
√
ν) + θ1,1,0 cos(2π

√
ν)).

4.3.5. Properties of B. If ω0 = hπ for some h ∈ Z, then the matrix B becomes

B = ±
(
ρ1,1,0 −θ1,1,π/2

θ1,1,0 ρ1,1,0

)
.

In this case we have ρ1,1,0 = 0, indeed it is the integral of a periodic (of period 1)
odd function over the interval [0, 1]; therefore TrB = 0. Moreover it holds

−θ1,1,π/2 = πh

∫ 1

0

sin2(πht)
(
1 +

4h0

π
+ log(cos2(2πt)

)
dt

θ1,1,0 = −πh
∫ 1

0

cos2(πht)
(
1 +

4h0

π
+ log(cos2(2πt)

)
dt.

If h is odd, by Lemma 4.8, (S2), computing, one has

−
θ1,1,π/2

πh
=

∫ 1

0

1− cos(2hπt)
2

(
1 +

4h0

π
+ log(cos2 2πt)

)
dx

=
(
1 +

4h0

π

)1
2

+
1
π

∫ π/2

0

log(cos2 x) dx− 1
4π

∫ 2π

0

cos(ht) log(cos2 t) dt

= −1/2;
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indeed in this case∫ π

0

cos(ht) log(cos2 t) dt = −
∫ 2π

π

cos(ht) log(cos2 t) dt.

In an analogous way we get also

θ1,1,0

πh
=

1
2

= −
θ1,1,π/2

πh
.

If h = 2j is even, then using once more Lemma 4.8 and computing, one has

−
θ1,1,π/2

2πj
=

∫ 1

0

(1 +
4h0

π
) sin2(2πjt)dt +

1
2π

∫ 2π

0

sin2(jx) log(cos2 x) dx

= (1 +
4h0

π
)
1
2

+
1
π

( (−1)jπ

2j
+

∫ π/2

0

log(cos2 x) dx
)

= −1
2

+
(−1)j

2j
< 0.

Since ν 6= 1, hence we get j 6= 1; then work as before we find

θ1,1,0

2πj
=

1
2

+
(−1)j

2j
> 0.

We have hence proved that in all cases B satisfies hypothesis (iv) of Proposition
4.7.

4.3.6. Proof of Theorem 3.2. By Subsections 4.3.4 and 4.3.5 and Theorem 3.1 we
get that Lk satisfies all the assumptions of Proposition 4.7. Therefore statements
(1)–(5) of Theorem 3.2 follow from the corresponding statements of Proposition
4.7.

4.4. Orbital stability. In proofs, we need expansions of solutions of Cauchy prob-
lems depending on some small parameter. We will always work formally as follows.
Assume that the Cauchy problem is

Z ′ = F (Z, µ), Z(0) = Φ(µ), (4.14)

where µ is the small parameter, and Z(t) ∈ Rk is the unknown. Then we look for
an expansion like

Z(t) = Z0(t) + Z1(t)µ+ Z2(t)µ2 + . . .+ Zh(t)µh + o(µh). (4.15)

We replace Z in (4.14) with this expression, and using the Taylor formula, we
write also F (Z, µ) and Φ(µ) as polynomials of degree h in µ (in the first case the
coefficients depend on Z0, Z1, . . . Zh) plus o(µh). Finally, considering the coefficients
of µ0, µ1, . . . , µh, we find the Cauchy problems solved by Z0, Z1, . . . Zh.

It is well known that, if F and Φ are smooth enough, then this procedure can
be rigorously justified, and that (4.15) turns out to be uniform on bounded time
intervals. To avoid useless terms in writing expansion (4.15), we always omit from
the beginning the terms which a posteriori would turn out to be zero.
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4.4.1. Taylor expansions in ρ for k fixed. In this section k will be fixed. We compute
the first three terms in the Taylor expansion in a neighborhood of (0, 0) of the
Poincaré map Pk associated with the simple mode Uk given in (4.3). In order to
fix notations, we write once more the definition of Pk, following section 2.2.2.

Given (x, y) ∈ Uk we consider the solution of the system

W ′′ + τ2
km(k2W 2 + Z2)W = 0, W (0) = α, W ′(0) = 0, (4.16)

Z ′′ + ν τ2
km(k2W 2 + Z2)Z = 0, Z(0) = x, Z ′(0) = 2π

√
ν y, (4.17)

where α is the positive solution of

4π2 y2

k2
+
τ2
k

k2
M(k2α2 + x2) =

τ2
k

k2
M(k2).

Let T be the smallest t > 0 such that W ′(t) = 0 and W (t) > 0. Then

Pk(x, y) :=
(
Z(T ), (4π2ν)−1/2Z ′(T )

)
.

Since we plan to use polar coordinates we assume that x = ρ cos θ, y = ρ sin θ.
Formally this definition is very similar to the definition of Lk. However the

situation is here much more complicated, because α depends on k, ρ, θ, hence also
W , Z and T depend on k, ρ, θ. We use capital letters to avoid confusion with
the corresponding functions used in the study of the linear term. We also write
W (k, ρ, θ, t), α(k, ρ, θ), and so on, to recall the dependence on all these variables.
The symbol ′ will always denote differentiation with respect to the time variable t.

In this first part of the proof we consider the asymptotic behaviour of these
functions as ρ → 0+ (k fixed). All the terms o(ρj) we introduce are uniform on
θ ∈ [0, 2π], and on t belonging to any bounded time interval.
Asymptotic behaviour of α. We prove that as ρ→ 0+, we have that

α(k, ρ, θ) = 1− 1
2k2

[4π2 sin2 θ

τ2
km(k2)

− cos2 θ
]
ρ2 + o(ρ3). (4.18)

Since α(k, 0, θ) = 1 we look for an expansion of α as

α(k, ρ, θ) = 1 + α2(k, θ)ρ2 + o(ρ3).

Since

4π2ρ2 sin2 θ

k2
+

∫ α2+(ρ2 cos2 θ)/k2

0

τ2
km(k2s) ds =

∫ 1

0

τ2
km(k2s) ds,

then taking into account the Taylor expansions,

4π2ρ2 sin2 θ

k2
+ τ2

km(k2)
(

1− α2 − ρ2 cos2 θ
k2

)
+ o(ρ3) = 0.

Hence thesis follows immediately by

4π2ρ2 sin2 θ

k2
+ τ2

km(k2)
(
−2α2(k, θ)−

cos2 θ
k2

)
ρ2 + o(ρ3) = 0.

Polar coordinates for Z. We argue as in section 4.3.2. Setting

X(k, ρ, θ, t) = Z(k, ρ, θ, t), Y (k, ρ, θ, t) = (ν4π2)−1/2Z ′(k, ρ, θ, t),



EJDE–2003/96 LARGE ENERGY SIMPLE MODES 19

and using polar coordinates R(k, ρ, θ, t), Θ(k, ρ, θ, t) such that X = R cos Θ, Y =
R sinΘ, it turns out that R and Θ solve the system

R′ = 2π
√
ν R sinΘ cos Θ

{
1− τ2

km(k2W 2 +R2 cos2 Θ)
4π2

}
, R(k, ρ, θ, 0) = ρ,

(4.19)

Θ′ = −2π
√
ν
{

sin2 Θ +
τ2
km(k2W 2 +R2 cos2 Θ)

4π2
cos2 Θ

}
, Θ(k, ρ, θ, 0) = θ.

(4.20)

Asymptotic behaviour of W , R, Θ. We look for functions W0, W2, R1, R3, Θ0,
Θ2 such that, as ρ→ 0+,

W (k, ρ, θ, t) = W0(k, θ, t) +W2(k, θ, t)ρ2 + o(ρ3), (4.21)

R(k, ρ, θ, t) = R1(k, θ, t)ρ+R3(k, θ, t)ρ3 + o(ρ3), (4.22)

Θ(k, ρ, θ, t) = Θ0(k, θ, t) + Θ2(k, θ, t)ρ2 + o(ρ3). (4.23)

Using these expansions, we have

m(k2W 2 + Z2) = m
(
k2W 2

0 + (2k2W0W2 +R2
1 cos2 Θ0)ρ2 + o(ρ3)

)
= m(k2W 2

0 ) +m′(k2W 2
0 )(2W0W2k

2 +R2
1 cos2 Θ0)ρ2 + o(ρ3).

(4.24)
Setting (4.21), (4.24), and (4.18) in equation (4.16), and looking at the terms
without ρ, we find that W0 solves

W ′′
0 + τ2

km(k2W 2
0 )W0 = 0, W0(k, θ, 0) = 1, W ′

0(k, θ, 0) = 0, (4.25)

while, looking at the terms in ρ2, we find that W2 solves

W ′′
2 + τ2

km(k2W 2
0 )W2 + τ2

km
′(k2W 2

0 )
(
2W0W2k

2 +R2
1 cos2 Θ0

)
W0 = 0, (4.26)

with initial data

W2(k, θ, 0) = − 1
2k2

[4π2 sin2 θ

τ2
km(k2)

− cos2 θ
]
, W ′

2(k, θ, 0) = 0. (4.27)

From (4.25) we can see that W0 is just the simple mode Uk. In particular, it is
independent on θ, and so from now on we write Uk(t), instead of W0(k, θ, t). Setting
(4.22), (4.23), and (4.24) in equation (4.19), and looking at the terms in ρ, we find
that R1 solves

R′1 = 2π
√
ν
{

1− τ2
km(k2U2

k )
4π2

}
R1 cos Θ0 sinΘ0, R1(k, θ, 0) = 1. (4.28)

In an analogous way, looking at the terms without ρ in (4.20), we find that Θ0

solves

Θ′0 = −2π
√
ν
{

sin2 Θ0 +
τ2
km(k2U2

k )
4π2

cos2 Θ0

}
, Θ0(k, θ, 0) = θ. (4.29)

Finally, using in equation (4.20) expansions (4.22), (4.23), and (4.24), and recalling
that by Taylor formula

sin2 Θ = sin2 Θ0 + 2ρ2Θ2 cos Θ0 sinΘ0 + o(ρ2),

cos2 Θ = cos2 Θ0 − 2ρ2Θ2 cos Θ0 sinΘ0 + o(ρ2),
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looking at the terms in ρ2, we find that Θ2 solves

Θ′2 = −2π
√
ν
{

2Θ2 cos Θ0 sinΘ0

[
1− τ2

km(k2U2
k )

4π2

]
+
τ2
km

′(k2U2
k )

4π2
cos2 Θ0

[
2k2UkW2 +R2

1 cos2 Θ0

] }
, Θ2(k, θ, 0) = 0.

(4.30)

We do not write the equation for R3 because we don’t need it in the sequel.
Asymptotic behaviour of T . We prove that, as ρ→ 0+,

T (k, ρ, θ) = 1 + T2(k, θ)ρ2 + o(ρ3), (4.31)

where

T2(k, θ) =
W ′

2(k, θ, 1)
τ2
k m(k2)

. (4.32)

It is natural to look for an expansion like (4.31) since for ρ = 0, W is exactly the
simple mode Uk. Replacing the expansions of W and T in the condition W ′(T ) = 0
we obtain that

0 = W ′(k, ρ, θ, T (k, ρ, θ))

= U ′k(T (k, ρ, θ)) + ρ2W ′
2(k, θ, T (k, ρ, θ)) + o(ρ3)

= U ′k(1) + ρ2 {U ′′k (1)T2(k, θ) +W ′
2(k, θ, 1)}+ o(ρ3).

(4.33)

The first summand is zero. Moreover by equation (4.3)

U ′′k (1) = U ′′k (0) = −τ2
km

(
k2U2

k (0)
)
Uk(0) = −τ2

km(k2).

Setting equal to zero the coefficient of ρ2 in (4.33), and using the last equality, we
get (4.32). It is easy to see that with this choice also condition U(T ) > 0 is satisfied
for ρ small.
Asymptotic behaviour of the Poincaré map. Using the expansions in (4.22)-
(4.23)-(4.31), we obtain that

Θ(k, ρ, θ, T (k, ρ, θ)) = Θ0(k, θ, T (k, ρ, θ)) + Θ2(k, θ, T (k, ρ, θ))ρ2 + o(ρ3)

= Θ0(k, θ, 1) + {Θ′0(k, θ, 1)T2(k, θ) + Θ2(k, θ, 1)} ρ2 + o(ρ3),

and similarly

R(k, ρ, θ, T (k, ρ, θ)) = R1(k, θ, 1)ρ+ {R′1(k, θ, 1)T2(k, θ) +R3(k, θ, 1)} ρ3 + o(ρ3).

Therefore, in polar coordinates the Poincaré map is

Pk

(
ρ
θ

)
=

(
R(k, ρ, θ, T (k, ρ, θ))
Θ(k, ρ, θ, T (k, ρ, θ))

)
=

(
α1(k, θ)ρ
β0(k, θ)

)
+

(
α3(k, θ)ρ3

β2(k, θ)ρ2

)
+ o(ρ3),

where
α1(k, θ) = R1(k, θ, 1),

α3(k, θ) = R′1(k, θ, 1)T2(k, θ) +R3(k, θ, 1),

β0(k, θ) = Θ0(k, θ, 1),

β2(k, θ) = Θ′0(k, θ, 1)T2(k, θ) + Θ2(k, θ, 1).

(4.34)

Let us now recall that if we choose coordinates where Lk is written in the canonical
form of a rotation, then, in the corresponding polar coordinates, Pk becomes

Pk

(
I
σ

)
=

(
I + a(k, σ)I3

σ − ωk + b(k, σ)I2

)
+ o(I3).



EJDE–2003/96 LARGE ENERGY SIMPLE MODES 21

The coordinate change from the cartesian coordinates (X,Y ) to the original coor-
dinates (x, y) is given by the diagonal matrix D(k) introduced in Theorem 3.2. The
expression of the corresponding change D∗(k) from (I, σ) to (ρ, θ) is not so simple:
it is given by

ρ = α∗(k, σ)I, θ = δ∗(k, σ), (4.35)

where α∗(k, σ) =
{
cos2 σ + δ2(k) sin2 σ

}1/2
, and δ∗(k, σ) = arctan(δ(k) tanσ) for

σ ∈ (−π/2, π/2), and similarly for all other values of σ. If we denote the inverse
change by D∗(k) := [D∗(k)]

−1, then his components α∗(k, θ)ρ and δ∗(k, θ) are
defined in analogy with α∗, δ∗, but with δ−1(k) instead of δ(k).

Considering the second component of P ∗k = D∗(k)PkD∗(k) we have that, up to
o(I3),

σ − ω(k) + b(k, σ)I2 = δ∗
[
k, β0(k, δ∗(k, σ)) + β2(k, δ∗(k, σ)) · α2

∗(k, σ) I2
]
,

so that, making the Taylor expansion of the right hand side and looking at the
coefficients of I2, it turns out that

b(k, σ) =
∂δ∗

∂θ
[k, β0(k, δ∗(k, σ))] · β2(k, δ∗(k, σ)) · α2

∗(k, σ).

4.4.2. Behaviour for large k of coefficients in Taylor expansions. Behaviour of
the coordinate change By statement (5) of Theorem 3.2 we obtain:

α∗(k, σ) → (cos2 σ + δ2 sin2 σ)1/2 = µ0(σ) ≥ c > 0, (4.36)

δ∗(k, σ) → arctan(δ tan(σ)) = µ1(σ), σ ∈
(
−π

2
,
π

2

)
, (4.37)

∂δ∗
∂σ

(k, σ) → δ
1 + tan2 σ

1 + δ2 tan2 σ
= µ2(σ) ≥ c > 0, (4.38)

as k → +∞, uniformly in σ. The same holds true for the inverse change D∗(k).
Behaviour of W2 We prove that

|W2(k, θ, t)|+ |W2(k, θ, t)′| ≤ c
log k
k2

∀ t ∈ [0, 1]. (4.39)

Indeed let us set
E(k, t) = |W2(k, θ, t)|2 + |W2(k, θ, t)′|2.

Thanks to (4.26), since m′ ≥ 0, in a standard way we get

E′(k, t) ≤E(k, t)[1 + τ2
km(k2Uk(t)2) + 2τ2

km
′(k2Uk(t)2)k2Uk(t)2]

+ τ2
km

′(k2Uk(t)2)R2
1(k, θ, t)|Uk(t)|

√
E(k, t).

Now, using (U4), m′ ≥ 0, Lemma 4.4 and (4.1) we obtain:

τ2
km(k2Uk(t)2) ≤ τ2

km(k2) ≤ c; (4.40)

τ2
km

′(k2Uk(t)2)k2Uk(t)2 ≤ τ2
km(k2)

m′(k2Uk(t)2)k2Uk(t)2

m(k2Uk(t)2)
≤ c; (4.41)

τ2
km

′(k2Uk(t)2)|Uk(t)| ≤ c
m′(k2Uk(t)2)
m(k2Uk(t)2)

|Uk(t)| ≤ c
|Uk(t)|

1 + k2Uk(t)2
. (4.42)

Moreover, by (4.28) we obtain that the function R1(k, θ, t) is bounded in [0, 1].
Therefore, integrating on [0, t] the inequality

E′(k, s) ≤ cE(k, s) + c
√
E(k, s)

|Uk(s)|
1 + k2Uk(s)2
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and using Lemma 4.6 and (4.27) we get the desired estimate.
Behaviour of Θ2 We prove that

lim inf
k→+∞

−km(k2)
∫ 2π

0

∂δ∗

∂θ
[k, β0(k, δ∗(k, σ))]Θ2(k, δ∗(k, σ), 1)α2

∗(k, σ) dσ > 0.

(4.43)
To this end we need the following lemmata.

Lemma 4.9. The function Θ2 satisfies km(k2)|Θ2(k, θ, t)| ≤ c for all t ∈ [0, 1],
k ≥ k.

Proof. Integrating (4.30) we find

Θ2(k, θ, t) = −2π
√
ν

∫ t

0

sin(2Θ0(k, θ, s))
(
1− τ2

k

4π2
m(k2U2

k (s))
)
Θ2(k, θ, s) ds

− 2π
√
ν

∫ t

0

2k2 τ
2
k

4π2
m′(k2U2

k (s)) cos2(Θ0(k, θ, s))Uk(s)W2(k, θ, s) ds

− 2π
√
ν

∫ t

0

τ2
k

4π2
m′(k2U2

k (s)) cos4(Θ0(k, θ, s))R1(k, θ, s) ds.

Hence by m′ ≥ 0, Lemma 4.4, (4.39), (4.42) and Lemma 4.6 we obtain

|Θ2(k, θ, t)| ≤ c

∫ t

0

∣∣∣1 +
τ2
k

4π2
m(k2)

∣∣∣|Θ2(k, θ, s)|+
m′(k2U2

k (s))
m(k2)

(|Uk(s)| log k + 1) ds

≤ c

∫ t

0

|Θ2(k, θ, s)| ds+
c

km(k2)
+ c log k

∫ t

0

|Uk(s)|
1 + k2U2

k (s)
ds

≤ c

∫ t

0

|Θ2(k, θ, s)| ds+
c

km(k2)
+
c log2 k

k2
.

Hence thesis follows by Lemma 4.3, (M1), and Gronwall’s Lemma. �

Lemma 4.10. The next equality holds:

lim inf
k→+∞

−km(k2)Θ2(k, θ, 1) = 2π
√
ν lim inf

k→+∞

∫ 1

0

km′(k2Uk(s)2) cos4(θ − 2π
√
νs) ds.

Proof. Integrating equation (4.30) we find:

− km(k2)Θ2(k, θ, 1)

= 2π
√
ν

∫ 1

0

sin(2Θ0(k, θ, t))km(k2)
(
1− τ2

k

4π2
m(k2U2

k (t))
)
Θ2(k, θ, t) dt

+ 2π
√
ν

∫ 1

0

2
τ2
k

4π2
k3m(k2) cos2(Θ0(k, θ, t))m′(k2Uk(t)2)Uk(t)W2(k, θ, t) dt

+ 2π
√
ν

∫ 1

0

τ2
k

4π2
m(k2)kR2

1(k, θ, t)m
′(k2Uk(t)2) cos4(Θ0(k, θ, t)) dt.

Now we estimate all terms in previous equality. Using Lemma 4.9 and Lemma 4.6
we obtain∫ 1

0

∣∣∣∣sin(2Θ0(k, θ, t))km(k2)
(
1− τ2

k

4π2
m(k2U2

k (t))
)
Θ2(k, θ, t)

∣∣∣∣ dt
≤

∫ 1

0

∣∣∣1− τ2
k

4π2
m(k2U2

k (t))
∣∣∣ dt ≤ cλk.

(4.44)
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Thanks to (4.39), (4.42), Lemma 4.6, Lemma 4.3 (property (M1)) we also obtain∫ 1

0

∣∣∣∣ τ2
k

4π2
k3m(k2) cos2(Θ0(k, θ, t))m′(k2Uk(t)2)Uk(t)W2(k, θ, t)

∣∣∣∣ dt
≤ c

∫ 1

0

k log k|Uk(t)|m′(k2Uk(t)2) dt

≤ c

∫ 1

0

k log km(k2U2
k (t))

|Uk(t)|
1 + k2U2

k (t)
dt

≤ c
log2 k

k
m(k2) ≤ c

1√
k
.

(4.45)

Let us remark that, thanks to Lemma 4.6 and (4.28)–(4.29), R1(k, θ, t) = 1 + o(1),
Θ0(k, θ, t) = θ − 2π

√
νt + o(1) (where o(1) do not depends on t ∈ [0, 1]), and, by

Lemma 4.4, τ2
km(k2) = 4π2 + o(1), hence∫ 1

0

τ2
k

4π2
m(k2)kR2

1(k, θ, t)m
′(k2Uk(t)2) cos4(Θ0(k, θ, t)) dt

=
∫ 1

0

(1 + o(1))3km′(k2Uk(t)2)(cos4(θ − 2π
√
νt) + o(1)) dt.

Now we can use once more Lemma 4.6 and obtain

lim
k→+∞

∫ 1

0

o(1)km′(k2Uk(t)2)[1 + cos4(θ − 2π
√
νt)] dt = 0. (4.46)

�

We are now able to prove (4.43). Lemma 4.10 says that, for large k, −Θ2(k, θ, 1)
is a non negative function, hence, by (4.36) - (4.38), and a change of variable

−
∫ 2π

0

∂δ∗

∂θ
[k, β0(k, δ∗(k, σ))]Θ2(k, δ∗(k, σ), 1)α2

∗(k, σ) dσ ≥ c

∫ 2π

0

Θ2(k, θ, 1) dθ.

(4.47)
As in the proof of Lemma 4.10 (using (4.44), (4.45), (4.46) ) we get

lim inf
k→+∞

−km(k2)
∫ 2π

0

Θ2(k, θ, 1) dθ

= lim inf
k→+∞

2π
√
ν

∫ 1

0

km′(k2Uk(s)2)
∫ 2π

0

cos4(θ − 2π
√
νs) dθ ds

=
3
2
π2
√
ν lim inf

k→+∞

∫ 1

0

km′(k2Uk(s)2) ds.

Let t0 be as in Lemma 4.5, (B2). Since thanks also to (U5) and Lemma 4.4 we find
0 < c1 ≤ |U ′k(t)| < c2 for t ∈ [t0, 1/4], it turns out that:∫ 1

0

km′(k2Uk(s)2) ds ≥
∫ 1/4

t0

km′(k2Uk(s)2)
−U ′k(s)
|U ′k(s)|

ds ≥ c

∫ kUk(t0)

0

m′(y2) dy,

and passing to the limit∫ kUk(t0)

0

m′(y2) dy →
∫ +∞

0

m′(y2) dy > 0 as k → +∞.
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Hence, we have

lim inf
k→+∞

−km(k2)
∫ 2π

0

Θ2(k, θ, 1) dθ ≥ c lim inf
k→+∞

∫ 1/4

t0

km′(k2Uk(s)2) dθ > 0.

Thanks to (4.47) we then obtain (4.43).
Behaviour of b(k, σ). We prove that, for k large,∫ 2π

0

b(k, σ) dσ =
∫ 2π

0

∂δ∗

∂θ
[k, β0(k, δ∗(k, σ))] · β2(k, δ∗(k, σ)) · α2

∗(k, σ) dσ < 0.

(4.48)
Let us recall that in (4.34), β2(k, θ) = Θ′0(k, θ, 1)T2(k, θ) + Θ2(k, θ, 1). Since α∗,
∂δ∗

∂θ and Θ′0(k, θ, t), are bounded functions, by (4.32) and (4.39), we obtain∫ 2π

0

∣∣∣∂δ∗
∂θ

[k, β0(k, δ∗(k, σ))]Θ′0(k, δ∗(k, σ), 1)T2(k, δ∗(k, σ))α2
∗(k, σ)

∣∣∣ dσ
≤ c

∫ 2π

0

|W ′
2(k, δ∗(k, σ), 1)| dσ ≤ c

log k
k2

.

Since log k/k = o(1/m(k2)) to get the desired inequality it is now enough to remark
that (4.43) says that for large k:

−
∫ 2π

0

∂δ∗

∂θ
[k, β0(k, δ∗(k, σ))]Θ2(k, δ∗(k, σ), 1)α2

∗(k, σ) dσ ≥ c

km(k2)
.

Proof of Theorem 3.3. To proof Theorem 3.3, we have to show that for large k,
γk < 0, but this is exactly (4.48).
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