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WEAK ASYMPTOTIC METHOD FOR THE STUDY OF
PROPAGATION AND INTERACTION OF INFINITELY

NARROW δ-SOLITONS

VLADIMIR G. DANILOV & GEORGII A. OMEL’YANOV

Abstract. We present a new method for studying the interaction of solitons
for non-integrable Korteweg-de Vries (KdV) type equations with small disper-

sion and test this method for the KdV equation.

Introduction

We present a method for studying the interaction of solitons for Korteweg-de
Vries (KdV) type equations with small dispersion. It is well known that the KdV
equation

ut + (u2)x + ε2uxxx = 0,
where ε→ +0 is a small parameter, has a soliton solution in the form of a traveling
wave

u =
A

2
cosh−2

(
β
x− V t

ε

)
, β =

( A
12

)1/2

, V = 4β2. (0.1)

If we consider this solution as a generalized function and calculate its asymptotic
behavior in the weak sense, then we obtain

u ' ε
A

β
δ(x− V t)

1
2

∫
R1

cosh−2(η) dη. (0.2)

Due to this formula we call the solution (0.1) ε–δ solution.
Similarly, if we consider a KdV type equation in the form

ut + (um)x + ε2uxxx = 0, (0.3)

where m is integer, m > 2, then we obtain a soliton solution in the form

u = Aω
(
β
x− V t

ε

)
, (0.4)

where A > 0 is a constant,

β2 = γm−1Am−1, V = amA
m−1, γ =

(m− 1
m+ 3

ama2

a′2

)1/(m−1)

.
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Here and in the following, we denote ak =
∫

R1 ω
k(η) dη for any k ≥ 1, a′2 =∫

R1(dω(η)/dη)2 dη, and ω(η) is the exact solution of the model equation corre-
sponding to (0.3):

dω

dη
+
dωm

dη
+
d3ω

dη3
= 0, ω → 0 as η → ±∞. (0.5)

It is clear that this solution belongs to the Schwartz space S(R1). Again, in the
weak sense, we have

u ' ε
A

β
δ(x− V t)

∫
R1
ω(η) dη.

It is well known that the interaction of soliton travelling waves (0.1) can be
described by the famous inverse scattering transform method [1], which cannot be
used for describing the interaction of waves for m > 3. However, one can easily see
that, in a weak sense, the waves (0.1) and (0.4) are similar. So one can put forward
the hypothesis that there must be a procedure for describing the wave interaction
in both the integrable (m = 2, 3) and non-integrable (m > 3) cases.

The goal of the present paper is to confirm this hypothesis and to propose some
general procedure (the weak asymptotic method) for describing the interaction of
nonlinear waves.

Note that, since (0.5) has a solution rapidly decreasing as |η| → ∞, (0.3) has a
special class of solutions [12, 13], namely, distorted infinitely narrow solitons of the
form

u = u0(x, t, ε) +W
(
β
x− v(t)

ε
, t, x, ε

)
+O(εN ),

where N � 1, u0(x, t, ε) and W (η, t, x, ε) are smooth functions, and

W (η, t, x, 0) = A(t)ω(η).

Such solutions correspond to special initial data (of the same form as the solution)
and are very sensitive to any general small perturbations [12, 13, 8]. These pertur-
bations need not necessarily lead to instability, but they take the solutions out of
the class of infinitely narrow solitons. In this paper we restrict ourselves to con-
sidering propagation and interaction of nonlinear waves corresponding to solutions
from the class of infinitely narrow solitons, and we do not consider the problem of
their stability [8].

We briefly consider the weak asymptotic method. The main notation of the
method is the following.

1) By fε(x) = OD′(εα) we denote all generalized functions (depending on ε as
on a parameter) that for any test function satisfy the relation

〈fε(x), ψ(x)〉 = O(εα),

where 〈, 〉 denotes the action of a generalized function fε(x) on a test function ψ(x)
and the estimation on the right-hand side is treated in the usual sense.

2) Let a function uε(x, t) belong to C∞([0, T ]×R1
x), T > 0, for ε > 0 and belong

to C(0, T ;D′(R1
x)) uniformly in ε ≥ 0. We say that uε(x, t) is a weak asymptotic

solution (modOD′(εα)) of the equation

Lu = 0

if Luε = OD′(εα), where, uniformly with respect to ε, the right-hand side is a weakly
continuous and weakly piecewise smooth function of t (for more detail, see below).
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In fact, this means that the difference between the method of weak asymptotic
and the method of ordinary asymptotic expansions is that the smallness of the
remainder is understood in a different way. Usually, the remainder is assumed to
be small in some uniform sense with sufficient accuracy. Here we assume exactly
the same but in the sense of OD′ .

These two remarks allow us to construct asymptotic formulas that describe the
propagation and interaction of nonlinear waves. Some results obtained by this
method (for instance, results concerning the collision, formation, and destruction
of shock waves) were published recently in the papers [3, 4, 5, 6].

In the present paper we use this method for solving the problem of solitary waves
(solitons) interaction for KdV type equations with small dispersion, including the
integrable case. Here we encounter a problem of constructing a suitable definition of
the weak asymptotic solution in the case where the dispersion tends to zero, which
is well known as the zero limit dispersion problem [9, 10]. However, in contrast
to [9, 10], we deal not with oscillating solutions of the KdV equation or even with
more general solutions, but we consider a special class of solutions, i.e., solitons.
Therefore, in our case the zero dispersion limit leads to a system of differential
equations, instead of integro-differential equations, obtained in [9, 10].

Consider in detail problems related to the definition of the weak asymptotic
(mod OD′(ε2)) solution u∗ε for the KdV equation. According to the notation in
item 2), we define it so that

LKdVu
∗
ε = OD′(ε2). (0.6)

However, we note that (0.6) implies the loss of distinction between the weak asymp-
totic solutions of the KdV and Hopf equations. Indeed, since for any generalized
functions f , we obviously have the estimate

ε2fxxx = OD′(ε2),

we have

LKdVu
∗
ε =

∂u∗ε
∂t

+
∂(u∗ε )

2

∂x
+OD′(ε2) =: LHu

∗
ε +OD′(ε2),

where

LHu
∗
ε =

∂u∗ε
∂t

+
∂(u∗ε )

2

∂x
.

Next, let us try to construct a weak asymptotic solution in the sense of (0.6) in the
simplest one-soliton situation. We write a smooth ansatz in the form

u∗ε = u0(x, t) + g(t)ω
(
β
x− φ

ε

)
+ e(x, t)εω0

(
β
x− φ

ε

)
, ε > 0, (0.7)

where u0(x, t), g(t), e(x, t), φ(t) are the desired smooth functions, and, according
to the results obtained in [12, 13], β =

√
g/6. The function ω(z) is a solution of

the problem (0.5), and ω0(z) ∈ C∞(R) satisfies the conditions limz→+∞ ω0(z) = 1,
limz→−∞ ω0(z) = 0, and

∣∣dαω0
dzα

∣∣ ≤ Cα(1 + |z|)−3. Then we have in the sense of
D′(R)

ω
(
β
x− φ

ε

)
=
ε

β
δ(x− φ) +OD′(ε2),

ω0

(
β
x− φ

ε

)
= θ(x− φ) +OD′(ε), ε→ +0,

where θ(z) is the Heaviside function.
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The system of equations for the functions u0(x, t), g(t), e(x, t), φ(t) follows
from (0.6) (this system is derived in detail in [6]) and has the following form: (a
comparative analysis of systems (0.8), (0.10), and (0.11) was performed in [6])

u0t + (u2
0)x = 0,

φt − 2u0(φ(t), t)− 2
3
g(t) = 0,

e(φ(t), t)− 3
√

6
2
gt(t)/g3/2(t) = 0,(

et(x, t) + 2(u0(x, t)e(x, t))x

)∣∣∣
x>φ(t)

= 0.

(0.8)

It is easy to verify that under the condition g > 0 (which is an analog of the
admissibility condition in the theory of shock waves) the solution of system (0.8)
exists on any interval t ∈ [0, T ] such that the smooth solution u0 of the Hopf
equations exists on this interval.

System (0.8) can be solved in the following way: first, one finds the smooth
solution of the Hopf equation, next, one finds the function e(x, t) from the last
equations (which is uniquely solvable in view of the inequality 2u0(φ, t) < φt), then
one finds the (positive) function g(t) from the next to the last equation, and finally,
one finds the function φ(t).

Note that system (0.8) contains no obstacles to setting e(x, t) = 0. If so, g(t) =
const in the case of an arbitrary (nonconstant) background function u0(x, t). But
this conclusion is contrary to well known properties of soliton solutions of the KdV
equation [12, 13].

Moreover, under our notation, the weak asymptotic of the asymptotic one-soliton
solution to the KdV equation, constructed by Maslov and Omelyanov [12, 13], has
the form

u∗1,ε(x, t) =u01(x, t) + g1(t)ω
(
β
x− φ1

ε

)
+ e1(x, t)ε

[
1− ω0

(
β
x− φ1

ε

)]
+OD′(ε2), ε→ +0.

(0.9)

In other words, in the case (0.7), the “shock wave” with a small amplitude
εe(x, t)θ(x−φ1(t)) propagates in front of the soliton εδ(x−φ1(t)), but in the asymp-
totic one-soliton solution constructed in [12, 13] the small shock wave εe1(x, t)[1−
θ(x− φ1(t))] arises behind the soliton.

When we apply (0.6) to the asymptotic solution obtained in [12, 13], whose weak
asymptotic yields (0.9), we obtain the following system of equations [6]

u01t + (u2
01)x = 0,

φ1t − 2u01(φ1(t), t)−
2
3
g1(t) = 0,

e1(φ(t), t) +
3
√

6
2
g1t(t)/g

3/2
1 (t) = 0,(

e1t(x, t) + 2(u01(x, t)e1(x, t))x

)∣∣∣
x<φ1(t)

= 0.

(0.10)

The solution of this system for g1t(t) 6= 0 is not uniquely determined by the initial
conditions e1(x, 0) for x ≤ φ1(0), since the velocity along the characteristic (ẋ =
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2u01(x(t), t)) is less (for g1(t) > 0) than that of the soliton φ1t = 2u01(φ1(t), t) +
2
3g1(t).

Thus, the assumption that the structure of the solution to the KdV equation
is specified by (0.9) due to (0.6) leads to an ill-posed Cauchy problem (with a
non-unique solution) for the functions u01(x, t), g1(t), e1(x, t), φ1(t).

On the other hand, the complete system of equations obtained in [12, 13] for
these functions has the form

u01t + (u2
01)x = 0,

φ1t − 2u01(φ1(t), t)−
2
3
g1(t) = 0,

e1(φ(t), t) +
3
√

6
2
g1t(t)/g

3/2
1 (t) = 0,(

e1t(x, t) + 2(u01(x, t)e1(x, t))x

)∣∣∣
x<φ1(t)

= 0,

g1(t) + 2u01(φ1(t), t) = const.

(0.11)

It is evident that this system differs from system (0.10) obtained from (0.6) by the
additional equation g1(t) + 2u01(φ1(t), t) = g1(0) + 2u01(φ1(0), 0). The presence of
this equation implies that system (0.11) splits into the two systems

u01t + (u2
01)x = 0,

φ1t − 2u01(φ1(t), t)−
2
3
g1(t) = 0,

g1(t) + 2u01(φ1(t), t) = const,

(0.12)

and (
e1t(x, t) + 2(u01(x, t)e1(x, t))x

)∣∣∣
x<φ1(t)

= 0, (0.13)

e1(φ(t), t) +
3
√

6
2
g1t(t)/g

3/2
1 (t) = 0, (0.14)

and equality (0.14) is the boundary condition for equation (0.13), which turns the
Cauchy problem for equation (0.13) into the well-posed one (the Cauchy condition,
in view of (0.9), has the form e1(x, 0) = e01(x)[1− θ(x− φ1(0))]).

Moreover, if equation (0.13) is considered formally in the domain x > φ1(t),
which corresponds to the solution structure given by formula (0.7), then the “re-
dundant” condition

e(φ(t), t)− 3
√

6
2
gt(t)/g3/2(t) = 0,

analogous to (0.14), overdetermines the problem.
Thus, the weak asymptotic corresponding to the asymptotic solution of the

Cauchy problem for the KdV equation constructed in [12, 13] cannot be derived
from the solution to the KdV equation with the help of (0.6), and vice versa.

Why is it so? The essence of the matter lies in the definition of weak (general-
ized) solution to nonlinear equation. It turns out that the definition of the weak
(generalized) solution to nonlinear equation depends on the structure of the kernel
of the operator adjoint to the linearized operator of the initial differential equation
which arises when constructing the smooth asymptotic. This construction of the
definition of weak solutions was previously discussed in [6, 7].
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In the present paper we do not come into details of construction of the definition
of the weak solution to our problem. We just point out that, in terms of this
construction, the KdV equation is analogous to the phase field system discussed in
[7]. The difference is that for the KdV equation the kernel of the adjoint operator
mentioned above is two-dimensional. Therefore, relation (0.6) is not sufficient for
the correctness and it has to be supplied with another condition.

At least for special soliton type initial data for the KdV equation, we can give a
definition of a weak solution admitting the zero dispersion limit.

This definition was first presented in [6].

Definition 0.1. A function uε(x, t) belonging to C∞([0, T ]×R1
x) for ε > 0 and to

C(0, T ;D′(R1
x)) uniformly in ε ≥ 0 is called a weak asymptotic solution of the KdV

type equation Lu = 0 if the following two relations are satisfied:

Luε = OD′(ε2),

uεLuε = OD′(ε2),

where, uniformly with respect to ε, the right-hand sides are weakly continuous and
weakly piecewise smooth functions of t.

Remark 0.2. In fact, this definition means that we do not refuse to use relation
(0.6), but we impose additional requirements on the right-hand side of (0.6).

Of course, these relations can be written in the form of usual integral identities
(see below). The condition that the remainders OD′(ε2) are weakly continuous in
t allows one to pass from Definition 0.1 to integral identities in the usual sense.
This theme was discussed in [6] in detail. In particular, in [6] it was shown that
the passage to the limit within the framework of this definition for single exact and
distorted solitons leads to the same system of ordinary differential equations, which
was derived by using the classical asymptotic method [12, 13]. The consequences of
the use of this definition in the case of two solitons (the case of soliton interaction)
are the main point of the present paper.

It should be noted that we do not study some weak solution of (0.3) in the
Banach space but construct a solution of a specific structure and describe some fine
properties of its dynamics. This is impossible by using methods traditional to the
theory of nonlinear PDE (e.g., see [2, 11]). Earlier, such results were obtained only
for integrable problems by the inverse scattering transform method or for problems
similar in a sense to integrable ones and by using the inverse scattering transform
method again [1, 12, 13, 14].

We also note that, even in the case of a solitary soliton, our approach allows
obtaining results that are new as compared to the well-known results. Namely,
the asymptotic methods known today [1, 12, 13, 14, 15] allows calculating the
dynamics of a distorted soliton if there is a perturbed right-hand side and/or a
variable background. However, in this case there arise very rigid restrictions on
the Cauchy data. In the integrable case, in particular, for the KdV equation,
it is possible to get rid of the restrictions on lower-order terms (of order O(ε))
in the initial data only by using very complicated constructions [8] based on the
inverse scattering transform method. In our approach, only the leading term of the
asymptotic expansion is fixed and the construction is reduced to simple algebraic
calculations.
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The text is organized as follows. First, we present some auxiliary results, which
are useful for calculations in the weak asymptotic method. In the next section,
we study the two-soliton solution of the KdV equation. In the final section, we
consider non-integrable KdV type equations.

1. Auxiliary formulas of the weak asymptotic method

Weak asymptotic expansions. Let ω(η) be a continuous function decreasing
sufficiently fast as |η| → ∞ (so that the integrals below were meaningful), and let
β be independent of x. Let us consider the expression ω(βx/ε) as an element of D′.
For any test function ψ(x) we have〈

ω
(
β
x

ε

)
, ψ(x)

〉
=

∫
R1
ω
(
β
x

ε

)
ψ(x) dx =

ε

β

∫
R1
ω(η)ψ

(
ε
η

β

)
dη

=
n∑

k=0

εk+1

βk+1k!
ψ(k)(0)

∫
R1
ω(η)ηk dη +O(εn+2).

This formula is well known in the theory of algebras of Colombeau generalized
functions as the momentum decomposition.

Using the notation OD′(εα) introduced above, we can rewrite this relation as
follows:

ω
(
β
x

ε

)
=

n∑
k=0

εk+1

βk+1k!
(−1)kΩkδ

(k)(x) +OD′(εn+2), (1.1)

where Ωk =
∫
ηkω(η) dη and δ(x) is the Dirac delta function. In what follows, we

restrict ourselves to studying the leading term in (1.1). Then we have

ω
(
β
x

ε

)
= ε

Ω0

β
δ(x) +OD′(ε2)

in the general case and the last relation can be made more precise by specifying
the properties of the function ω(η). Namely, the term OD′(ε2) has the form

OD′(ε2) = −ε2δ′(x)β−2

∫
R1
ηω(η) dη +OD′(ε3).

Thus if ω(η) is an even function, then

ω
(
β
x

ε

)
= ε

Ω0

β
δ(x) +OD′(ε3).

Now let us consider a more complicated expression

f
(
ω1

(
β1
x− ϕ1

ε

)
+ ω2

(
β2
x− ϕ2

ε

))
,

where f(η) is a smooth function and ωi(η), i = 1, 2, possess the same properties as
ω(η), β1, β2 = const > 0, and ϕ1, ϕ2 are constant. We have〈

f
(
ω1

(
β1
x− ϕ1

ε

)
+ ω2

(
β2
x− ϕ2

ε

))
, ψ

〉
=

{
β1(x− ϕ1) = εη

}
=

〈 ε
β1

∫
f1

(
ω1(η) + ω2

(β2

β1
η +

β2

ε
∆ϕ

))
dηδ(x− ϕ1) + f(0), ψ

〉
+O(ε2),

where f1(η) = f(η)− f(0) and ∆ϕ = ϕ1 − ϕ2.
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On the other hand, introducing the variable η by the formula β2(x − ϕ2) = εη,
we obtain

f
(
ω1

(
β1
x− ϕ1

ε

)
+ ω2

(
β2
x− ϕ2

ε

))
= f(0) +

ε

β2

∫
R1
f1

(
ω1

(β1

β2
η − β1

ε
∆ϕ

)
+ ω2(η)

)
dηδ(x− ϕ2) +OD′(ε2).

It is easy to see that the coefficients of δ(x−ϕ1) and δ(x−ϕ2) in the last formulas
are equal to each other,

β−1
1

∫
R1
f1

(
ω1(η) + ω2

(β2

β1
η +

β2

ε
∆ϕ

))
dη

= β−1
2

∫
R1
f1

(
ω1

(β1

β2
η − β1

ε
∆ϕ

)
+ ω2(η)

)
dη := Ω∆ϕ.

This implies the relation

f
(
ω1

(
β1
x− ϕ1

ε

)
+ ω2

(
β2
x− ϕ2

ε

))
= f(0) + εΩ∆ϕ(λδ(x− ϕ1) + νδ(x− ϕ2)) +OD′(ε2),

where λ and ν are arbitrary constants, λ+ ν = 1.

Asymptotic linear independence. If we consider linear combinations of gener-
alized functions with accuracy up to OD′(εα), then we need to introduce the notion
of linear independence. Consider the relation

g1δ(x− ϕ1) + g2δ(x− ϕ2) = OD′(εα), α > 0, ϕ1 6= ϕ2,

where gi are independent of ε. Obviously, we obtain the relations

gi = OD′(εα), i = 1, 2,

which, by virtue of our assumption, imply

gi = 0, i = 1, 2.

Everything is different if we assume that the coefficients gi can depend on ε.
Here we consider only a special case of such dependence, which we will use later.
Namely, let

gi = Ai + Si

(∆ϕ
ε

)
, i = 1, 2,

where Ai are independent of ε and continuous in ϕ1 and ϕ2 and Si(τ) decrease
sufficiently fast as |τ | → ∞.

Let us find out what properties of the coefficients gi follow from the relation

g1δ(x− ϕ1) + g2δ(x− ϕ2) = OD′(ε).

Applying both sides of the equality to a test function ψ, we obtain

g1ψ(ϕ1) + g2ψ(ϕ2) = O(ε)

or, which is the same,

[A1ψ(ϕ1) +A2ψ(ϕ2)] + [S1ψ(ϕ1) + S2ψ(ϕ2)] = O(ε). (1.2)

Let us consider the expression in the second brackets. Using Taylor’s formula, we
obtain

[S1ψ(ϕ1) + S2ψ(ϕ2)] = S1ψ(ϕ1) + S2ψ(ϕ1) + S2(ϕ2 − ϕ1)ψ′(ϕ1 + θϕ2).



EJDE–2003/90 WEAK ASYMPTOTIC METHOD 9

Now we see that

S2

(∆ϕ
ε

)
(ϕ2 − ϕ1) = {−ρS2(ρ)}

∣∣
ρ=∆ϕ/ε

· ε = O(ε)

since the function ρS2(ρ) is assumed to be bounded uniformly in ρ ∈ R1. So we
can rewrite relation (1.2) as

A1ψ(ϕ1) +A2ψ(ϕ2) + (S1 + S2)ψ(ϕ1) = O(ε).

Our next goal is to obtain from this relation the condition for the solution to be
uniform under the choice of ϕ1 and ϕ2. Let |∆ϕ| ≥ const. Then |S1| = O(ε) and
|S2| = O(ε), and in the usual way we obtain

A1 = 0, A2 = 0.

Further we obtain the relation S1 + S2 = 0. It follows from the continuity that
A1 = 0 and A2 = 0 also for ∆ϕ = 0. Hence we finally obtain

A1 = 0, A2 = 0, S1 + S2 = 0. (1.3)

Another method for analyzing relation (1.2) is the following. We choose a point x∗.
Then for any test function ψ(x) we have

〈S1δ(x− ϕ1), ψ〉+ 〈S2δ(x− ϕ2), ψ〉 = S1ψ(x∗) + S2ψ(x∗) +O(ε)

= 〈(S1 + S2)δ(x− x∗), ψ〉+O(ε),

which implies

(A1 + S1)δ(x− ϕ1) + (A2 + S2)δ(x− ϕ2)

= A1δ(x− ϕ1) +A2δ(x− ϕ1) + (S1 + S2)δ(x− x∗) +OD′(ε).

Following the above argument, we again obtain relations (1.3).

2. ε–δ soliton interaction in the KdV model

In this and in the following sections, by using the ideas briefly considered above,
we qualitatively describe the interaction of ε–δ-solitons (of narrow solitary waves)
in models governed by KdV type equations. ¿From methodological considerations,
we first study the simplest case, i.e., the KdV equation with small dispersion

ut + (u2)x + ε2uxxx = 0 (2.1)

supplemented with the initial data, which are the superposition of two solitary
waves

u
∣∣
t=0

= u0(x, ε), u0 = A1ω
(
β1
x− x0

1

ε

)
+A2ω

(
β2
x− x0

2

ε

)
. (2.2)

We set βi =
√
Ai/12, ω(η) = 1/2 cosh2(η), and assume that

x0
2 < x0

1, A2 > A1 > 0

so that there exist a time moment t∗ at which the trajectories of the solitary waves
corresponding to (2.2) intersect: V1t

∗ + x0
1 = V2t

∗ + x0
2, Vi = 4β2

i .
Needless to say, for the KdV equation, as well as for the modified KdV (MKdV)

equation, the behavior of the solution is well known: the solitons interact passing
through each other without changing their shapes and, after the interaction, they
are shifted by some distance. This assertion can be obtained directly, for instance,
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from the formula for the exact two-soliton solution of problem (2.1), (2.2) derived
by the inverse scattering transform method (e.g., see [1])

usol = 6β2
1(β2

2 − β2
1)v1(η1, ρ) + 6β2

2(β2
2 − β2

1)v2(η2, ρ),

v1 =
{
β1 sinh(β1η1 − µ)− β2 coth

(
β2(η1 − ρ) + µ

)
cosh(β1η − µ)

}−2
,

v2 =
{
β2 cosh(β2η2 + µ)− β1 tanh

(
β1(η2 + ρ)− µ

)
sinh(β2η2 + µ)

}−2
,

(2.3)

where ηi =
(
x− ϕi0(t)

)
/ε, ϕi0 = Vit+ x0

i , ρ =
(
ϕ20(t)− ϕ10(t)

)
/ε, and

µ =
1
2

ln
β2 − β1

β2 + β1
(2.4)

is the displacement of the soliton trajectories after the interaction.
It is well known that as ρ → −∞ (that is, for ϕ20 − ϕ10 < 0, ε → 0, i.e., prior

to the interaction) and as ρ→∞ (that is, for ϕ20 − ϕ10 > 0, ε→ 0, i.e., after the
interaction), formula (2.3) is the sum of isolated solitons with accuracy up to terms
admitting the estimate O(εN ) for any N > 0. However, after the interaction, some
constants are added to the arguments of the solutions.

In fact, the problem of describing the soliton interaction (as soon as the qual-
itative mechanism of interaction becomes clear) is just the calculation of these
constants.

As mentioned above, the weak asymptotic method permits us to obtain a de-
scription of the single soliton dynamics in an extremely simple way. There is a
natural question of whether we can describe the interaction of solitons passing to
the limit in the weak sense as ε→ 0.

In what follows, we present some results obtained in this way. According to
our approach, for problem (2.1), (2.2) we present the two-soliton weak asymptotic
solution modOD′(ε2) in the form

u = g1(τ)ω
(
β1
x− φ1(t, τ, ε)

ε

)
+ g2(τ)ω

(
β2
x− φ2(t, τ, ε)

ε

)
,

gi = Ai + Si(τ), φi = ϕi0(t) + εϕi1(τ), τ = β1

(
ϕ20(t)− ϕ10(t)

)
/ε,

(2.5)

where ϕi0(t) = Vit + x0
i so that x = ϕi0(t) is the trajectory of motion of the

solitary wave with constant amplitude Ai, the function τ = τ(t, ε) has the meaning
of “fast” time, τ(t∗, ε) = 0, Si and ϕi1 are corrections to the amplitudes and the
phases rapidly varying during the time of interaction with exponential velocities:

Si(τ) → 0 as τ → ±∞,

ϕi1(τ) → 0 as τ → −∞, ϕi1(τ) → ϕ∞i1 = const as τ → +∞.
(2.6)

It turned out that (in contrast to the inverse problem method) the construction of
the solution significantly depends on the ratio of the parameters β1 and β2, i.e.,
on θ = β1/β2, and this ratio can be easily recalculated for the ratio of soliton
amplitudes. Namely, it turned out that the solution in the form of (2.5) can be
constructed for 0 < θ < 1/2. For θ = 1/2 the formulas degenerate, and this case
must be studied separately. For θ ∈ ( 1

2 , 1), the functions contained in the expression
on the right-hand side of (2.5) become complex-valued, and, in order to deal with
real functions, we must seek the solution in the form

u = g1(τ)ω
(
β1
x− φ1(t, τ, ε)

ε

)
+ g2(τ)ω

(
β2
x− φ2(t, τ, ε)

ε

)
+ c.c..
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It is clear that these additional terms make our calculations much more com-
plicate. So, in what follows, we restrict our study of interaction to the case
0 < θ < 1/2. Strictly speaking, we can prove that there exists a θ∗ < 1/2 such
that our statements are true for 0 < θ < θ∗. But numerical calculations show that
θ∗ = 1/2.

Under this restriction on the initial amplitudes of solitons, we construct an as-
ymptotic solution of the KdV equation and, and in the next section, for the KdV
type equations.

Our aim is to reconstruct all the qualitative properties of soliton interaction
obtained by the inverse problem method:
1) solitons pass through each other without changing their structure,
2) the result of interaction is a phase shift.

In what follows, such a mechanism of interaction of solitary waves will be called
the soliton scenario of interaction. The description of interaction is reduced to the
study of autonomous first-order differential equations. Moreover, these equations
are of similar form for both the KdV equation and the non-integrable KdV type
equations.

One cannot solve these equations explicitly, however, for small values of the
parameter θ, it is possible to obtain enough information about the solution and to
calculate the phase shifts. The formulas thus obtained differ from (2.4). The matter
is that, as will be shown below, the KdV type equations with small dispersion are
not well defined in the asymptotic sense. Namely, an arbitrary small perturbation
of the solution can lead to a contribution to the solution of order OD′(ε2) and thus
to change the phase shift.

The main result of this section, which we obtain without using the inverse scat-
tering transform method, is the following theorem.

Theorem 2.1. Let θ = β1/β2 ∈ (0, 1/2), then the interaction of ε–δ-solitons of the
KdV equation follows the soliton scenario. The weak asymptotic of the solution of
problem (2.1), (2.2) is asymptotically not unique in the terms of order OD′(ε2).

We prove this assertion in two steps. First, we construct the weak asymptotic
modulo OD′(ε2) of the solution of problem (2.1), (2.2) in the form (2.5), (2.6) At
the second stage of the proof, we show that a perturbation (arbitrary small in the
sense of D′) of the leading term of the asymptotic of (2.5) changes the constants
ϕ∞i1 .

Prior to proving the theorem, let us discuss the leading term of the weak asymp-
totic of (2.5) and compare it with the exact solution (2.3). First, recall that we
understand the solution of problem (2.1), (2.2) in the weak sense (see Introduction),
that is, by a weak asymptotic modulo OD′(ε2) of the solution we mean a function
u = u(x, t, ε) such that for any test function ψ = ψ(x) the following relations are
satisfied:

d

dt

∫
uψ dx−

∫
u2 ∂ψ

∂x
dx = O(ε2),

d

dt

∫
u2ψ dx− 4

3

∫
u3 ∂ψ

∂x
dx+ 3

∫ (
ε
∂u

∂x

)2 ∂ψ

∂x
dx = O(ε2),∫ (

u
∣∣
t=0

− u0(x, ε)
)
ψ dx = O(ε2).

(2.7)

Here and in the following, the notation
∫
. . . dx means the integration over R1.
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The most unexpected result obtained while proving the theorem is that the
following fact.

Theorem 2.2. The condition θ ∈ (0, 1/2), the conservation laws

d

dt

∫
u dx = 0, (2.8)

d

dt

∫
u2 dx = 0, (2.9)

and the energy relations

d

dt

∫
xu dx−

∫
u2 dx = 0, (2.10)

d

dt

∫
xu2 dx− 4

3

∫
u3 dx+ 3

∫ (
ε
∂u

∂x

)2

dx = 0 (2.11)

are necessary and sufficient conditions for the function (2.5) to be a weak asymptotic
of the solution of problem (2.1), (2.2) in the sense of (2.7).

Let us discuss the structure of the asymptotic solution of (2.5). Obviously, the
above formulas imply that the function (2.5) is the sum of solitary waves until they
interact

u =
2∑

i=1

Aiω
(
βi
x− ϕi0(t)

ε

)
+O(ε∞), t < t∗,

and the sum of solitary waves with phase shift

u =
2∑

i=1

Aiω
(
βi
x− ϕi0(t)

ε
− βiϕ

∞
i1

)
+O(ε∞), t > t∗,

after the interaction. We stress that the resulting phase shifts βiϕ
∞
i1 satisfy the

same relation

β1ϕ
∞
11 + β2ϕ

∞
21 = 0 (2.12)

as those for the exact two-soliton solution (2.3). In the sense of D′, for the function
(2.5) uniformly in t we have

u = ε

2∑
i=1

gi(τ)
βi

δ(x− φi) +OD′(ε3). (2.13)

However, εδ(x−φi) = εδ(x−ϕi0)+OD′(ε2) and we see that only soliton components
of the amplitude Si are essential, while the role of phase shifts εϕi1 seems to be
unessential. Moreover, a similar conclusion can readily be obtained by calculating
the weak asymptotic of the exact solution (2.3):

usol = ε
2∑

i=1

Pi(τ)
βi

δ(x− ϕi0(t)) +OD′(ε2), (2.14)

where

Pi = 6β2
i (β2

2 − β2
1)

∫
vi(η, τ/β1) dη → Ai as τ → ±∞.
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Nevertheless, the phase shifts play an important role. To verify this, we calculate
the weak asymptotic for the derivatives of the function (2.5). Taking into account
that fact that Si and ϕi1 vary rapidly with time, we obtain

∂u

∂t
=

2∑
i=1

{ c

βi

∂Si

∂τ
δ(x− x∗)− ε

Ai

βi
Viδ

′(x− ϕi0)

− cε
∂

∂τ

[
Vi
τ

c

Si

βi
+
gi

βi
ϕi1

]
δ′(x− x∗)

}
+OD′(ε2),

where c = β1(V2 − V1) and x∗ = ϕi0(t∗) is the point of intersection of the soliton
trajectories. Similar calculations for the exact solution (2.3) lead to the expansion

∂usol

∂t
=

2∑
i=1

{ c

βi

∂P s
i

∂τ
δ(x− x∗)− ε

Ai

βi
Viδ

′(x− ϕi0)

− cε
∂

∂τ

[
Vi
τ

c

P s
i

βi
+
Di

βi

]
δ′(x− x∗)

}
+OD′(ε2),

where Di = 6β2
i (β2

2 −β2
1)

∫
ηvi(η, τ/β1) dη and we set Pi = Ai +P s

i so that P s
i → 0

as τ → ±∞. Comparing these two formulas, as well as (2.13) and (2.14), we readily
see that the varying phase shifts of the function (2.5) play the same role as the odd
(with respect to η) parts of the functions vi(η, τ/βi) in the exact solution.

If we discuss the interaction process and compare the functions (2.3) and (2.5)
in the pointwise sense, then we see that these functions are, of course, different.
Nevertheless, they possess an important common property: the soliton type (with
respect to time) components of the amplitudes compensate one another. We mean
that uniformly in τ ∈ R1, the relation

S1(τ)/β1 + S2(τ)/β2 = 0 (2.15)

holds for the weak asymptotic (2.5) (we prove this later). This coincides with the
identity

P1(τ)/β1 + P2(τ)/β2 = A1/β1 +A2/β2,

which can be derived directly for the exact solution by rewriting formula (2.3) in
the form standard for the inverse problem method or by using the conservation law
(2.8).

Prior to proving Theorem 2.1, we introduce some auxiliary functions we need
to describe the weak asymptotic (2.5) exactly. By λj = λj(σ) and Li = Li(σ) we
denote the following convolutions depending on the parameter θ = β1/β2:

λ0 =
1
a2

∫
ω(η)ω(θη + σ) dη, λ1 =

1
a2

∫
ηω(η)ω(θη + σ) dη,

λ2 =
1
a′2

∫
ω′(η)ω′(θη + σ) dη, ω′(z) = ∂ω(z)/∂z,

(2.16)

L1 =
1
a3

∫ {
θ(θ + k)ω(θη + σ) + (1− k)ω(η)

}3

dη − (1 + θ5),

L2 = θ3k(2θ + k) + k2 − 2k + 2θ2(θ + k)(1− k)λ2,

(2.17)
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where a2, a3, a
′
2 are the numbers

a2 =
∫
ω2(η) dη =

1
3
, a3 =

∫
ω3(η) dη =

2
15
,

a′2 =
∫ (

ω′(η)
)2
dη =

4
15
,

(2.18)

and k = k(σ) is the function determined for θ ∈ (0, 1/2) by the expression

k =
{
(1− θ)(1 + θ − λ0θ)−

√
I
}
(1 + θ − 2λ0θ)−1,

I = (1 + θ)2(1− θ − λ0θ)2 + 2λ0θ
2(1 + θ)(1− 2θ).

(2.19)

For θ = 1/2 we set
k = λ0/(3− 2λ0). (2.20)

Next, we introduce a function F = F(σ) by the formula

F = F/(1− θ + J ′), (2.21)

where

F =
(4

3
a3

a2
2

(L1 − L2) + L2

)(
θ(1− θ)2

)−1 − J ′,

J ′ = k
(1− θ − θ2

θ
− k

)
+

{(1− θ − θ2

θ
− 2k

)
σ + 2θ(1− θ − 2k)λ1

}∂k
∂σ

+ 2θ(θ + k)(1− k)
∂λ1

∂σ
.

Let us define a function σ0 = σ0(τ) depending also on the parameter θ as a solution
of the problem

dσ0

dτ
= F(τ + σ0), σ0 → 0 as τ → −∞. (2.22)

Next, we show that problem (2.22) has solution for all τ ∈ R1. Moreover,

σ0 → σ∞0 (θ) as τ → +∞ (2.23)

as a function of exponential type.

Theorem 2.3. Let θ ∈ (0, 1/2), then the weak asymptotic solution of problem (2.1),
(2.2) has the form (2.5), where

S1 =
√
A1A2k(τ + σ0), S2 = −A2k(τ + σ0), (2.24)

ϕ11 =
1

β1(1 + θ)
{
τk(τ + σ0)− σ0(1− k(τ + σ0))

}
,

ϕ21 =
1

β2θ(1 + θ)
{
θσ0 + (τ + σ0)k(τ + σ0)

}
.

(2.25)

Remark 2.4. The above formulas readily imply that

k(σ) → 0 as σ → ±∞, ϕi1(τ) → 0 as τ → −∞, i = 1, 2,

β1ϕ11(τ) → −σ∞0 /(1 + θ), β2ϕ21(τ) → σ∞0 /(1 + θ) as τ → +∞

as functions of exponential type.
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Proof of Theorem 2.3. We present the leading term of the weak asymptotic of the
solution of problem (2.1), (2.2) in the form (2.5), where Si = Si(τ) and φi =
ϕi0(t) + εϕi1(τ) are the desired smooth functions. We assume that

Si(τ) → 0 as τ → ±∞, i = 1, 2,

ϕi1(τ) → 0 as τ → −∞, ϕi1(τ) → ϕ∞i1 as τ → +∞

as functions of exponential type. Now we apply formulas from Sec. 1 and calculate
the weak asymptotic

un = εan

2∑
i=1

K
(n)
i0 δ(x− φi) + εan

{ 2∑
i=1

K
(n)
i1 +Rn

}
δ(x− x∗) +OD′(ε2),

(εux)2 = εa′2

2∑
i=1

β2
iK

(2)
i0 δ(x−φi)+εa′2

{ 2∑
i=1

β2
iK

(2)
i1 +Q2

}
δ(x−x∗)+OD′(ε2), (2.26)

∂u

∂t
= c

∂

∂τ

2∑
i=1

K
(1)
i1 δ(x− x∗)− ε

2∑
i=1

ViK
(1)
i0 δ

′(x− φi)

− εc
∂

∂τ

{ 2∑
i=1

K
(1)
i ϕi1 +

Vi

c
τK

(1)
i1

}
δ′(x− x∗) +OD′(ε2),

∂u2

∂t
= ca2

∂

∂τ

{ 2∑
i=1

K
(2)
i1 +R2

}
δ(x− x∗)− εa2

2∑
i=1

ViK
(2)
i0 δ

′(x− φi) (2.27)

− εca2
∂

∂τ

{ 2∑
i=1

(
K

(2)
i ϕi1 +

Vi

c
τK

(2)
i1

)
+R

(1)
2

}
δ′(x− x∗) +OD′(ε2).

Here K(n)
i = gn

i /βi, K
(n)
i0 = An

i /βi, K
(n)
i1 = K

(n)
i − K

(n)
i0 , and the numbers an

for n = 2, 3 and a′2 are calculated by formulas (2.18), while a1 = 1. We also set
Vi = ϕ′i0t(t

∗), c = β1(V2 − V1), and

Rn =
1

β2an

∫ (
g1ω(θη + σ) + g2ω(η)

)n
dη −

2∑
i=1

K
(n)
i .

Moreover, using the notation (2.16), we obtain

R2 = 2
g1g2
β2

λ0, R
(1)
2 = 2

g1g2
β2

{(V2

c
τ + ϕ21

)
λ0 +

1
β2
λ1

}
, Q2 = 2g1g2β1λ2.

(2.28)
By definition, the weak asymptotic of the solution must satisfy the relations

∂u

∂t
+
∂u2

∂x
= OD′(ε2),

∂u2

∂t
+

4
3
∂u3

∂x
− 3

∂

∂x
(εux)2 = OD′(ε2). (2.29)

We substitute expansions (2.26), (2.27) into (2.29) and collect the term containing
δ(x − x∗), εδ′(x − φi), and εδ′(x − x∗). By equating the obtained relations with
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zero, we arrive at the relations

d

dτ

2∑
i=1

K
(1)
i1 = 0, (2.30)

d

dτ

{ 2∑
i=1

K
(2)
i1 +R2

}
= 0, (2.31)

d

dτ

2∑
i=1

{
K

(1)
i ϕi1 + τ

Vi

c
K

(1)
i1

}
= 0, (2.32)

c
d

dτ

{ 2∑
i=1

(
K

(2)
i ϕi1 + τ

Vi

c
K

(2)
i1

)
+R

(1)
2

}
=

4
3
a3

a2

{ 2∑
i=1

K
(3)
i1 +R3

}
− 3

a′2
a2

{ 2∑
i=1

β2
iK

(2)
i1 +Q2

}
,

(2.33)

as well as the relations

−ViK
(1)
i0 + a2K

(2)
i0 = 0, −a2ViK

(2)
i0 +

4
3
a3K

(3)
i0 − 3a′2β

2
iK

(2)
i0 = 0, i = 1, 2, (2.34)

describing the motion of solitary waves without taking into account their interac-
tion. Relations (2.34) readily imply

Vi = a2Ai, β2
i = γAi, γ = ( 4

3a3 − a2
2)/3a

′
2 . (2.35)

Let us transform system (2.30)–(2.33). Integrating the first three relations and
performing simple transformations, we obtain

K
(1)
11 +K

(1)
21 = 0, (2.36)

2∑
i=1

K
(2)
i1 +R2 = 0, (2.37)

σ

β1
K

(1)
11 −

2∑
i=1

K
(1)
i0 ϕi1 = 0. (2.38)

Next, we use (2.28), (2.36) and rewrite (2.37) as follows:

−2(A2−A1)K
(1)
11 +(β1 +β2)(K

(1)
11 )2 +

2
β2

(A1 +β1K
(1)
11 )(A2−β2K

(1)
11 )λ0 =0. (2.39)

Solving (2.39) for K(1)
11 and choosing the root from the condition that K(1)

11 → 0 as
τ → −∞, we obtain

K
(1)
11 =

β2

γ
k(σ), (2.40)

where the function k(σ) is defined in (2.19) for θ 6= 1/2 and in (2.20) for θ = 1/2.
Let us analyze formulas (2.19), (2.20). The obvious inequality λ0(σ, θ) ≤ 1/

√
θ for

θ < 1 implies
1 + θ − 2λ0(σ, θ)θ ≥ (1−

√
θ)2 ≥ const > 0.

Next, let us consider the expression I defined in (2.19). It is easy to see that the
maximal value (with respect to σ) of λ0, which we denote by λ0(0, θ), is a function
of θ ∈ [0, 1] monotonically decreasing from 3/2 to 1. Therefore, for θ ≥ 2/5 there
exists σ∗ = σ∗(θ) for which the first term in the formula for I is zero. Nevertheless,
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the second term in this formula is positive for θ < 1/2 and negative for θ > 1/2.
Hence for θ < 1/2 we have the following estimate uniform with respect to σ:

I ≥ const > 0, (2.41)

and we see that for θ > 1/2 this inequality does not hold.
For θ = 1/2 we define k by formula (2.20). Since 3− 2λ0

∣∣
θ=1/2

≥ const > 0, this
formula determines the smooth function k(σ).

Finally, for θ ∈ (c1, 1/2], c1 > 0, the function k(σ) is smooth. It is also easy
to see that this function is positive, even with respect to σ, and tends to zero as
σ → ±∞ as an exponential function.

Now let us consider relation (2.38) together with the relation

σ = τ + β1(ϕ21 − ϕ11). (2.42)

By solving (2.38), (2.42) for ϕi1, we obtain

ϕ11 = (β1

2∑
i=1

K
(1)
i0 )−1(τK(1)

20 − σK
(1)
2 ),

ϕ21 = (β1

2∑
i=1

K
(1)
i0 )−1(−τK(1)

10 + σK
(1)
1 ).

(2.43)

Let us transform (2.33). After simple calculations, taking into account (2.28),
(2.36), (2.40), and (2.43), we obtain

2∑
i=1

(
K

(2)
i ϕi1 + τ

Vi

c
K

(2)
i1

)
+R

(1)
2 =

β2
2

γ2
{−τ(1− θ) + σ(1− θ) + J (σ)},

where
J (σ) = σ

(
θ−1(1− θ − θ2)k − k2

)
+ 2θ(θ + k)(1− k)λ1. (2.44)

Now we note that the following relations hold:
2∑

i=1

K
(3)
i1 +R3 =

β5
2

γ3
L1(σ),

2∑
i=1

β2
iK

(2)
i1 +Q2 =

β5
2

γ2
L2(σ),

c = a2
β3

2

γ
θ(1− θ2), 3γa′2 =

4
3
a3 − a2

2,

where L1, L2 are defined in (2.17). Hence we can rewrite Eq. (2.33) in the au-
tonomous form

(1− θ + J ′)dσ
dτ

= 1− θ +
F1(σ)

θ(1− θ2)
, (2.45)

where

F1 =
4
3
a3

a2
2

(L1 − L2) + L2, J ′ = ∂J
∂σ

.

Formulas (2.16), (2.44) and the properties of k(σ) readily imply that J (σ) ∈
C∞(R1) for 0 < θ ≤ 1/2. Moreover, J (σ) is odd and tends to zero as σ → ±∞ as
an exponential function.

Consider J (σ) for small θ. Expanding ω(θη+σ) in the Taylor series around the
point θ = 0, we obtain

λ0 =
1
a2
ω(σ) +O(θ2), λ1 = O(θ).
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Thus we have

k(σ) =
θ2

a2
ω(σ) +O(θ3), J (σ) =

θ(1− θ)
a2

σω(σ) +O(θ3), (2.46)

and there exists θ∗1 ∈ (0, 1/2] such that uniformly in σ

1− θ + J ′(σ) ≥ const > 0 for θ < θ∗1 . (2.47)

It follows from this relation and the fact that F1(σ) is smooth that Eq. (2.45) has
a solution for all τ ∈ R1. Next, for small θ we find

λ2 = O(θ), L1 = −3
2
θ2ω(σ) +O(θ3), L2 = −6θ2ω(σ) +O(θ4).

Now we readily calculate that for small θ

1− θ +
F1(σ)

θ(1− θ2)
= 1− θ +

6
5
θω(σ) +O(θ2) > 0. (2.48)

Hence there exists θ∗2 ∈ (0, 1/2] such that uniformly in σ

1− θ +
F1(σ)

θ(1− θ2)
≥ const > 0 for θ < θ∗2 . (2.49)

Inequalities (2.47) and (2.49) and the fact that the function F1(σ) is even in σ imply
that σ(τ) tends to ±∞ as τ → ±∞ and is odd in τ up to an additive constant.

We set σ0 = σ − τ and θ∗ = min{θ∗1 , θ∗2}. As was mentioned above, we cannot
rigorously prove a more precise estimate for θ∗, but computer calculations give
θ∗ = 1/2.

Obviously, it follows from the above that problem (2.22) has a solution smooth
in τ and odd up to an additive constant σ0(0). The exponential stabilization rate
of σ0 as τ →∞ is a direct consequence of the fact that the function F(σ) decreases
as an exponential function as τ →∞.

To complete the proof of Theorem 2.3, it remains to note that formulas (2.21),
(2.22) readily follow from (2.33), (2.37), and (2.40). The third relation in (2.7) for
functions of the form (2.5) is obvious. �

Proof. Proof of Theorem 2.2 Let us consider (2.27). Taking into account the nor-
malization of the function ω, we obtain

2∑
i=1

K
(1)
i1 =

2∑
i=1

gi −Ai

βi

∫
ω(η) dη =

2∑
i=1

gi

∫
ω(βiz) dz + const

=
1
ε

∫ 2∑
i=1

giω
(
βi
x− φi

ε

)
dx+ const .

Since cd/dτ = εd/dt, we see that (2.27) is exactly the conservation law (2.8) calcu-
lated for functions u of the form (2.5). Consider relation (2.30). With the help of
the identity

Vi

c
τ =

ϕi0

ε
+ q, q =

V1ϕ20 − V2ϕ10

ε(V2 − V1)
, i = 1, 2,
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by setting ξ = θη + σ, we calculate

M := a2

2∑
i=1

{
K

(2)
i ϕi1 +

Vi

c
τK

(2)
i1

}
+ a2R

(1)
2

=
g2
1

β1

φ1

ε

∫
ω2(ξ) dξ +

g2
2

β2

φ2

ε

∫
ω2(η) dη + 2

g1g2
β2

{(φ2

ε
+ q

) ∫
ω(η)ω(ξ) dη

+
1
β2

∫
ηω(η)ω(ξ) dη

}
+ a2

2∑
i=1

(
qK

(2)
i1 − ϕi0

ε
K

(2)
i0

)
.

Performing the change η = β2(x− φ2)/ε, we prove the relation

φ2

ε

∫
ω(η)ω(ξ) dη +

1
β2

∫
ηω(η)ω(ξ) dη

=
β2

ε2

∫
xω

(
β1
x− φ1

ε

)
ω
(
β2
x− φ2

ε

)
dx.

Now it is easy to see that even functions ω(η) satisfy the relation

M =
1
ε2

∫
x
(
g1ω

(
β1
x− φ1

ε

)
+ g2ω

(
β2
x− φ2

ε

))2

dx

+ a2q
( 2∑

i=1

K
(2)
i1 +R2

)
− a2

ε

2∑
i=1

ϕi0K
(2)
i0 .

In a similar way, we obtain

a3

{ 2∑
i=1

K
(3)
i1 +R3

}
=

1
ε

∫ ( 2∑
i=1

giω
(
βi
x− φi

ε

))3

dx− a3

2∑
i=1

K
(3)
i0 ,

a′2

{ 2∑
i=1

βiK
(2)
i1 +Q2

}
=

1
ε

∫ {
ε
∂

∂x

( 2∑
i=1

giω
(
βi
x− φi

ε

))}2

dx

−a′2
2∑

i=1

β2
iK

(2)
i0 .

We substitute the relations obtained into (2.33) and take into account (2.29). Then
(2.33) takes the form

1
ε

{ d

dt

∫
xu2 dx− 4

3

∫
u3 dx+ 3

∫
(εux)2 dx

}
=

2∑
i=1

{
a2
d

dt
ϕi0K

(2)
i0 − 4

3
a3K

(3)
i0 + 3a′2β

2
iK

(2)
i0

}
.

(2.50)

However, we have dϕi0/dt = Vi and thus the right-hand in (2.50) is zero by virtue
of the second relation in (2.34). Hence Eq. (2.33) is exactly the energy relation
(2.11) calculated for the function u of the form (2.5).

In a similar way we can prove that (2.31) and (2.32) coincide with the equalities
(2.9) and (2.10) calculated for the function u of the form (2.5).

To complete the proof of Theorem 2.2, it remains to recall that relations (2.30)
and (2.33) are necessary and sufficient conditions for the function (2.5) to satisfy
(2.7) with any test function ψ. It should be noted that relations (2.34) also coincide
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exactly with the energy relations (2.10) and (2.11) whose left-hand sides, however,
are calculated for the solitary wave Aiω(βi(x− ϕi0)/ε). �

Proof of Theorem 2.1. Let Wi(η) be some even functions from C∞(R1) decreasing
faster than |η|−2 as η → ±∞. By Wi,`(η) we denote their 2`+ 1-order derivatives
with respect to η for arbitrary ` ≥ 0 and consider the function

U =
2∑

i=1

{
gi(τ)ω

(
βi
x− φi

ε

)
+AiGi(τ)Wi,`

( βi

νi(θ)
x− φi

ε

)}
, (2.51)

where ω, gi, βi, φi are the same as in (2.5), Gi(τ) ∈ C∞ are arbitrary functions
exponentially decreasing as τ → ±∞, and νi > 0 are sufficiently small variables
depending on the parameter θ.

It is easy to prove that in the sense of D′ the function (2.51) differs from the
function (2.5) by a value of order O(ε2`+2), while their first derivatives differ by a
value of order O(ε2`+1). Nevertheless, we have

Un = (un)0 + εanM(n)(τ, ν,G)δ(x− x∗) +OD′(ε2),

(εUx)2 = (εux)20 + εa′2P (τ, ν,G)δ(x− x∗) +OD′(ε2),

∂U2

∂t
=

(∂u2

∂t

)
0

+ a2C(τ, ν,G)δ(x− x∗)

+ εa2C
(1)(τ, ν,G)δ′(x− x∗) +OD′(ε2),

where (un)0, (εux)0, and (∂u2/∂t)0 are distributions defined in formulas (2.26),
(2.27), the functions M(n), P , C, and C(1) tend to zero as τ → ±∞ as exponential
functions, and

M(n) = O(ν1 + ν2), P = O(1/ν1 + 1/ν2), C = O(ν1 + ν2).

We require that the function U is the weak modulo OD′(ε2) asymptotic of the
solution of problem (2.1), (2.2). Just as above, we obtain a system of model equa-
tions from (2.7). Four of these equations coincide with (2.30), (2.32), and (2.34),
and the other two have the form

d

dτ

{ 2∑
i=1

K
(2)
i1 +R2 +M(2)

}
= 0, (2.52)

c
d

dτ

{ 2∑
i=1

(
K

(2)
i ϕi1 + τ

Vi

c
K

(2)
i1

)
+R

(1)
2 + C(1)

}
=

4
3
a3

a2

{ 2∑
i=1

K
(2)
i1 +R3 +M(3)

}
− 3

a′2
a2

{ 2∑
i=1

β2
iK

(2)
i1 +Q2 + P

}
.

(2.53)

Repeating the above constructions and using the notation (2.40), we obtain the
auxiliary function k from (2.30) and (2.52). However, in contrast to (2.19), we
now have k = k(σ, θ, ν,G). Here it is important that we can choose parameters
νi arbitrary small so that the corresponding quadratic equation has a real root for
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θ < θ∗1 . Further, formulas (2.52) and (2.42) yield

ϕ11 =
(
β1

2∑
i=1

K
(1)
i0

)−1

(τK(1)
20 − σK

(1)
2 +D1),

ϕ21 =
(
β1

2∑
i=1

K
(1)
i0

)−1

(−τK(1)
10 + σK

(1)
1 +D2),

which differ from (2.43) by an additional function Di = Di(τ, σ, ν,G) such that
Di → 0 as τ → ±∞. Here it should be pointed out that, since M(2) vanishes as
τ → ±∞, the symmetry law for the resulting phase shifts of trajectories (2.12)
remains valid for all perturbations of the function u contained in (2.51).

Obviously, we now can transform (2.53) to the equation similar to (2.45):

d

dτ

{
(σ − τ)(1− θ) + J (σ) + J1(τ, σ, ν,G)

}
=

F2

θ(1− θ2)
, (2.54)

where

F2 = F1(σ) + F̃1(τ, σ, ν,G), F̃1 =
4
3
a3

a2
2

(M(3) − P ) + P,

J and F1 are the same functions as in (2.45), and J1 is a smooth function tending
to zero as τ → ±∞. Let us integrate (2.54) with respect to τ and let τ →∞. Since
σ = τ + σ0, we obtain the relation

σ∞0 (1− θ) =
( ∫ ∞

−∞
F1 dτ +

∫ ∞

−∞
F̃1 dτ

)/
θ(1− θ2). (2.55)

The first integral on the right-hand side of (2.55) corresponds to the fixed value
of σ∞0 (θ) obtained in the proof of Theorem 2.3. We see that the perturbations of
u contained in (2.51) yield a function of soliton type (with respect to τ), namely
the function F̃1 = (1 − 4a3/3a2

2)P + O(ν1 + ν2). Hence, by changing Gi and νi,
we can make the limit σ∞0 to be an arbitrary finite number. This fact means the
asymptotic non-uniqueness. The proof of Theorem 2.1 is complete. �

In conclusion, we analyze (2.45) for small θ. As shown in (2.48), F1(σ) =
6
5θ

2ω(σ) + O(θ3). Hence we have (1 − θ)σ∞0 = 6
5θ + O(θ2). Thus the trajec-

tory of the first soliton is shifted by −εβ1ϕ
∞
11 = 6

5εθ + O(εθ2), while according to
the exact formula this shift is equal to −2εµ = εθ + O(εθ2). In view of the fact
that the weak asymptotic (2.5) is asymptotically non-unique, this coincidence is
astonishingly good.

3. ε-δ-interaction in KdV type models

In this section we discuss a natural generalization of the KdV equation

ut + (um)x + εuxxx = 0. (3.1)

Under the assumption that m ≥ 2 is an integer, we study the problem of interaction
of two solitary waves. Suppose that

u
∣∣
t=0

= u0(x, ε), u0 = A1ω
(
β1
x− x0

1

ε

)
+A2ω

(
β2
x− x0

2

ε

)
, (3.2)
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where ω(η) is the exact solution of the model equation (0.5) corresponding to (3.1)
(see Introduction) and

β2
i = γm−1Am−1

i , γ =
(m− 1
m+ 3

ama2

a′2

)1/(m−1)

. (3.3)

We assume that Ai > 0 for even m and that the sign of Ai can be arbitrary for odd
m. In both cases, we assume that

|A2| > |A1|, x0
1 < x0

1,

which ensures the interaction of solitons at time t∗.
Precisely as in Sec. 2, a weak modulo OD′(ε2) asymptotic of the solution of

problem (3.1) (3.2) is a function u satisfying for all ψ = ψ(x) ∈ D(R1) the relations

d

dt

∫
uψ dz −

∫
um ∂ψ

∂x
dx = O(ε2),

d

dt

∫
u2ψ dz − 2m

m+ 1

∫
um+1 ∂ψ

∂x
dx+ 3

∫ (
ε
∂u

∂x

)2 ∂ψ

∂x
dx = O(ε2),∫ (

u
∣∣
t=0

− u0
)
ψ dx = O(ε2).

(3.4)

The main result of this section is the following assertion.

Theorem 3.1. There exists θ∗(m) ∈ (0, 1) such that for θ := β1/β2 ∈
(
0, θ∗(m)

)
the interaction of solitary waves in the KdV type equation (3.1) follows the soliton
scenario. The weak asymptotic of the solution of problem (3.1), (3.2) is asymptoti-
cally non-unique in the terms of order OD′(ε2).

The proof of this theorem differs from the proof of a similar statement in Sec. 2
only in small details. Namely, we represent the leading term of the weak asymptotic
in the form

u =
2∑

i=1

(Ai + Si(τ))ω
(
βi
x− ϕi0(t)− εϕi1(τ)

ε

)
, (3.5)

where Si and ϕi1 are assumed to satisfy the same properties as in Sec. 2, while the
function ω(η), precisely as in (3.2), depends on the parameter m. As in Sec. 2, we
establish the following assertion.

Theorem 3.2. The condition θ ∈ (0, θ∗(m)), the conservation laws

d

dt

∫
u dx = 0,

d

dt

∫
u2 dx = 0,

and the energy relations

d

dt

∫
xu dx−

∫
um dx = 0,

d

dt

∫
xu2 dx− 2m

m+ 1

∫
um+1 dx+ 3

∫ (
ε
∂u

∂x

)2

dx = 0

are necessary and sufficient for the function (3.5) to be a weak modulo OD′(ε2)
asymptotic of the solution of problem (3.1), (3.2).
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The key point in the proof of these statements is the derivation of model equa-
tions for Si, φi and their analysis. To state the result, we introduce some auxiliary
notation and functions. We write

si = signAi, s = s1s2, κ =
2

m− 1
,

and the convolutions λl = λl(σ), l = 0, 1, 2, are calculated by formulas of the form
(2.16). By θ∗0 ∈ (0, 1) we denote the number determined by the relation

1− θ∗0 = 2(θ∗0)κ,

and introduce a function k = k(σ) determined in the case s = 1 and θ = θ∗0 by the
formula

k =
λ0(1− θ)

1 + θ − 2λ0θ

∣∣∣
θ=θ∗0

, (3.6a)

and in all other cases by the formula

k =
1− θλ0 + s(λ0 − 1)θκ −

√
I

1 + θ − 2θλ0
, (3.6)

where
I =

(
1− sθκ − λ0(θκ + θ)

)2 + 2λ0θ
κ
(
1− sθ − θκ(1 + s)

)
. (3.7)

Further, we introduce the convolutions λn,j = λn,j(σ):

λn,j =
1
an

∫
ωn−j(θη + σ)ωj(η) dη (3.8)

and the functions Li,n = Li,n(σ)

L1,n =θn−1
[
(k + sθκ−1)n − (sθκ−1)n

]
+ (1− k)n − 1

+
n−1∑
j=1

cjnθ
n−j(k + sθκ−1)n−j(1− k)jλn,j ,

(3.9)

L2,n = (1 + θ3)k2 − 2k(1− sθκ+2) + 2θ2(k + sθκ−1)(1− k)λ2, (3.10)

where cjn are binomial coefficients. Now for all m ≥ 2 and any sign of s except the
case

s = −1, m = 3, (3.11)

we defined a function σ0 = σ0(τ) as a solution of the problem

dσ0

dτ
=
Fm(τ + σ0)− J ′m(τ + σ0)

rm + J ′m(τ + σ0)
, σ0 → 0 as τ → −∞. (3.12)

Here J ′m(σ) = ∂Jm(σ)/∂σ,

Jm(σ) = σk
[1− 2sθκ − θ2κ−1

1 + sθκ−1
− θk

]
+ 2θ(θk + sθκ)(1− k)λ1, (3.13)

rm = θκ−1 s− θκ

1 + sθκ−1
, (3.14)

Fm(σ) = (1− θ2)−1
{ 2m
m+ 1

· am+1

a2am
(L1,m+1 − L2,m) + L2,m

}
− (1− rm)L1,m.

(3.15)
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In the exceptional case (3.11) we find the function σ0 = σ0(τ) as the solution of
the problem

dσ0

dτ
=
L−1,3(τ + σ0)− J ′3(τ + σ0)

1 + J ′3(τ + σ0)
, σ0 → 0 as τ → −∞, (3.16)

where J ′3(σ) = ∂J3(σ)/∂σ, J3(σ) = −σk(σ), and L−1,3 = L1,3

∣∣
s=−1

.
Using the functions σ0(τ) and setting σ = τ +σ0(τ), we define ψ1 = ψ1(τ) in all

the cases except the case (3.11) by the formula

ψ1(τ) =(1 + sθκ−1)−1
{

(σ0 + τ)k(σ0 + τ)− σ0 +
∫ τ

−∞
L1,m

(
τ ′ + σ0(τ ′)

)
dτ ′

}
.

(3.17)
In the exceptional case (3.11) we define

ψ1(τ) = (1+θ)−1
{
θσ(k2−2k)−σ0 +2θ2(1−k)2λ1 +

∫ τ

−∞

(
F3 +(1−r3)L−1,3

)
dτ ′

}
.

(3.18)

Theorem 3.3. There exists a number 0 < θ∗ < 1 depending on m and s such that
for 0 < c1 ≤ θ ≤ θ∗ problems (3.12) and (3.15) have unique solutions. For such
θ the weak asymptotic of the solution of problem (3.1), (3.2) has the form (3.5),
where

S1 = θA2k(τ + σ0), S2 = −A2k(τ + σ0),

ϕi0 = Vit+ x0
i , Vi = amA

m−1
i , τ = β1

ϕ20(t)− ϕ10(t)
ε

,

ψ2(τ) =
(
ψ1(τ) + σ0(τ)

)
/θ, ϕi1 = ψi/βi, i = 1, 2.

(3.19)

Proof. Proof of Theorem 3.3 We represent the weak asymptotic of the solution in
the form (3.5) and apply formulas from Sec. 1. By substituting these expansions
into (3.4) and equating the coefficients of δ′(x − x∗), εδ′(x − φi), and εδ′(x − x∗)
with zero, we obtain the following system of equations similar to system (2.30)–
(2.34):

d

dτ

2∑
i=1

K
(1)
i1 = 0, (3.20)

d

dτ

{ 2∑
i=1

K
(2)
i1 +R2

}
= 0, (3.21)

c
d

dτ

2∑
i=1

{
K

(1)
i ϕi1 +

Vi

c
τK

(1)
i1

}
= fm, (3.22)

c
d

dτ

{ 2∑
i=1

(
K

(2)
i ϕi1 +

Vi

c
τK

(2)
i1

)
+R

(1)
2

}
= Fm, (3.23)

ViK
(1)
i0 = amK

(m)
i0 , (3.24)

ViK
(2)
i0 =

2m
m+ 1

am+1

a2
K

(m+1)
i0 − 3

a′2
a2
β2

iK
(2)
i0 , (3.25)
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where we use the notation

fm = am

( 2∑
i=1

K
(m)
i1 +Rm

)
, (3.26)

Fm =
2m
m+ 1

1
a2
fm+1 − 3

a′2
a2

( 2∑
i=1

β2
iK

(2)
i1 +Q2

)
. (3.27)

Clearly, expressions (3.24), (3.25) imply the same relations between the amplitude
Ai, the velocity Vi, and the coefficient βi as in the problem of motion of a single
solitary wave:

Vi = amA
m−1
i , β2

i = γm−1Am−1
i , γm−1 =

(2m/(m+ 1))am+1 − a2am

3a′2
. (3.28)

Since ω(η) is the solution of (0.5), by using the properties of the coefficients a1 and
a′2, we can rewrite the coefficient γ in the form (3.3).

Let us consider (3.20) and (3.21). Integrating by τ , we arrive at an equation of
the form (2.36). We set

Ai = si
βκ

i

γ
, K

(1)
11 = s2

βκ−1
2

γ
k, κ =

2
m− 1

. (3.29)

Then, solving this equation for k = k(σ), we obtain formulas (3.6), (3.7). Since
λ0 ≤ 1/

√
θ, we have 1+θ−2θλ0 ≥ const > 0 for θ < 1. Next, relation (3.7) readily

implies that for s = −1 the inequality I ≥ const > 0 holds uniformly in σ ∈ R1 and
θ ∈ (0, 1). Let us consider the case s = 1. Obviously, the second term in (3.7) is
positive only for θ < θ∗0 . For θ = θ∗0 the first term takes the form (1+θ)2(1−λ0)2/4.
Since λ0(0) is a monotonically decreasing function of θ and λ0(0)

∣∣
θ=1

= 1, for all
θ ≥ θ∗0 there exists a value σ = σ∗(m, θ) such that the first term is zero at this
point. Thus we obtain the condition θ < θ∗0 for the estimate

I ≥ const > 0

to be uniform with respect to τ .
Finally, the function k defined in (3.6a), (3.6) is real and smooth only if

θ ≤ θ∗1 , θ∗1 = θ∗0 for s = 1 and θ∗1 = 1− µ, µ > 0, for s = −1.

Let us consider Eqs. (3.22) and (3.23). Using formulas (3.9), (3.10), and (3.29),
we transform these equations to the form

d

dτ

{
− σk + sθκ−1ψ1 + θψ2

}
= L1,m, (3.30)

(1− θ2)
d

dτ

{
− σk(2sθκ + θk) + θ2κ−1ψ1 + θψ2 + 2θ(sθκ + θk)(1− k)λ1

}
=

2m
m+ 1

am+1

a2am
(L1,m+1 − L2,m) + L2,m.

(3.31)

Here we have used the notation

ψi = βiϕi1, i = 1, 2. (3.32)

We supplement relations (3.30) and (3.31) by the identity

σ = τ + σ0, σ0 = θψ2 − ψ1, (3.33)



26 VLADIMIR G. DANILOV & GEORGII A. OMEL’YANOV EJDE–2003/90

and consider this system in the exceptional case (3.11). Since κ = 1 in this case,
(3.30) takes the form

{1− (σk)′}dσ
dτ

= 1 + L−1,3(σ), (3.34)

where the prime denotes the derivative with respect to σ and the superscript −
means that we set s = −1 in the formula for L1,3(σ). Now by using the explicit
form of the function k, we can verify that

1−
√

1 + θ

1−
√
θ
≤ k ≤ 0, 1− cθ

(1−
√
θ)2

≤ 1− (σk)′ ≤
√

1 + θ

1−
√
θ
,

where the constant c independent of θ is the maximum value of the function
−σλ′0(σ).

The above formulas readily imply that there exists θ∗2 > 0 such that for 0 < θ ≤
θ∗2 equation (3.34) can be solved for all τ ∈ R1. Obviously, problem (3.16) follows
from relations (3.33) and (3.34) and the condition ϕi1 → 0 as τ → −∞.

Let us study the general case. We set θψ2 = ψ1 + σ − τ and, by using (3.30),
define dψ1/dτ as a function of σ and τ . Then (3.31) can be transformed to the
form (

rm + J ′m(σ)
)dσ
dτ

= Fm(σ) + rm, (3.35)

where the notation (3.13), (3.15) are used. Let us prove that (3.35) is globally
solvable for, at least, sufficiently small θ. For this purpose, we first note that for
θ � 1,

λ0 = λ0
0 +O(θ2), λ0

0 =
1
a2
ω(σ),

λ1 = θλ0
1 +O(θ3), λ0

1 =
1
a2
ω′(σ)

∫
η2ω(η) dη,

(3.36)

Therefore,
k = s1θ

κλ0
0 +O(θκ+1),

and we calculate

J3 =
1
2
σλ0

0θ +O(θ2), J4 = σλ0
0θ +O(θ4/3),

J5 = −2s1σλ0
0θ

3/2 +O(θ2), Jm = −s2σλ0
0θ

2κ +O(θ) for m ≥ 6.

At the same time, we have

r3 =
1
2

+O(θ), r4 = 1 +O(θ1/3), rm = 1 +O(θκ) for m ≥ 5.

Hence there exists θ∗m such that

rm + J ′m(σ) ≥ const > 0 for θ < θ∗m.

It remains to note that J ′m(σ) and Fm(σ) are bounded by a constant and tend
to zero both as σ → ±∞ and θ → 0. This implies that (3.35) is solvable for
θ ≤ θ∗ = min{θ∗1 , θ∗m}, and hence problem (3.12) is solvable.

The last step in deriving formulas (3.19) is the calculation of the function ψ1.
In the exceptional case (3.11) formula (3.18) is obtained by integrating (3.33) for
m = 3 and s = −1. In the general case we obtain (3.17) by integrating (3.32). The
proof of Theorem 3.3 is complete. �

The proof of Theorem 3.2 and of the asymptotic non-uniqueness of the weak
asymptotic is carried out in the same way as the proofs in Sec. 2.
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