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THE EDDY CURRENT PROBLEM WITH TEMPERATURE
DEPENDENT PERMEABILITY

GIOVANNI CIMATTI

Abstract. We prove the uniqueness and existence of a local solution in time
for a system of PDE’s modelling the eddy currents and the heating of a cylin-
drical conductor.

1. Introduction

Electric currents induced in a massive conductor by an external varying magnetic
field are known as eddy currents. They in turn heat the body by Joule effect. The
problem of predicting the magnetic field and the temperature in the conductor is
modelled by the non linear system

∂

∂t
(µH) = −∇× (ρ∇×H) (1.1)

ut −∇ · (κ∇u) = ρ|∇ ×H|2, (1.2)

where ρ is the electric resistivity, κ the thermal conductivity and µ the permeability.
In the special situation of a very long cylindrical conductor of cross-section Ω (an
open, bounded and connected subset of R2 with a regular boundary Γ) immersed in
an insulating medium and with a time dependent magnetic field H given at infinity
by H∞ = hb(t)i3, i3 unit vector parallel to the axis of the cylinder. In view of the
geometry, we assume H = hi3; this simplifies the equations and we are led (see
[3]and [11]), to the following initial-boundary value problem, closely related to the
thermistor problem:

(µh)t = ∇ · (ρ∇h) (1.3)

ut −∇ · (κ∇u) = ρ|∇h|2, x = (x1, x2) (1.4)

h(x, t) = hb(t) on Γ× (0, T ) (1.5)

h(x, 0) = 0 in Ω (1.6)

u(x, t) = 0 on Γ× (0, T ) (1.7)

u(x, 0) = u0(x) in Ω. (1.8)

The system (1.1)–(1.2) has been the subject of a variety of investigations in the
past decade. They all assume µ to be a constant and ρ a given function of the
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temperature u. We refer, in particular, to the work of Hong-Ming Yin [13], [14] and
also to [8] and references therein. The more special problem (1.3)–(1.8) has been
studied in [3] and [11], again with constant permeability. Now, in real conductors
not only ρ and κ depend on u, but also µ, in certain cases dramatically [10]; this
makes the problem considerably more difficult.

2. Results

In the stationary thermistor problem a suitable transformation linearizes the
system (see [4], [5] and [6]) and this permits, in particular, a precise estimate of
the maximum of the temperature u. Unfortunately, there does not seem to be a
correspondent transformation for the parabolic system (1.3)–(1.8). However, when
ρ, κ and µ are constants the transformation useful in the thermistor problem can
be applied to (1.3)–(1.8). Let

a =
µ

ρ
, b =

1
ρ2

, c =
κ

ρ2

and define H(x1, x2, t) = h(x1, x2, at), U(x1, x2, t) = u(x1, x2, bt) and

θ(x1, x2, t) =
H2

2
(x1, x2, t) + c U(x1, x2, t).

Under this transformation system (1.3)–(1.8) becomes

Ht = ∆H, θt = ∆θ.

The initial and boundary conditions for θ are immediately written in terms of the
same data of H and U . Thus H and θ are estimated via the parabolic maximum
principle and, correspondingly, U = 1

c

(
θ − H2

2

)
is also estimated. In this note

we present a result of uniqueness for problem (1.3)–(1.8) assuming µ, ρ and κ to
be given functions of u and a result of existence of solutions local in time. The
difficulties inherent to the nonlinear problem (1.3)–(1.8) are better understood if
we rewrite equations. Equations (1.3) and (1.4) in normal form, i.e. solved with
respect to ht and ut, and with the principal part in divergence form. We obtain,
after easy calculations,

ht = ∇ · (a(u)∇h)−∇ · (b(u)h∇u)− c(u)h|∇h|2 + d(u)∇u · ∇h + e(u)h|∇u|2
(2.1)

ut = ∇ · (κ(u)∇u) + ρ(u)|∇h|2 , (2.2)

where

a(u) = ν(u)ρ(u), ν(u) =
1

µ(u)
, b(u) = µ′(u)ν(u)κ(u), c(u) = µ′(u)ν(u)ρ(u) ,

d(u) = µ′(u)ν(u)κ(u)− ν′(u)ρ(u), e(u) = µ′′(u)ν(u)κ(u) + µ′(u)ν′(u)κ(u).

On the right-hand side of equation (2.1) the second term clearly shows the lack of
uniform ellipticity in the principal part of the system. This is the main source of
mathematical difficulty in these equations. We assume b(u), c(u), d(u) and e(u)
to be bounded and globally Lipschitz and a(u), κ(u) to be locally bounded and to
satisfy

a(u) ≥ a0 > 0, κ(u) ≥ κ0 > 0 . (2.3)

We denote with ‖ · ‖ the norm in L2(Ω).
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Theorem 2.1. Under the assumptions

u0(x) ∈ H1,∞
0 (Ω), hb(t) ∈ H1,∞(0, T ), hb(0) = 0,

there exists at most one solution,

(h, u) ∈ L∞(0, T ;H1,∞(Ω))× L∞(0, T ;H1,∞
0 (Ω)) ,

(ht, ut) ∈ L2(0, T ;H−1(Ω))× L2(0, T ;H−1(Ω)) ,

to problem (2.1), (2.2), (1.5)–(1.8).

Proof. Let (h1, u1) and (h2, u2) be two solutions and let z = h1 − h2, w = u1 − u2.
Subtracting equation (2.1) from (2.2), we obtain

zt = ∇ ·
[
a(u1)∇h1 − a(u2)∇h2

]
−∇ ·

[
b(u1)h1∇u1 − b(u2)h2∇u2

]
−

[
c(u1)h1|∇h1|2 − c(u2)h2|∇h2|2

]
+

[
d(u1)∇u1 · ∇h1 − d(u2)∇h2

]
+

[
e(u1)h1|∇u1|2 − e(u2)h2|∇u2|2

]
= {1}+ {2}+ {3}+ {4}+ {5} ,

(2.4)

wt = ∇ ·
[
κ(u1)∇u1 − κ(u2)∇u2

]
+ ρ(u1)|∇h1|2 − ρ(u2)|∇h2|2 = {6}+ {7} ,

(2.5)

z(x, 0) = 0, w(x, 0) = 0, x ∈ Ω , (2.6)

z(x, t) = 0, w(x, t) = 0, (x, t) ∈ Γ× (0, T ) . (2.7)

We multiply (2.4) by z and (2.5) by Kw, where K is a positive constant to be defined
later. Integrating by parts over Ω and using the Cauchy-Schwartz inequality, we
have

1
2

d

dt

∫
Ω

(z2 + Kw2)dx + a0‖∇z‖2 + Kκ0‖∇w‖2

≤ C11‖w‖‖∇z‖+
(
C21‖w‖‖∇z‖+ C22‖z‖‖∇z‖+ C23‖∇w‖‖∇z‖

)
+

(
C31‖w‖‖z‖+ C32‖z‖2 + C33‖z‖‖∇z‖

)
+

(
C41‖w‖‖z‖+ C42‖z‖‖∇w‖+ C43‖z‖‖∇z‖

)
+

(
C51‖w‖2 + C52‖z‖2 + C53‖z‖‖∇w‖

)
+ C61K‖w‖‖∇w‖+ KC71‖w‖2 + KC72‖w‖‖∇z‖

(2.8)

where the first index refers, in the various Cij , to the grouping given in (2.4) and
(2.5). We apply the elementary inequality 2ab ≤ γa2+ 1

γ b2 with various choices of γ

and with the goal of absorbing in the left-hand side of (2.8) all the terms containing
‖∇z‖ and ‖∇w‖. Clearly, in this respect, the most difficult term is C23‖∇w‖‖∇z‖.
With ε > 0 we have

C11‖w‖‖∇z‖ ≤ C11
ε

2
‖∇z‖2 + C11

1
2ε
‖w‖2

and

KC72‖w‖‖∇z‖ ≤ KC72
ε

2K
‖∇z‖2 +

K

2ε
C72‖w‖2.
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Treating the other groups of terms similarly, we obtain in the end
1
2

d

dt

∫
Ω

(z2 + Kw2)dx +
(
a0 −Aε−KC72

ε

2K

)
‖∇z‖2

+
(Kκ0

2
−Bε− C23

2ε

)
‖∇w‖2

≤ L(ε,K)‖w‖2 + M(ε,K)‖z‖2

where L(ε,K) and M(ε,K) are positive functions defined for ε > 0 and K > 0, and
A, B constants easily computed. With the choice

ε = ε̄ =
a0

A + C72
, K = K̄ = max

{
1,

4
κ0

[ Ba0

(A + C72)
+

2C23(A + C72)
a0

]}
,

we have
d

dt

∫
Ω

(z2 + K̄w2)dx + a0‖∇z‖2 +
K̄κ0

2
‖∇w‖2 ≤ C

∫
Ω

(z2 + K̄w2)dx

where C = 2 max{L(ε̄, K̄),M(ε̄, K̄)}. Hence the Gronwall lemma, gives

‖u1(t)− u2(t)‖2 + K̄‖h1(t)− h2(t)‖2 ≤ eCt(‖u1(0)− u2(0)‖2 + K̄‖h1(0)− h2(0)‖2

and uniqueness follows. �

To prove a result of existence local in time, we apply a theorem by Sobolewskii
in [12], which we quote below.

Theorem 2.2. For α, β, i, j = 1, 2, let the functions

aijαβ(t, v1, v2, v11, v12, v21, v22), fα(t, t, v1, v2, v11, v12, v21, v22)

be of class C2(R7) and ṽ1(x), ṽ2(x) be in C2(Ω̄), with ṽ1, ṽ2 = 0 on Γ. Define

ãijαβ(x) = aijαβ

(
0, ṽ1(x), ṽ2(x),

∂ṽ1

∂x1
(x),

∂ṽ1

∂x2
(x),

∂ṽ2

∂x1
(x),

∂ṽ2

∂x2
(x)

)
.

Suppose that
2∑

ijαβ=1

ãijαβ(x)ξiαξjβ ≥ k
2∑

iα=1

ξ2
iα, k > 0 (2.9)

for all x ∈ Ω. Then the problem

∂vα

∂t
−

2∑
ijαβ

∂

xi

(
aijαβ

(
t, v1, v2,

∂v1

∂x1
,
∂v1

∂x2
,
∂v2

∂x1
,
∂v2

∂x2

)∂vβ

xj

)
= fα

(
t, v1, v2,

∂v1

∂x1
,
∂v1

∂x2
,
∂v2

∂x1
,
∂v2

∂x2

)
vα(0, x) = ṽα(x) x ∈ Ω

vα(t, x) = 0, (t, x) ∈ Γ× [0, T ), α = 1, 2

(2.10)

has one and only one solution defined in a suitably small interval [0, t0), t0 < T .

To apply this theorem to our case we assume a(u), b(u), c(u), d(u), e(u), κ(u)
and ρ(u) to be C2(R). We define as new unknown function w(t, x) = h(t, x)−hb(t)
to obtain the homogeneous boundary condition required in (2.10) and suppose
hb(t) ∈ C2(R) and u0(x) ∈ C2(Ω̄). In view of (6) and (11) the crucial condition
(2.9) is satisfied: indeed we have

a(u0(x))(ξ2
11 + ξ2

12) + κ(u0(x))(ξ2
21 + ξ2

22) ≥ k(ξ2
11 + ξ2

12 + ξ2
21 + ξ2

22)
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with k = min(a0, κ0). Hence the initial boundary value problem (2.1), (2.2), (1.5)—
(1.8) has a unique classical solution local in time.
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