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POSITIVE SOLUTIONS OF BOUNDARY-VALUE PROBLEMS
FOR 2M-ORDER DIFFERENTIAL EQUATIONS

YUJI LIU & WEIGAO GE

Abstract. This article concerns the existence of positive solutions to the
differential equation

(−1)mx(2m)(t) = f(t, x(t), x′(t), . . . , x(m)(t)), 0 < t < π,

subject to boundary condition

x(2i)(0) = x(2i)(π) = 0,

or to the boundary condition

x(2i)(0) = x(2i+1)(π) = 0,

for i = 0, 1, . . . , m − 1. Sufficient conditions for the existence of at least one

positive solution of each boundary-value problem are established. Motivated
by references [7, 17, 21], the emphasis in this paper is that f depends on all

higher-order derivatives.

1. Introduction

The study of the existence of positive solutions of boundary-value problems for
second-order and higher-order ordinary differential equations has gained promi-
nence recently and is a rapidly growing field. This happens because of the applica-
tions of this problem, especially fourth-order differential equations; see for example
the articles [5, 7, 9, 12, 13, 16, 17, 19, 20, 21] and the monographs [1, 2, 3].

For the second-order case, the existence of positive solutions of boundary-value
problems for nonlinear differential equations has been studied by many authors.
The differential equation

x′′(t) + f(t, x(t)) = 0, 0 < t < 1, (1.1)

subjected to different boundary conditions has received much attention. Specially
in seeking conditions on the nonlinearity f for which there are at least one, at least
two, or at least three positive solutions. See for example [4, 8, 10, 11, 24].
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However, there are not many publication about the existence of positive solutions
of the differential equation

x′′(t) + f(t, x(t), x′(t)) = 0, 0 < t < 1, (1.2)

under various boundary conditions. This because the presence of x′ in the nonlin-
earity f causes considerable difficulties [6, 17, 18, 22].

Recently, Chyan and Henderson [7] studied the 2m-order differential equation

x(2m)(t) = f(t, x(t), x′′(t), . . . , x2(m−1)(t)), 0 < t < 1, (1.3)

with either the Lidstone boundary condition

x(2i)(0) = x(2i)(1) = 0 for i = 0, 1, . . . ,m− 1, (1.4)

or with the focal boundary condition

x(2i+1)(0) = x(2i)(1) = 0 for i = 0, 1, . . . ,m− 1. (1.5)

They proved the existence of at least one positive solution when f is either super-
linear or f is sub-linear.

Similar problems were also investigated by Palamides [21] using an analysis of the
corresponding field on the face-plane and the Sperner’s Lemma. The method there
is different from that in [7, 17]. In the papers mentioned above, the nonlinearity f
depends on x, x′′, . . . , x(2(m−1)).

In this paper, we consider the 2m-order differential equation

(−1)mx(2m)(t) = f(t, x(t), x′(t), . . . , x(m)(t)), 0 < t < π, (1.6)

with either the Lidstone boundary conditions

x(2i)(0) = x(2i)(π) = 0 for i = 0, 1, . . . ,m− 1, (1.7)

or the focal boundary conditions

x(2i)(0) = x(2i+1)(π) = 0 for i = 0, 1, . . . ,m− 1. (1.8)

We assume f : [0, π] × I0 × I1 × · · · × Im → [0,+∞) is continuous, where I0 =
[0,+∞), I1 = R, I2 = (−∞, 0], . . . for BVP (1.6)–(1.7), and I0 = I1 = [0,+∞),
I2 = I3 = (−∞, 0], . . . . . . for BVP (1.6) and (1.8). It is easy to check that if x(t)
is a positive solution of BVP (1.6)–(1.7), then

(−1)mx(2m)(t) ≥ 0, (−1)m−1x2(m−1)(t) ≥ 0, . . . x(t) ≥ 0

for t ∈ [0, π] and

(−1)mx(2m)(t) ≥ 0, (−1)mx(2m−1)(t) ≤ 0, . . . x′(t) ≥ 0, x(t) ≥ 0

for t ∈ [0, π] if x(t) is a positive solution of BVP (1.6) and (1.8).
The emphasis of this paper is that f depends on each of the m higher-order

derivatives; i.e., f depends on x, x′, . . . , x(m). To obtain the main results, we need
the following notation and an abstract existence theorem, whose proof can be found
in the text books [14, 23].
Definition: Let X be a real Banach space. A non-empty closed convex set P ⊂ X
is called a cone of X if it satisfies the following conditions:
(i) x ∈ P and λ ≥ 0 implies λx ∈ P .
(ii) x ∈ P and −x ∈ P implies x = 0.
Every cone P ⊂ X induces an ordering in X, which is given by x ≤ y if and only
if y − x ∈ P .
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Let X and Y be Banach spaces, L : dom L ⊂ X → Y be a Fredholm operator of
index zero, P : X → X and Q : Y → Y be projectors such that

Im P = KerL,KerQ = Im L, X = KerL⊕KerP, Y = Im L⊕ Im Q.

It follows that
L|dom L∩Ker P : dom L ∩KerP → Im L

is invertible, we denote the inverse of that map by Kp.
If Ω is an open bounded subset of X, dom L ∩ Ω 6= Φ, the map N : X → Y

will be called L−compact on Ω if QN(Ω) is bounded and Kp(I −Q)N : Ω → X is
compact. Now, we present the fixed point theorem.

Theorem 1.1 ([14, 23]). Let X and Y be Banach spaces, K1 ⊂ X and K ⊂ Y be
cones in X and Y , respectively, and the operators L and N be defined above such
that NX ⊂ K, L−1(K) ⊂ K1 and KerL = {0}. Let Ω1 and Ω2 be open bounded
subsets in X such that 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2. If N : Ω2 → Y is L-compact on Ω2 and
there is h ∈ L−1(K) with h 6= 0 such that

(i) Lx 6= λNx for λ ∈ (0, 1) and x ∈ dom L ∩ ∂Ω1 ∩K1; Lx−Nx 6= λLh for
λ > 0 and x ∈ dom L ∩ ∂Ω2 ∩K1, or

(ii) Lx − Nx 6= λLh for λ > 0 and x ∈ dom L ∩ ∂Ω1 ∩ K1; Lx 6= λNx for
λ ∈ (0, 1) and x ∈ dom L ∩ ∂Ω2 ∩K1,

then Lx = Nx has at least one solution x ∈ dom L ∩
(
Ω2/Ω1

)
∩K1.

2. Positive solutions of boundary-value problems

In this section, we present the main results and then give some examples to
illustrate the main results.

Theorem 2.1. Suppose
(A) The following inequality holds uniformly in t:

lim sup∑m
i=0 |xi|→+∞

f(t, x0, x1, . . . , xm)∑m
i=0 |xi|

<
1

m + 1
.

(B) The following inequality holds uniformly in t:

lim inf∑m
i=0 |xi|→0

f(t, x0, x1, . . . , xm)∑m
i=0 |xi|

> 1 .

Then BVP (1.6)–(1.7) has at least one positive solution.

Proof. Let X = Cm[0, π] and Y = C0[0, π] be endowed with the norms ‖x‖ =
max{‖x∞, ‖x′‖∞, . . . , ‖x(m)‖∞} and ‖x‖∞ = maxt∈[0,π] |x(t)|, respectively. For
x ∈ Y , denote

‖x‖1 =
∫ π

0

|x(t)|dt, ‖x‖2 =
( ∫ π

0

|x(t)|2dt
)1/2

.

Define

dom L = {x ∈ C2m[0, π] : x(2i)(0) = x(2i)(π) = 0, i = 0, 1, . . . ,m− 1}.
Define the linear operator L : dom L∩X → Y and the nonlinear operator N : X →
Y by

Lx(t) = (−1)mx(2m)(t) for x ∈ dom L ∩X ,

Nx(t) = f(t, x(t), x′(t), . . . , x(m)(t)) for x ∈ X .
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Then the differential equation (1.6) can be written as Lx = Nx. It is easy to see
that KerL = {0} and ImL = Y . Define the projectors P : X → X by Px(t) = 0
for all t ∈ [0, π] and Q : Y → Y by Qy(t) = 0 for all t ∈ [0, π], respectively. So L is
a Fredholm operator of index zero, and L−1 : Y → X ∩ dom L can be written by

L−1y(t) =
∫ π

0

Gm(s, t)y(s)ds,

where

G0(s, t) =

{
s(π−t)

π , 0 ≤ s ≤ t ≤ π
t(π−s)

π , 0 ≤ t ≤ s ≤ π,

Gk(s, t) =
∫ π

0

G0(s, u)Gk−1(u, t)du for k = 1, . . . ,m .

It is easy to check that L−1 is completely continuous, together with that N : X → Y
is continuous and bounded, it follows that N is L-compact. We divide the proof
into two steps.
Step 1. Prove the first part of (ii) in Theorem 1.1. By (B), there is r > 0 such
that if

∑m
i=0 |xi| ≤ r, then

f(t, x0, x1, . . . , xm) >

m∑
i=0

|xi| ≥ x0 .

Choose

Ω1 = {x ∈ X : ‖x‖ ≤ r/(m + 1)},

K1 = {x ∈ dom L ∩X : x(t) ≥ 0 and (−1)mx(2m)(t) ≥ 0 for t ∈ [0, π]},
K = {x ∈ Y : x(t) ≥ 0 for t ∈ [0, π]}.

Then KerL = {0}, NX ⊂ K, L−1(K) ⊂ K1 and K1 ⊂ X and K ⊂ Y are cones.
If x ∈ dom L ∩ ∂Ω1 ∩K1, then ‖x‖ ≤ r/(m + 1), so

m∑
i=0

|x(i)(t)| ≤
m∑

i=0

‖x(i)‖∞ ≤ (m + 1)‖x‖ ≤ r .

It follows that

f(t, x(t), x′(t), . . . , x(m)(t)) ≥ x(t) for t ∈ [0, π]. (2.1)

Thus
sin tf(t, x(t), x′(t), . . . , x(m)(t)) ≥ x(t) sin t for t ∈ [0, π].

Integrating the above inequality from 0 to π,, we obtain∫ π

0

sin tf(t, x(t), x′(t), . . . , x(m)(t))dt ≥
∫ π

0

sin tx(t)dt

= − cos tx(t) |π0 +
∫ π

0

x′(t) cos tdt

= sin tx′(t) |π0 −
∫ π

0

sin tx′′(t)dt

= . . .

=
∫ π

0

sin t(−1)mx(2m)(t)dt.
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i.e., ∫ π

0

sin tNx(t)dt ≥
∫ π

0

sin tLx(t)dt. (2.2)

On the other hand, let h(t) be the unique solution of the following problem (it is
easy to know, from [7], that it has unique solution)

(−1)mx(2m)(t) = 1, 0 < t < π,

x(2i)(0) = x(2i)(π) = 0 i = 0, 1, . . . ,m− 1.

Then h ∈ dom L and Lh(t) = 1. We will prove that

Lx−Nx 6= λLh

for λ > 0 and x ∈ dom L ∩ ∂Ω1 ∩ K1. In fact, if there is λ1 > 0 and x1 ∈
dom L ∩ ∂Ω1 ∩K1 such that

Lx1 −Nx1 = λ1Lh,

then ∫ π

0

sin tLx1(t)dt =
∫ π

0

sin tNx1(t)dt + λ1

∫ π

0

sin tdt

>

∫ π

0

sin tNx1(t)dt,

which contradicts (2.2). So the first part of (ii) in Theorem 1.1 is satisfied.
Step 2. Prove the second part of (ii) in Theorem 1.1. Choose 1/(m + 1) > ε > 0
and M > 0 such that

f(t, x0, x1, x2, . . . , xm) ≤
( 1
m + 1

− ε
) m∑

i=0

|xi|+ M (2.3)

for all t ∈ [0, π] and xi ∈ Ii for i = 0, . . . ,m. In fact, from (A), there is H > 0 such
that

f(t, x0, x1, x2, . . . , xm) ≤
( 1
m + 1

− ε
) m∑

i=0

|xi|

for t ∈ [0, π] and
∑m

i=0 |xi| ≥ H, where xi ∈ Ii for i = 0, 1, . . . ,m. Let

M = max
t∈[0,π],

∑m
i=0 |xi|≤H

f(t, x0, x1, . . . , xm),

then we have (2.3). So for x ∈ dom L ∩K1, we have

f(t, x(t), x′(t), . . . , x(m)(t)) ≤
( 1
m + 1

− ε
)( m∑

i=1

|xi|+ x(t)
)

+ M.

In order to get Ω2, we now prove that the set

S = {x ∈ dom L ∩K1, Lx = λNx, 0 < λ < 1}

is bounded. In fact, if S is unbounded, then there is λ ∈ (0, 1), and x ∈ S such
that x satisfies

(−1)mx(2m)(t) = λf(t, x(t), x′(t), . . . , x(m)(t)), t ∈ [0, π]. (2.4)
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Thus

(−1)mx(2m)(t)x(t) = λx(t)f(t, x(t), x′(t), . . . , x(m)(t))

≤ λ
( 1

m + 1
− ε

)(
x2(t) +

m∑
i=1

x(t)|x(i)(t)|
)

+ x(t)M.

Integrating above inequality from 0 to π, we get ∫ π

0

(−1)mx(t)x(2m)(t)dt

≤ λ
( 1

m + 1
− ε

) ∫ π

0

(
x2(t) +

m∑
i=1

x(t)|x(i)(t)|
)
dt + M

∫ π

0

x(t)dt.

Since

(−1)m

∫ π

0

x(t)x(2m)(t)dt = (−1)m

∫ π

0

x(t)dx(2m−1)(t)

= (−1)mx(t)x(2m−1)
∣∣∣π
0

+ (−1)m−1

∫ π

0

x(2m−1)(t)x′(t)dt

= (−1)m−1

∫ π

0

x′(t)dx(2m−2)(t)

= . . .

=
∫ π

0

(
x(m)(t)

)2

dt,

we obtain

‖x(m)‖22 ≤ λ
( 1
m + 1

− ε
)[ ∫ π

0

x2(t)dt +
m∑

i=1

∫ π

0

x(t)|x(i)(t)|dt
]

+ M

∫ π

0

x(t)dt

≤ λ
( 1
m + 1

− ε
)(
‖x‖22 +

m∑
i=1

‖x‖2‖x(i)‖2
)

+ πM‖x‖∞.

Since x(t) ∼
∑∞

n=1 an sinnt, where an is the Fourier coefficient of x and

x′(t) ∼
∞∑

n=1

nan cos nt,

by Parseval equality, ‖x‖2 ≤ ‖x′‖2. Similarly, we have

‖x‖2 ≤ ‖x′‖2 ≤ · · · ≤ ‖x(m)‖2.
Again,

|x(t)| = |x(t)− x(0)| = |
∫ t

0

x′(s)ds|

≤
∫ t

0

|x′(s)|ds ≤
∫ π

0

|x′(s)|ds

≤
(∫ π

0

|x′(t)|2dt

∫ π

0

dt

)1/2

= π1/2‖x′‖2.

Then we obtain ‖x‖∞ ≤ π1/2‖x′‖2. Thus

‖x(m)‖22 ≤ λ
( 1
m + 1

− ε
)
(m + 1)‖x(m)‖22 + Mπ3/2‖x(m)‖2.
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Hence

‖x(m)‖2 ≤
Mπ3/2

ε(m + 1)
=: c1.

Thus, we obtain

‖x‖∞ ≤ π1/2‖x(m)‖2 ≤
Mπ2

ε(m + 1)
=: c2 ,

‖x(i)‖2 ≤ ‖x(m)‖2 ≤
Mπ3/2

ε(m + 1)
=: c1 for i = 0, 1, . . . ,m.

Similarly, we have

‖x(i)‖∞ ≤ π1/2‖x(i+1)‖2 ≤
Mπ2

ε(m + 1)
= c2 for i = 1, . . . ,m− 1.

¿From (2.3),

|x(2m)(t)| ≤
( 1
m + 1

− ε
)(

x(t) +
m∑

i=1

|x(i)(t)|
)

+ M

≤
( 1
m + 1

− ε
)(
‖x‖∞ +

m

2
+

1
2

m∑
i=1

|x(i)(t)|2
)

+ M

≤
( 1
m + 1

− ε
)(

c2 +
m

2
+

1
2

m∑
i=1

|x(i)(t)|2
)

+ M.

Integrating above inequality from 0 to π, we get

‖x(2m)‖1 ≤ π
( 1
m + 1

− ε
)
(c2 +

m

2
) +

1
2
( 1
m + 1

− ε
)
c2
1 + Mπ =: c3.

Since x(2m−2)(0) = x(2m−2)(π) = 0, there is ξ ∈ [0, π] such that x(2m−1)(ξ) = 0,
thus

|x(2m−1)(t)| ≤ ‖x(2m)‖1.

So ‖x(2m−1)‖∞ ≤ c3. Similarly, one gets

‖x(2i−1)‖∞ ≤ c3, i = 1, . . . ,m− 1.

This implies ‖x‖ ≤ max{c3, c2, c1}+ 1 for all x ∈ S.
Choose R > max{max{c1, c2, c3}+ 1, r/(2m + 1)}. Let

Ω2 = {x ∈ X : ‖x‖ < R}.

Then S ⊂ Ω2. So Lx 6= λNx for λ ∈ (0, 1) and x ∈ dom L ∩ ∂Ω2 ∩K1. Thus by
Theorem 1.1, Lx = Nx has at least one solution x ∈ dom L ∩

(
Ω2/Ω1

)
∩K1. x is

a solution of BVP (1.6)–(1.7).
Next, we prove that x(t) > 0 for t ∈ [0, π]. Since (−1)mx(2m)(t) ≥ 0 for all

t ∈ [0, π], together with the boundary value conditions (1.7), we get x(t) ≥ 0 and
x′′(t) ≤ 0 for all t ∈ [0, π]. If there is t0 ∈ (0, π) such that x(t0) = 0, then the
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concavity of x(t) implies

0 = x(t0) = x
(π − t0

π − t
t +

t0 − t

π − t
π
)

≥ π − t0
π − t

x(t) +
t0 − t

π − t
x(π)

=
π − t0
π − t

x(t).

This implies that x(t) = 0 for all t ∈ [0, π], which contradicts x ∈ Ω2/Ω1. The
proof is complete. �

For our convenience, we introduce the following notation:

∆1 = max
t∈[0,π]

∫ π

0

Gm(s, t)ds,

∆2 = max
{

∆1, max
t∈[0,π]

(∫ t

0

s

π
Gm−1(s, t)ds +

∫ π

t

(1− s

π
)Gm−1(s, t)ds

) }
,

∆3 = max
{

∆2, max
t∈[0,π]

∫ π

0

Gm−1(s, t)ds
}

,

. . .

∆m = max
{

∆m−1, max
t∈[0,π]

( ∫ t

0

s

π
Gm/2(s, t)ds +

∫ π

t

(1− s

π
)Gm/2(s, t)ds

)}
if m is an even integer,

∆m = max
{

∆m, max
t∈[0,π]

∫ π

0

G(m−1)/2(s, t)ds
}

, if m is an odd integer.

Clearly, we have ∆m ≥ ∆i for i = 1, 2, . . . ,m.

Theorem 2.2. Assume the following two conditions are satisfied:
(C) The inequality f(t, x0, x1, . . . , xm) ≥ x0 holds for all (x0, x1, . . . , xm) in

Rm+1 and all t in [0, π].
(D) The following inequality holds uniformly for t ∈ [0, π]:

lim sup∑m
i=0 |xi|→0

f(t, x0, x1, . . . , xm)∑m
i=0 |xi|

<
1

(m + 1)∆m
.

Then BVP (1.6)–(1.7) has at least one positive solution.

Proof. We divide the proof of the theorem into two steps.
Step 1. To prove the first part of (i), choose r > 0 and δ ∈ (0, 1/[(m + 1)∆m]
such that

f(t, x0, x1, . . . , xm) ≤ δ
m∑

i=0

|xi| (2.5)

for t ∈ [0, π] and (x0, x1, . . . , xm) ∈ Rm+1 with
∑m

i=0 |xi| ≤ r. Let

Ω1 = { x ∈ dom L ∩K1, ‖x‖ <
r

m + 1
}.

For x ∈ ∂Ω1, we have ‖x‖ = r
m+1 , then

m∑
i=0

|x(i)(t)| ≤
m∑

i=0

‖x(i)‖∞ ≤ (m + 1)‖x‖ = r.
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So, we get

f(t, x(t), x′(t), . . . , x(m)(t)) ≤ δ
m∑

i=1

|x(i)(t)|, for t ∈ [0, π].

If Lx = λNx with λ ∈ (0, 1) has a solution x ∈ dom L ∩K1 ∩ ∂Ω1, then

x(t) = λL−1Nx(t) = λ

∫ π

0

Gm(t, s)f(s, x(s), x′(s), . . . , x(m)(s))ds.

Hence, we get

‖x‖∞ = λ max
t∈[0,π]

∫ π

0

Gm(t, s)f(s, x(s), x′(s), . . . , x(m)(s))ds

≤ δ max
t∈[0,π]

∫ π

0

Gm(t, s)
m∑

i=0

|x(i)(s)|ds

≤ δ∆1(m + 1)‖x‖.

It is easy to check that

‖x′‖∞ = λ max
t∈[0,π]

[
−

∫ t

0

s

π
Gm−1(t, s)f(s, x(s), x′(s), . . . , x(m)(s))ds

+
∫ π

t

(
1− s

π

)
Gm−1(t, s)f(s, x(s), x′(s), . . . , x(m)(s))ds

]
≤ max

t∈[0,π]

( ∫ t

0

s

π
Gm−1(t, s)f(s, x(s), x′(s), . . . , x(m)(s))ds

+
∫ π

t

(
1− s

π

)
Gm−1(t, s)f(s, x(s), x′(s), . . . , x(m)(s))ds

)
≤ max

t∈[0,π]

( ∫ t

0

s

π
Gm−1(t, s)ds +

∫ π

t

(
1− s

π

)
Gm−1(t, s)ds

)
δ(m + 1)‖x‖

≤ ∆2δ(m + 1)‖x‖.

Finally, we can get ‖x(m)‖∞ ≤ δ∆m(m + 1)‖x‖. Hence, we have

‖x‖ ≤ δ∆m(m + 1)‖x‖.

Thus (m + 1)δ∆m ≥ 1, which contradicts δ ∈ (0, 1/[∆m(m + 1)]). The first step is
complete.
Step 2. Choose Ω2 sufficiently large such that Ω1 ⊂ Ω1 ⊂ Ω2, by condition (C),
we have that

f(t, x0, x1, . . . , xm) ≥ x0

holds for all t ∈ [0, π] all (x0, x1, . . . , xm) ∈ Rm+1. Hence,

f(t, x(t), x′(t), . . . , x(m)(t)) ≥ x(t)

holds for all t ∈ [0, π], i.e. (2.1) holds. Similar to Step 1 in Theorem 1.1, we can get
a contradiction, hence the second part of (i) in Theorem 1.1 is satisfied. It follows
from (i) of Theorem 1.1 that BVP (1.6) and (1.8) has at least one positive solution
x(t). The proof is complete. �
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Remark. Consider the boundary-value problem

(−1)mx(2m)(t) = f(t, x(t), x′(t), . . . , x(m)(t)), 0 < t < T,

x(2i)(0) = x(2i)(T ) = 0 for i = 0, 1, . . . ,m− 1,
(2.6)

where T > 0 is a constant, f and m are defined in (1.6)–(1.7). Let s = πt/T ,
we transform BVP (2.6) into a BVP similar to BVP (1.6)–(1.7). Then a similar
existence result can be obtained.

Theorem 2.3. Suppose (A) and (B) of Theorem 2.1 hold. Then BVP (1.6) and
(1.8) has at least one positive solution.

Proof. Consider the boundary-value problem

(−1)mx(2m)(t) =


f(t, x(t), x′(t), . . . , x(m)(t)), for 0 ≤ t ≤ π,

f(2π − t, x(2π − t),−x′(2π − t), . . . ,
(−1)mx(m)(2π − t)) for π ≤ t ≤ 2π,

x(2i)(0) = x(2i)(2π) = 0 for i = 0, 1, . . . ,m− 1 .

This problem is exactly similar to that of Theorem 2.1, we can obtain at least one
positive solution x(t), which is defined on [0, 2π], of above BVP and so x(t)(t ∈
[0, π]) is a positive solution of BVP (1.6) and (1.8). The proof completed. �

Theorem 2.4. Suppose Conditions (C) and (D) of Theorem 2.2 hold. Then BVP
(1.6) and (1.8) has at least one positive solution.

The proof is similar to that of Theorem 2.3 and is omitted. Next, we present
two examples to illustrate the main results.

Example 2.5. Consider the boundary-value problem

x(4)(t) = f(t, x(t), x′(t), x′′(t)), 0 < t < π,

x(0) = x′′(0) = x(π) = x′′(π) = 0,
(2.7)

where f is a nonnegative continuous function. From Theorem 2.1, if

lim sup
|x|+|y|+|z|→∞

f(t, x, y, z)
|x|+ |y|+ |z|

<
1
3
,

and

lim inf
|x|+|y|+|z|→0

f(t, x, y, z)
|x|+ |y|+ |z|

> 1

hold uniformly, then (2.7) has at least one positive solution.

Example 2.6. Consider the boundary-value problem

x(6)(t) = − 2
1 + |x(t)|+ |x′(t)|+ x′′(t)|+ |x′′′(t)|

, 0 < t < π,

x(0) = x′′(0) = x′′′′(0) = x(π) = x′′(π) = x′′′′(π) = 0.

(2.8)

It is easy to check that all conditions of Theorem 2.1 are satisfied. So (2.8) has at
least one positive solution.

Acknowledgement. The authors wish to express their gratitude to the referee
and the editors of Electronic Journal of Differential Equations.
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