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THE GENERALIZED AIRY DIFFUSION EQUATION

FRANK M. CHOLEWINSKI & JAMES A. RENEKE

ABSTRACT. Solutions of a generalized Airy diffusion equation and an associ-
ated nonlinear partial differential equation are obtained. Trigonometric type
functions are derived for a third order generalized radial Euler type operator.
An associated complex variable theory and generalized Cauchy-Euler equations
are obtained. Further, it is shown that the Airy expansions can be mapped
onto the Bessel Calculus of Bochner, Cholewinski and Haimo.

1. INTRODUCTION

The Airy diffusion equation arises from the radial part of a third order Laplace
type operator on n-dimensional Euclidean space. In the one-dimensional case, the
Airy Diffusion equation of Widder [33] is obtained. The difficult problem of rep-
resentation of solutions encountered by Widder persists in the generalized Airy
equation case.

In this paper we obtain a sequence of polynomial solutions of the Airy diffu-
sion equation, which are analogous to the heat polynomials of Widder or the heat
polynomials associated with the generalized heat polynomials of Cholewinski and
Haimo [11] or of L. R. Bragg [8]. In the classical cases the heat polynomials are
modified Hermite polynomials and therefore have an orthogonality relation with
respect to a positive measure. The diffusion polynomial solutions obtained in this
paper are 3-parity polynomials and therefore by a result of Daboul and Rathie [14]
they can not be orthogonal in the usual sense.

We also relate the solutions of the generalized Airy equation to solutions of
a nonlinear diffusion type partial differential equation. The diffusion polynomial
solutions lead to dispersive waves which vanish at infinity.

Let F(z1,xa,...,2,) = F(r) be a radial function on n-dimensional Euclidean
space, where 7 = (23 + 23 + - -- 4+ 22)/2. Then a calculation shows that
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Let v be a fixed nonnegative number, we define a linear third order differential
operator 9, by

9, = — +———-—— (1.2)

dz2 2z dz? z dz
The generalized Airy diffusion equation is defined by
ou(z,t)
Jyu(z,t) = 1.3
ulw, 1) = 5 (13)

If v = 0, we have the Airy equation of Widder [33], and if v = n — 1 we have a
radial diffusion on n-dimensional Euclidean space. If v is not an integer, we have
an analogue of the situation encountered by Bochner [7], Weinstein [31, 32] and
others in the Bessel function case. The operator 1, can be factored as

d o d 4 d. d . 2

:$(Z —z

Uy =7 = aEY

(1.4)

where )

d 2u d
A, = — 4+ — — 1.
() =—5+— - (1.5)

is the radial part of the Laplace operator on n-dimensional Euclidean space R™
with = ”T_l

A number of solutions of the third order radial diffusion are shown to be related
to solutions of the radial heat equation. In fact we show that the source solution of
the generalized Airy diffusion equation is mapped onto the source solution of the
radial heat equation. In the case that v = 0, that is the one dimensional radial

diffusion, the source kernel is mapped onto the normal distribution function.

2. PRELIMINARY RESULTS
Let v be a fixed nonnegative number. A simple calculation shows that
0,2 = 33n(n + v —1/3)(n — 2/3)23" 1) (2.1)

and therefore ¥, acts as a delta operator on the “basic” sequence {z®"}>° . By
iteration we find that

- L(n+DI(n+v+2/3)T(n+1/3) n—
Jyan = 3% T(n—k+1)(n—k+v+2/3)T(n—k+1/3) e 22)
For k = n, we get
v T T(1/3)  T(r+2/3)
= 3"(1)n(1/3)n (v + 2/3)n (23)
= a(3n,v) := as,(v),
where
(a)p=ala+1)(a+2)...(a+n—-1)= F(lcj(—;)n) (2.4)

is the Pockhammer rising factorial function.
A Humbert type of Bessel function G, (z) is defined as the hypergeometric func-
tion
Gy(z) =0 F»(1/3,v+2/3|(2/3)*)

oo

B L(1/3)T(v +2/3)2%" (2.5)
N Z 3nn!T(n+1/3)0(n+v+2/3)

n=0
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for z € C, the complex numbers. A calculation using Stirling’s formula, shows that

log agp, (V)
————= =1 asn— o
3nlog 3n
and
3n
————— — e asn—
(azn(v))sn

It follows that G,(z) is an entire function of order one and of exponential type 1.
By Marichev [25], we also have the asymptotic estimate

_D(/3)0(v +2/3)3" &

V(3) 2 zv
Furthermore, for G, (z) defined by G, (z) = G,(—%) we have
Gu(2) = Gu(=2) =0 Fa[1/3,v+2/3| — (2/3)’]

N r(1/3)\r/%yﬁ+ 2/3) (2/13),, /2 cos(z ? B %) (2.7)

with arg z = 0. Using the estimate in [3, p. 47],

I'(v+2/3)
I'(v+2/34+n)

Gu(z)

as z — 00, |argz| < (2.6)

~Wv+2/3)7" ~ v asv — 0

and the Lebesgue Dominated Convergence Theorem, it follows that
G, (3013 (%)2/3) — 272 T(1/3)0*3 Ty 5(x) as v — oo (2.8)

where I,,(z) is a modified Bessel function of the first kind. Thus for large v, behaves
as an entire modified Airy Bessel function. Recall that

> 2m

T(v+1)(2/2) " L(z) = Y -

_ 2.9)
] (
A= 22 ml (v + D)
is an entire function for v > —1.

In the Widder case of v = 0, we get upon application of the Gauss cubic factorial
equation that

o 3k
Go(z) = Z - | = %(ez +2e72/2 cos?z) (2.10)

Using (2.1) it readily follows that
0y Gy (wy) = 07 G (zy) = y° Gy (wy) (2.11)

Thus G, should play the role of the exponential function in a calculus associated
with the ¥, operator.

Next we define a generalized addition formula associated with the 1, operator.
This addition in terms of hypergeometric functions is an analogue of the addition
for Bessel functions presented by Bochner [7]. If x and y are arbitrary complex
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numbers and n is a nonnegative integer, we define

(Z‘ D y)Sn

_ n —n,—n+2/3,—n+1/3_1/ g

e [ 1/3,v+2/3 - (x)g] (2.12)
_ Z”: (n) T(v +2/3)T(1/3)0(n + v + 2/3) y?*z3(n—F)

B k)T(k+1/3)0(n—k+1/3)['(n—k+v+2/3)[(k+v+2/3)

k=0
It readily follows that (x @, y)3" is a solution of the partial differential equation

Pu 3w du 3wou 0w 3voiu 3vou
3t T s S —s3t 53 5 (2.13)
ox3 x Ox 2 0z  Oy? y Oy y2 Oy
which satisfies the boundary conditions u(z,0) = 23" and u(0,y) = y3". (2.13)
can be considered as a third order Euler-Poisson-Darboux equation, see [13] or
Weinstein [32]. The ordinary wave equation
Pu  u
— = 2.14
0x2  Oy? (2.14)
has solutions f(x + y) corresponding to a boundary value function f(x), whereas
(2.13) has in general solutions f(z®, y) corresponding to boundary value functions
with 3rd order symmetry. Using Whipple’s equation, see Henrici [20], p. 43, we
also have that
_ 1-n _ 4 3
gt o | AWl @)
1/3,v+2/3 |G+ P2
a result that relates the cubic addition associated with ¥, to ordinary addition.
Thus (z @, y)>" ~ (23 +y3)"™ as © — oo for y fixed, for the 3 F» polynomial goes to
its constant term as x goes to infinity.
Furthermore, a calculation employing Equations 2.2 and 2.3 yields the opera-
tional equation

(@, y)*" = (2° + y°)" 3%

Gy V() *)a™" = (z @, y)*" (2.16)
This equation is the 3rd order analogue of the extremely important equation
VP = (x4 y)" (2.17)

where D = % is the derivative operator. In the case of v = 0, we get the binomial

formula
3n — (30
@z =) o )? (2.18)
k=0
In the particular case of x = 1, we get the evaluation

(1o 1) =>" (2’;) = % (2" + (—=1)"2) (2.19)

k=0
See [18, p. 3]. Furthermore, a series multiplication yields
Gy(2) Gu(y) = Gu(z &0 y) (2.20)
which is the 3rd order analogue of the fundamental relation e®e¥ = e**¥. Using

Stirling’s formula, we also obtain the third order binomial limit

(1@, 2)3 = Gy(z) asn— oo (2.21)
n
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Once again this is the analogue of the elementary calculus result
1+ E)" —e¥ asn— oo (2.22)
n
The function

Gul(2) = Gu(~2) = GulBs2) =0 Falgov +2/3 - (5)°]

im/3 T

where 3 = e is a primitive root of —1, which plays the role of e~ in many
calculations. However, it is not the multiplicative inverse of G, (2) as is seen in the
following development. By Erdélyi [17, Volume 1, p. 186], we have

a+b— at+b+1 27
oFa(a,blz) oFa(a, b — z) = 3F% b(g at1 g)bi( atb—1 @ _6422]
722 2 220 20 2

Taking a = 1/3 and b = v 4 2/3, we get
Gu(2)Gu(2)

1 v42
V/3 vl
=3 Iy

1/3,v+2/3,1/6,2/3,1 (v 3+2/3) Lw+5/3),% 4L
= Gu((]- Dy (_1))2)

Since

1 3
Go(z) = g(e_”” +2€%/% cos g;v)

we find that

Go(x) Go(z) = %{3 + 4cosh(gx) cos(?m) + 2cos(V3x)}

The generalized translation of a function f(x) € C* is defined by

Gu(y v/ f Z g @) = e, y)
a3n

provided that the infinite series converges locally uniformly in = and y. In Section
3 we show that if f(z) is an entire function then f(z @, y) is also an entire function
in the variables x and y. The translation operator can also be defined for formal
power series. Next we let M, (R") be the collection of positive measures on R*
such that the integral [ e™¥ dy(y) is finite for 7 > 79 > 0 and dy(y) € M,.
If y(y) is an increasing function on RT with compact spectrum, that is the set of
points of increase are contained in a compact set, then the Stieltjes measure dvy(y) is
in M, (R"). Let dy(y) be an element of M, (R*) and let f(z) = [~ Gu(zy) dy(y).
Since G, () is an entire function of order one and type one, the integral converges
locally uniformly in z.

By the uniform convergence, we also get

0 o) = | (<) G, (o) dy ()

which is also uniformly convergent. Interchanging the summation and integration
we get

Gz 01w = | " G(29) G (ey) dr(y) = fa B 2)
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The uniform convergence justifies the interchange of summation and integration.
For x and z in a compact set; we have

’/ Gy (zy) dvy(y )‘ /OOO G, (Ay) G, (By) dy(y)

<M / eATBIY 4y (y) < 0o
0

The functions G, (z) and G, (z) have Poisson type integral representations for v > 1
or Rev > 1.

Theorem 2.1. Let v > 1, then

Gu(z) = M /01 7(14+73)" (e +2 €72 %7 cos ﬁ zr)dr  (2.24)

T(2/3)T(v 2
and
Gu(2) = m /o (147371 (e +2e3 7 cos ? zr)dr  (2.25)

33n+1/

Proof. Using Gauss’ cubic equation (3n)! = n!T'(n 4+ 1/3)T(n + 2/3) and
the integral representation of the Beta function, the general term of the G, (z) can
be written as

T(1/3)T(v +2/3) 23
3BrpIT(n+1/3)T(n+ v+ 2/3)

v 23n !
_ QLE F(l/S)I];—‘((V)‘F 2/3) (3n)' / 1 (1 o t)nfl/?) dt

=1 (1 — )"~ /3 converges uniformly with respect to ¢

Now the series >~ (?m)'

in the interval [0,1] for v > 1. Since the term with n = 0 converges, we can
interchange the summation. Hence

G, (2) = ;/73 r<1/3>rr((5)+ 2/3) /0 w11 gy Z 14 "

_ T(v+2/3) /1 1 (1- t)fl/B Go((1— t)1/3 2)dt
0

I'(2/3)T(v)
With the change of variable 7 = (1 — )"/, we get
T(v+2/3) [ 3
Gu(z) = F((ZU/;—) F/(z/>) /0 (1 =73 (e +2 €727 cos % 27)dT
(2.25) also follows from this result. O

The integral representations (2.24) and (2.25), yield the inequalities

Gua)l = Gol) < o 2 s
and ( 2/3)
v+ x/2
901 Ty, >

forx > 0and v > 1.
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Next we introduce the entire Bessel functions
J(z) =22 (0 +1/2) 227V T, jo(2), (2.26)
I(z) =22 (v +1/2) 227V I, ja(2) (2.27)

where .J,_1/5(2) is the ordinary Bessel function of order v —1/2 and I,_; /2(2) is
the Bessel function of imaginary argument. We have the series expansion

x© nz2n
Ju(z) = 2:0 (bi(y) (2.28)

where b, (v) = 22" n! (v + 1/2),, = 22" n! % The Bessel function J,(z)
has the asymptotic expansion

2 1
Ju(z) ~ (ﬂ_—z)l/2 cos(z — ST w/4), —-m <argz<m (2.29)

see Erdelyi [16, Volume 2, p. 85]. In the next section it is shown that the source
solution for the third order diffusion is an ordinary Bessel function.
3. THE SOURCE FUNCTION

The formal Dirac delta function associated with our third order calculus is

Dy (1) = / " G (o) dn(v) (3.1)

y3u+1 dy
3v—1/3T(v+2/3)"

o(x) ! /OO e dy (3.2)

:% .

where dn, (y) = This is analogous to the classical representation

or the Bessel representation

Dy () = / 3 (o) dun () (3.3)

see [11]. In general, solutions of the third order diffusion equation

0 Bu  3v 0%u  3v v
Loty =28 T VI u(x,t 4
ot u(@, ) 03 " 7 02 22 Ox u(, ) (34)

are formally given by the semigroup operation
u(e,t) = et f(z) (3.5)
with u(z,0) = f(x).
We say that a function u(x,t) in C3([0,a]) in # and C1(0 < ¢t < ¢) in ¢ is in
H,([0,a] x [0,0]) if

0
g u(x,t) =¥, u(x, t)

in the set [0,a] x [0,0]. We call a function in the class H, an Airy or v-diffusion.
Taking f(x) = D, (z), we get

K,(z,t) =e'% D, (x) = et /OQ Gu(zy) dn.(y)
0 (3.6)

N /O°° ™" G, (xy) dny (y)
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Using the series expansion (2.6), term by term integration, and a change of variables,
we get
1 n 3nt—

(3t)u+2/3 Z 33n n'(1/3)

Since G is an entire function of order 1, the term by term integration is valid
based on the absolutely and uniform convergence of the integral. Further, we have
the representations

3
Kol,t) = Grars oF1(1/3] )
(4/3) v+1 23:3/2
= gt e (=) (3.8)
1 23/2

= W J71/6(ﬁ>

Based on the asymptotic expansion (2.29), we see that

(2 , x 2%/ g
]CV(I,t) -~ (7_‘_/3) 3u+3/2tu+19/12 (5)1/4 COS( \/ﬁ + E) (39)
as © — oo. In the classical case for the ordinary heat equation and for the radial
heat equation the source solutions are Gaussian type functions and go to zero at
infinity of order e=e’ In contrast, the source solution /C, (x,t) oscillates between
infinite values for large values of x.
Applying the translation operator to the third order delta function we formally
get
G,(29,)D,(z) =D,(z ®, 2)

OOO G, (295) G (zy) dn, (y)

- / Gz, 2) dn(y)

B /Ooo Gu(zy) Gu(2y) dnw(2)

Hence the Poisson type integral gives solutions of the third order diffusion equation
(3.4) with u(z,0) = f(z) has the formal solution

(3.10)

w(z,t) = et f(z / Ko(z @y 2,1) F(2) dno(2) (3.11)

Indeed the Poisson type integral gives solutions of the third order diffusion equation
(3.4) provided the function has suitable behavior at infinity. It is easy to see that if
f is a C* function with compact support in [0, 00), then u(x,t) given by (3.11) is
a solution of the third order diffusion equation. The case v = 0 is associated with
Widder’s Airy transform [33].

To study the integral transform (3.11) we need to have order estimates on the
translated kernel IC, (x @, z,t). Let

B(z,y) = ?((Z)i(;/)) = /O t"(L—t)vtadt
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denote the beta function. From the integral representation for the beta function,
it readily follows that if 0 < z < z; and 0 < y < y;, then

B(xlayl) < B(xay)

or equivalently
I+y) _ Ity
() T(y) = T(z1) T'(y1)
Theorem 3.1. Ifv >0 and x,y > 0, then

(3.12)

(x @, y)*" <T(1/3)T(v +2/3) (n + 2{v} + 1)2 QD (4 )30+ (313)
where {v} = ceil(v).

Proof. . For k # 0 or n, using (3.11) we see that

(v +2/3)n

(vt 2/3)us (v + 2/3)s

_T(w+2/3)T(n+v+2/3) T'(n+2v+4/3)

N I'(n+2v+4/3) T(n—k+v+2/3)T(k+v+2/3)
(v +2/3) I'(n+2{v}+2)

= it v+ 2/3)rays Dn—k+ {0} + DI(k+ (7} + 1) (3.14)

I'(v+2/3) T(n+2{v}+2) <n+{y}>

T (n+v+2/3)pgass Dn+{v}+1) k
(n4+{v}+ 1)+ (n + {I/})

(n+2/+2/3){y+2/3] k

<T(v+2/3)

where [z] is the greatest integer less than or equal to . Employing the asymptotic
expansion for the quotients of Gamma functions, it follows that

1 )
(n+ {1+ Dy (P HI=42/3]  0(2)
(n+v+2/3) 423

as n — oo. In the same manner, we get

(1/3)n I'(1/3)T(n+1/3) n n
(1/3)n—x (1/3)x = T(n +2/3) (n+1) <k) <T(1/3)(n+1) <k>

Note that T'(n +1/3)/T'(n 4+ 2/3) ~ n~'/3 as n — oo. Next we obtain an estimate
on the binomial. We have

(n> I'(n+1) I'(n+2)
k 'n+2) T(n—k+1)T(k+1)

1 I'(n+2{v}+2)
n+1Tn—k+{v}+1)Tk+{v}+1)

1 I'n+2{r}+2) TIn+{rr+1)
n+1 I'n+{vi+1) Tn—k+{v}i+1)k!
n+{1/}>

1
n+1(n+{l/}+1){l,}+1< k

IN

(3.15)

IN
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It follows that

[ozgn} _ (N> (1/3)n (v +2/3)y
a3k k) (1/3)n—k (1/3)k (v +2/3)n—k (v +2/3)
T(v+2/3)T(1/3) T(n+1/3) (n+{}+ D0 /n+ v
ST (0 Tnt23) (nt v 12/3) e ( ! ) (3.16)

<T(v+2/3)T(1/3) (n+ 2{v} + 1)+ (“ +k{V}) ’

Thus we find that
(z @y y)™"

, , (3.17)
< T(1/3)T(1 + 1/3) (n + 2{v} + 131+ kzzo (” + k{”}) 23F 3 )
<T(1/3)T(r+1/3) (n+ 2{v} + 1)303HHD (5 4 4)30+D)

Let f(z) = Y02 ,an2>" be an entire function, then by the Cauchy-Hadamard

formula
pr = [limsup [a,|'/*"] !
n—oo

Consider f(z ®w) =Y 0" an (z ®, w)3", we have

= 0

|f(z@w)| < T(1/3) D(v+2/3) (Jzl+-w)* 0 Y an| (n+2{w}+1)* @D (2] w])*
n=0

3({vi+1)

Since limsup(n + 2{v} + 1)~ 3= =1, it follows that

. 1 3({r}+1) -1 .
[limsup|a,|3" (n+2{v} +1)" 3n |7 = [limsup|a,|

1/3n)=1 — o

Thus f(z @ w) is an entire function in the z and w variables.

Further, let vy = limsup,, . 3n |a,|37. Recall that if 0 < 1y < oo then f(z) is
of order p and type 7 if and only if v = erp. If 1y = 0 then f is of growth (p,0)
and if vg = co then f is of growth not less than (p, c0).

If f(2) is of growth (p,7), we find that

lim sup 3n |an (n + 2{v} + 12D |35 = limsup 3n|a, |57 = erp
n—oo n—oo

Thus for fixed complex w, f(z ® w) is also of growth (p,7). The translated func-
tions occur as kernels in various integral transforms. Thus the convergence of the
transforms can be related to the growth properties of non-translated functions f(z).

Applying the above results to K, (z,t) and using Stirling’s formula, it follows
that
3nlog 3™

n—oo 109(gmpi7zyo)
and
. 3n e 5
Vo = lim sup N I

T—00 ‘SBntn (1/?))” n'|ﬁ (3t)1/2 2
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It follows that /IC, (z,t) is of growth (3/2, \/%ﬁ) for ¢ > 0. Since the derivative of a
functionf of growth (p, ) is also of growth (p,7), see [6], p. 13, it follows that all

the derivatives of K, (z,t) are also of growth (3/2, \/%) for ¢ > 0. O
Now
1 i —1)n+1 2 3ng—n
9 k() = ()" (n+v+2/3)a
ot Jur2/Brs/s o 33! (1/3),

and a simple calculation shows that % Ky (z,t) is of order 3/2. Since lim,,_, o (n +
v+2/3)2 = 1, it also follows that 2 K, is also of type 2/v/27t for t > 0. This
result is used to confirm local uniform convergence in the following theorem:.

Theorem 3.2. Let f(z) be a function on Rt = [0,00) such that f(z) = O(e™*")
with p > 3/2 and ¢ > 0. Then

ule,t) = / T Ko @0 9, 0) () dn(9) (3.18)

is a solution of the Airy diffusion equation, that is, u(x,t) € H, fort > 0.

Proof. Based on the estimates for KC,,(x®, y, t) and its derivatives it follows that the
integral in (3.18) and the integrals with kernels (%—nn K. (z &, y,t) locally converge
uniformly, thus the operations of differentiation and integration can be exchanged.
Thus

9, u(z, 1) = /0 9, Koz @ y.t) £ly) dn(y)

<9
— [ 5o o ut) @) dn) (319)
0
0
=5 u(x,t)
Since the function IC,, (z ®, y, t) is not an approximate identity kernel, the boundary
value f(z) of u(x,t) given by (3.18) is only recaptured in a formal way. O

Next we present an example of a v-Airy heat function which is not an entire
function of the space variable for a fixed t. We let
t

2 v 5
t2t6 K, 1(24/ ==
3(8v+5)/2 F(Z/—i-2/3) 200 D—%( 27)
where K, 1 is a modified Bessel function. By Erdélyi [17] we have the Mellin
transform

Hi(t) =

> r nr 2
/ tslel(t)dt:?)Bs (8+ ) (S+V+ /3)
0 T'(v+2/3)
for Res > —1. The function Hy(t) = /3¢~ /T'(1/3) has the Mellin transform

o (s +1/3)
T Hy (t) dt = ———— 5
f, ==
for Res > —1/3. Thus the mellin convolution of Hy(x) and Hy(x) is given by

e dt
Ou(a) = [ Hale/)Hi(0 T
0
2$1/3 e 1 z t
- (-0 —% K 9] —
3(3u+5)/2r(1/3)r<y+2/3)/0 t2 e u—1/3( 27)dt
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for z > 0. By the Mellin convolution theorem [30] it follows that
o T nr 1/3)r 2/3
[ 0,01 de e T DL T 27

0

T(1/3)I'(v +2/3)
for Res > —1/3. Letting

= azs(v)

(b(t):/ e 0, (x)z " du
0
it follows that -
M () = (—1)" / e 0, (z) da
0

fort >0andn=0,1,2,.... Thus ¢(t) € C®°(R*) and |¢(™ ()| < az,(v) for t > 0.
Hence

& 3n
u(z,t) = ) °
(a,1) nZ:%o> O o)

is a v-Airy diffusion for —1 < « < 1, ¢ > 0. Further, we have

(o) 3n (o)
’U,(J?,O) — Z ¢)(77«)(0) a: (1/) = Z(—l)nx?)n — 1—’_1x3
n=0 n n=0

for —1 < x < 1. Hence the analytic extension u(z,0) has singularities on the unit
circle at the cube roots of -1. Thus u(z, 0) can not be extended to an entire function.
It is holomorphic in the unit circle.

4. TIME SERIES SOLUTIONS

Solutions for the partial differential equation 9, u = wu; are obtained for the
Cauchy data given on the t-axis, that is,
u(0,t) =g(t) and wug(0,t) =0
Let D, stand for differentiation with respect to t. The function
u(z,t) = G, (2 D;'*) g(1) (4.1)
Gives a formal solution of the v-diffusion equation we have
Oy u(z,t) =9, Gy (x D) g(t)
= Dy Gy D) (1)
= Dy u(x,t)
Using the power series expansion of G, (x), we define

> .3

n
G, (xDP) gty =S T gt 4.2
(@ Dy"”) g(t) ;a%g () (4.2)
provided the series converges locally uniformly for g a C'**° function. Term by term

z-differentiation by the ¥, operator gives

e x3(n71) 0 3n
M) = Z gD
g\ (t) = g t 4.3
3ty 10 =3 T (43)

Thus the series gives the formal solution.
Let C§5(0, 00) be the class of functions f(x) infinitely differentiable and vanishing
outside a compact subset of 0 < & < co.
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Theorem 4.1. If f € C§5(0,00) then the function

f = [ 1@ Gty dn, (o) (4.4
0
is a continuous function in L((0,00),dn,(x)).

Proof. Clearly the integral converges locally uniformly and defines a continuous
function. Since ¥, G, (zt) = —t3 G, (xt), we find by integration by parts that

8 f / f(2) 9, G (wt) dny ()
_ > 2 31/& 731/£ 3v+1 dj
_/O (&Cx o G @) Gulat)
1 oo

= — I_, T f(2) G, (xt) d
Cy 0

Clearly 9_, 231 f(z) is in Coo (0,00). Repeated applications yield

0 = = [0 @ @) Gt do

Hence for n sufficiently large, we have

o] t3u+1 o] R t—3n+3u+l
/ Fo1 = dt = / B Fol T g < My < oo
1 1

v

and it follows that

> )|d 341 @ % gy &P d
; ()] dno (t) |f )t + : e f)| —————adt

Cy
<M1+M2<OO.

Next we let g(t) = e=%", then

el 3n
Gula Dy e = 37 T (=) e = Gy (ay) e (4.5)
n=0 n
O
Theorem 4.2. Let ¢(x) be an entire function of growth (2,7) and let
g(t) = / e~ ¢(y) di (y) (4.6)
0
then -
Gl D) glt) = [ e 0(0) Gulow) dn ) = ulat) (4.7)
0

Proof. Clearly the integral (4.6) and all of its derivatives converge uniformly for
t > 0. Thus

G, (e D) g( Z e / P et o(y) dn, (y)

_ /0 e ¢(y) G, (wy) dn. (y)

Since G, (z) is an entire function of order one, the uniform convergence allows the
interchange of summation and integration. O
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Corollary 4.3. If ¢(x) € C§5(0,00) and if
3
ot) = [ e 6w dn.(o)
0

then
G, (z D) g(t) = / e 6(y) G (xy) dny (y) = ula, t) (4.8)

0
is a v-diffusion for t > 0. Moreover, u(x,t) is in L'(R*,dn,) and u(x,0) = é(m)

Proof. The integrability follows from Theorem 4.1. Next we define g, (t) for a > 1/2
by

exp(—t~®) fort >0
() = 4.9
a(t) {0 for t <0 (4.9)
Then by an application of Cauchy’s integral formula, there is a § = 6(a) such that
k! 1
k) (¢ e 4.10
0] = Gz exp(3t ) (110)

see for example Widder [34, p. 46]. Let uq(z,t) = G, (z Dg/g)g(t). Since (Skikl)' <

1

@R We find using Gauss’ cubic equation that for ¢ > 0 and arbitrary complex x

|z |9(k) @)
|ua (2, t)| < Z
k=0

o k! lee”“ L, 4
<Z (—515 )

Oésk
MoO@B 1,
3R (v +2/3) oo P2t
1 ‘1‘3/2|2k
k) (0D)F

(4.11)

1 —a
exp(—5t7%)

3/2|

|z 1 a
(at)l/g)exp(iit )

3/2‘

= cosh(
|£TJ 1 1/2—a
Sexp((et)l/z—it/ )

Lo e 1 1/2—a
= eXP(m {W — 5t /2ey)

or
1 |$|3/2 L 1/2-a

ol )] < exp (5775 {7 — 51727 (4.12)

Hence the series defining u,(x,t) converges uniformly and absolutely for ¢ > 0 and

z in an arbitrary compact set. The previous inequality shows that

li t) =0
Jim, uq (2, t)

locally uniformly. It follows that

3n

0= ) (4.13)

«
n—0 3n
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is a nontrivial solution of the v-diffusion equation with boundary values u,(x,0) =0
for every a > 1. Therefore the solutions of the v-diffusion boundary value problem
are not necessarily unique.

Inequality (4.12) shows that ug(z,t) is an entire function of growth (3/2,1/t)
for ¢t > 0. However, u, is not analytic in ¢ since u,(0,t) vanishes for all ¢ < 0 and
Ua(0,%) = go(t) > 0 for t > 0. The uy(z,t) are Tychonoff type solutions of the
v-diffusion equation. (I

5. 19,-TRIGONOMETRIC FUNCTIONS

The ordinary trigonometric functions play an important role in the theory of
the heat and wave equations on Euclidean spaces. In order to study solutions of
equations connected with the ¥, operator, it is necessary to develop an associated
trigonometric theory.

We define the v-hyperbolic functions by the series

e Z?m e ZGk‘ e Z6k+3
G,(z) = = — + := cosh, (z) + sinh, (z 5.1
(- - I I ) ) 5)

It follows that cosh,(z) and sinh, (z) are entire functions of order one. Since
aer(v) = 6" K1 (1/2)5, (1/6)x (2/3)k (1/2 4+ 1/3)k (/2 + 5/6)% (5.2)
and
aek3(v) = (v +2/3) 6% k! (3/2)k (2/3)k (7/6)k (/2 +5/6)1, (v/2 +4/3)i (5.3)

we obtain the hypergeometric representations

coshy (2) = 3 S =g F5(1/2,1/6,2/3,v/2 + 1/3,0/2+5/6| (2)°)  (5.4)
= ok 6
and
> 6k+3
sinh,, =
(Z) Z: Q6k+3
k=0 ) (5.5)
x x\6
=————F: 2,2 2 244 =
a7 P/ 23T [0, /24 5/6.0/2 +4/31(5)°)
In particular for v = 0, a calculation shows that
1 2
coshq(z) = 3 cosh z + 3 cos(? z) cosh(z/2), (5.6)
1 2
sinhg(2) = 3 sinh z + 3 cos(? z) sinh(z/2) (5.7)
Since )
cosh, (ax) = B {G,(az) + G, (—ax)} (5.8)
we get
¥, cos hy (ax) = a®sinh, (az), (5.9)
¥, sinh,, (ax) = a® cos h, (ax) (5.10)

Thus cosh, (az) and sinh, (az) are solutions of the harmonic type equation

(05 —a®)y(z) =0 (5.11)
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We note that cosh, is an even function and sinh, is an odd function. Since G, (z) =
G, (—x) = cosh,(z) — sinh, (x), we get

G, (2) Gy (—x) = cosh?(z) — sinh?(z) = G, (1 &, (—1))z) (5.12)
See Equation (2.3) for a hypergeometric representation.

In terms of the umbral v-translation, we obtain a number of identities. We define
an umbral multiplication in terms of repeated addition. We have

~ (Jé3n(V)
20, )" = (z @, )% = 23" ( ) 5.13
(20, 2" = (v @y 2) > () (513)
and, for m > 2, we have the generalized v-multinomial
(m oy x)Bn =(x®, -, $)3n
n a?ﬂl(l/)
=" > (5.14)

3¢9, Q3¢5 ... Oéggm
b4 lot ot ly=n 7

;>0

Now
Gy (m) Gy (:I:y)

Gu(z @y (y))

= cosh, (z @, (fy)) + sinh, (z &, (Ly))

= cosh, (z) cos h, (y) £ sinh, (z) sinh, (y)

+ sinh,, (z) cos h, (y) % cosh, (x) sinh, (y) .

Equating the even and odd parts, we obtain the angle-sum and angle-difference
v-relations,

(5.15)

cosh, (z @, (+y)) = cosh, (x)cos h,(y) £ sinh, (x) sinh, (y), (5.16)
sinh, (z @, (+y)) = sinh, (x) cos h, (y) £ cosh, (z) sinh, (y) . (5.17)
Thus we also get the multiple angle relations

sinh, (2 ®, z) = 2sinh, (z) cos h, (z) (5.18)
cosh, (2 ®, z) = cosh?(x) + sinh?(z) . (5.19)

Using the binomial theorem, we obtain the general multiple angle relations

A T oy 20 n—2¢
cosh,(n®, x) = lz:; (%) sinhy"(x) cos h],~“*(x) (5.20)
. & n c 1 20+1 n—20—1

sinh, (n @, z) = g (28 L+ 1) sinh]" " (z) coshy, (x) (5.21)

In terms of hypergeometric functions, using umbral variables, Equation (5.20) yields
the identity

oF5(1/2,1/6,2/3,v/2+1/3,v/2+5/6 (nGéym)e)
/2, ” x
= Z (2()922(V+2/3)2Z0F5(3/2,2/3,7/6,V/2 +5/6,v/2+4/3| (6)6>24

=0
x 0F5(1/2,1/6,2/3,v/2 +1/3,0/2 + 5/6 | (%)‘S)n*2Z .
(5.22)
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Also from (5.1) we get the hypergeometric identity

(n®, x)3)

0F2(1/3,V+2/3| 9

3¢

-2 (f) Tl 123y V5 (3/2:2/3,7/6,0/245/6,0/2 + 4/3] (1)) (5:29)

x 0F5(1/2,1/6,2/3,v/2 +1/3,v/2 + 5/6 | (%)6‘)H .

Next we introduce an umbral subtraction for v-translation. The generalized
subtraction associated with the Bessel functions was developed by Cholewinski [9].

Since G, (0) = 1, we can define a “v-Mobius” sequence {35 ()}, by the equation
1
Gy (yux) = G or G,(7,2)Gy(x)=1. (5.24)

By multiplication of series, we must have

n

A3n
> (8 ) = e 5.25)
A3k

k=0
the Kronecker delta. For n = 0, we get 79 = 1. Hence the sequence {vs;(v)} is
obtained inductively by the equation

) = =3 (0 ) ) (5.20

The first four values are vo = 1, vy3(v) = —1, w(v) = =1+ 8(v + 5/3)/(v + 2/3),
and vo(v) = —1 — 126(v + 8/3)(v + 2) /(v + 2/3)%. Further, we get

Gu(x) Gy(Tuy) = Gu(x @y Yuy) = coshy (z &y yuy) + sinhy (z &, yuy) . (5.27)
Multiplying the series on the left and equating even and odd parts, it follows that
cosh, (z @, v,y) = cosh, (x) cosh, (7,y) + sinh, (z) sinh, (y,y) =1 (5.28)
sinh, (z ®, v,y) = sinh, (x) cosh, (y,y) + cosh, (z) sinh, (vy,y) = 0 (5.29)

The cosh, identity above is an analogue of the familiar result cosh? 2 — sinh® z =
1. Of course Equation (5.28) can be expressed as a complicated hypergeometric
identity. With the obvious notation we get the v-hyperbolic tangent identity

1+ tanh, (x)tanh, (y,2) = sech,(x) sech, (y,x)
Using Equations (5.18) and (5.19), we obtain the multiple angle relation
2 tanh, ()

tanh, (2 ©, x) = H—Tnhi(x) . (5.30)
In the case v = 0, the v-hyperbolic tangent is
. N (1 _ cos éw)
fanho(z) = sinh2 — 2/3 cos %> sinh _ tanh(z) 3cotg
coshz + 2/3 cos %2z cosh £ (1_|_(2/3)cosi:7hc;>sh%)
Next
tanh, () = L= Gr(=) Gv(u2) (5.31)

14 G, (—z) Gy (yux)
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which implies that

tanh, (z) = 1+ 2 Z )n (5.32)

n

which converges for x > 0, since |G, (—z)| < G,(z) for x > 0. In umbral notation
Equation (5.32) can be written as

tanh,, Z (n G, (x(=1®, 7)) - (5.33)
This is the analogue of the elementary formula

tanh(z )"e T for Rex >0 (5.34)

HM8

A complex v-exponential function E,(z) is defined by the equation

E,(z) = G,(wgx) Z

‘n ,.3n

(5.35)

where wg = €6’ = f + 1. The function E,(z) is the €™ in the the v-calculus
associated with 99, 1t is an entire function of order one. We define generalized sine
and cosine functions by the equation

& k 6k > (_1)kx6k+3
Z ~——————— =cos,(x) +isin,(x). (5.36)
o P gk+3(V)
From our previous results, we have

cos, (x) = cosh, (wez) , (5.37)
sinh, (wex) = isin, (z) . (5.38)

The hypergeometric representations are
cos, () =0 F5(1/2,1/6,2/3,0/2+1/3,0/2+5/6| — (%)6) : (5.39)

3 x

in, () = ————— 0F5(3/2,2/3,7/6,v/2 4+ 5/6,v/2+4/3| —(=)%). (5.40
sin () = g7 OB (3/2.2/8,7/6.0/2 4 5/6./2 4 4/3] = (§)°). (.40

The trigonometric identities for the v-hyperbolic functions are easily converted to
identities for the v-sine and cosine functions. We have

cos, (x B, y) = cos,(x) cos, (y) — sin, (z) sin, (y) , (5.41)
sin, (x @, y) = sin, (x) cos, (y) + sin, (x) cos, (y) . (5.42)

In particular,
cos, (2@, x) = cos?(z) — sin?(z), (5.43)

sin, (2 ®, ) = 2sin, (x) cos, () . (5.44)
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In terms of hypergeometric functions, (5.42) yields the identity

oFs (1/2,1/6,2/3,0/2 +1/3,0/2 + 5/6] — (2222)°)
= F5(1/2, 1/6,2/3,0/2 +1/3,0/2 +5/6| — (%)6)
X 0F5(1/2,1/6,2/3,v/2+1/3,v/2 + 5/6| - (%)6) i

zy)8 .
_ 92(5/3{)2/3)0F5(3/272/3,7/6,1//2+5/67y/2+4/3| _ (6)6>

x o Fs (3/2, 2/3,7/6,0/2+5/6,1/2 +4/3| — (%)6) .

In the case v = 0, the equations are

. L. 2 .z V3
sing(x) = —3sine + zsing cosh ERA (5.46)
1 2 oz V3
coso(z) = —3 08T + 30085 cosh 5T (5.47)

The v-derivatives are
¥, sin, (ax) = a® cos, (ax), (5.48)
9, cos, (ax) = —a®sin, (ax). (5.49)
Thus sin, (ax) and cos, (az) are solutions of the differential equation
9, y(x) +ay(x) = 0.
Complex variable type addition equations are
cos, (x @, we y) = cos, ()cosh, (y) — isin?(x)sinh, (y),
sin, (z @, wg y) = sin, (x) cosh, (y) — i cos, (x) sinh,, (y)

which are analogues of the complex variable formulas for sin(z) and cos(z) with
z=x+1y.

Theorem 5.1 (A v-DeMoivre’s Formula). Let v > 0 and n be a positive integer.
Then

(cos, (x) + isin, (z))" = cos,(n ®, x) + isin,(n O, x)
Proof. We have E,(z)" = E,(n ®, z) and the equation follows. O
Since E, (v,2) Ev(2) = G, (v we 2) Gu(ws 2) = 1, it follows that

cosy (2) cos, (vu2) — sin, (2) sin, (v,2) = 1,
sin, (2) cos, (yu2) + sin, (7,2) cos, (2) = 0.
In the case that v =0,

]. ; iz
Eo(z2) = 3 (e7¥ +2e2 cosh(? z).

Obviously, the functions Go(z) and Ey(z) are not periodic in the ordinary sense.
We will obtain umbral periods associated with the v-translation.

Theorem 5.2. For v > 0, the function G, takes on the values +1 and -1 for
infinitely many real values of x.
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Proof. The theorem easily follows from the asymptotic expansion of G,. We have

G(@) =0 P> (1/3.0 +2/31(~3)°)

LU +2/3) @y oo V8, vmy O
V3 3 2 2
as © — 00, see Marichev [25], for example. Hence the theorem follows. [

Since the zeros of an entire function cannot have a finite limit point, there
is a smallest z2.(v) > 0 such that G,(zx2,(v)) = 1 and, likewise, a smallest

im 2w

2x(v) > 0such that G, (x,(v)) = —1. Next we let P, (V) = —za2, (v )e_ 6e 8 .=
—Zor (V) i, then

i

E, (P (V) = Gu(—z2:(v) e % we) = Gy (war(v)) =1.

Hence
E,(2 @y Por(v)) = E,(2) E,(Par(v)) = E,(2)

and therefore Py, (v) is an umbral period of F,. In the case v = 0, Po,(0) is
approximately -5.5498313.

By Theorem 2.24, we obtain Poisson type representations for the trigonometric
functions of this section. For v > 1, we have

E,(r) = W /0 T(1—73)""1 (e T 4 2¢"5 cosh ?w T)dr, (5.51)
v ! . xT
cosh, (z) = ;‘((2/;32/(3)) /0 (1 =73~ (cosh(xr)+2cos(§xr)cosh( ) )drt,
sinh, (z) = 1_1?((21//4—)2/(3)) /0 7'(1—TB)Vil(SiIlh(xT)—2COS(§JZT)SiDh(%)dT,
cos, (x Tl +2/3) 17' — 73 (cos(z T cosﬁxr cos () dr
) = Fe [ 7= (eoslo ) + 2eos(F o) cosh( ) dr
sin, (x) = m /0 (1 =73 Y =sin(x 1) + 2Sin(?m7) cosh(%) dr.

From these equations, one can obtain order estimates for the individual functions,
for example

E, (z) = O(e‘/g“ﬂ) as r — 0o
by (5.51).
In the following example we need to know the smallest real zero of cos, (2z). We
have

cos, (2x) = F5(1/2,1/6,2/3,v/2+1/3,v/2+5/6| — (%)6)
D(1/2,1/6,2/3,v/241/3,v/245/6) &

)_3 e\/gz vm
V6 (27)5/2 2

cos(z — F)

as x — oo, where

(1/2,1/6,2/3,v/2+1/3,1/2+5/6) = T'(1/2) T(1/6) F(2/3)F(g+1/3) F(%+5/6).
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It follows from the asymptotic expansion that cos,(2z) has infinitely many real
zeros. Since cos,(z) is entire and cos,(0) = 1, it follows that there is a smallest
positive value z¢ such that cos,(2zg) = 0.

Finally, we present a nontrivial application of the v-cosine function. Consider
the sixth order diffusion equation given by

92 u(r,t) = %u(:at). (5.52)

Using (5.48) and (5.49), it follows that the function

—t 64t

u(z,t) = e " cos,(x) — e cos, (22)

is a solution of the previous equations such that u(x,0) = cos,(x) — cos, (2z) and
ug(x,0) = — cos, (z) + 64 cos, (2z), both being entire functions.

Let xo be the first positive root of cos,(2z), then for —zg < = < zy, we have
that u(x,t) = 0 on the curve

1 log 957 (22)

b= 63 °® cos, ()

Thus the uniqueness of solutions for the diffusion equation (5.52) fails.

6. v-COMPLEX F'UNCTIONS

The trigonometric identities of Section 5 involving the cos,(x ®, woy) and
sin, (z @, woy) suggest the possibility of an analytic function theory associated
with the ¥, operator. The rudiments of such a theory is obtained in this section.

The operator limit

G,(h9'/?3) -1

h3
az(v)

— U, (6.1)

gives a second way to compute ¥, f(z) for suitable f(z). We know that 9,23" =
33n(n+v—1/3)(n —2/3)z*"1 = ds, (v) 3"~ Consider the quotient

3n 3n n
(z®, h)*" — =z _ Z as (Oésn> p3(n—k) ,3(k—1)
k=1

)
e a3k

— a3 (a3n> 23(n=1) _ dgn(l/)x?’(n_l)

as
as h — 0. Thus

) @, h 3n _ p3n .

fmy ( Z = dgy (v)a®" Y. (6.2)

as
Hence we define
. fled,h)— f(z
0, (@) = i L&) 20 (6.3)

(6%}
provided the limit exists for suitable functions. It is clear that (6.3) is valid for
polynomials and entire functions of the variable z3.
Next we introduce an umbral complex variable z,, ~ (z®,wey), where wg = e
We define

i /6

2" = (2 @y wey)®"
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Further, we let Az, ~ (Az @, wgAy), and we define the v-derivative of a suitable
function f at a z, by

f(a: Dy wﬁy) Dy (Ax Dy WﬁAy)) - f(iE Dy Wﬁy)

Yy f(2,) = lim

AZ=0 (AwGBVLEJs)AyP
az(V
6.4
. flzw @y Azy) — f(20) (64
= lim 5
Az—0 Or Az,Ay—0 (Az(u))
oz (Vv

If the function f has a v-derivative in a neighborhood of a point (z,y) associated
with z,, we say that f is v-analytic at z,.

Example. Consider f(z,) = 23" = (z &, wey)>". Then

fe &0 Bz) = f(z) = Z a3 <a3n> 25K (Az, )30 ag, (v) 25001,

(Az,)3 a
as(v) k=1 3k

as Ax.Ay — 0. Thus

9, zf” = ds, (V) zg("_l)

It follows that polynomials p(z,) = >_;_, ax 23%F and 3-parity analytic functions
lead to v-holomorphic functions. Moreover, if f has a v-derivative at z, then f is
continuous at z,, i. e., ima,, o f(2, ®, Az,) = f(2,).

The complex v-derivative is also a linear operator. If f and g have v-derivatives
at z, and a and b are arbitrary complex numbers then

V. (af(z,) +b9(2,)) = a?; f(z,) + b0, g(Z,,)

Theorem 6.1 (v-Cauchy-Riemann Equations). Let f(z,) = u(z,) + v(z,) =
u(z,y) + wv(x,y) with f differentiable at z, and let u and v be real valued func-
tions, then

9. f(z) = Vs f(2) = =ity £(2,),  complex form, (6.5)
or
dpu="9yv and Yy v=-Y,u, real form
Proof. Taking Ay =0 in (6.4), we get
. f(zu Dv 1') — f(zu)
v, f(zu) = AI;IEO (Az)3 =1y f(zu)

Likewise, taking Az = 0 in (6.4), we get

1 v v - v 1
0. f(a) = 7 jm o See) 21D _ 2y g,

Therefore, the complex Equations (6.5) hold. Clearly the v-derivatives 9, u, 9, v,
Yy u, and Y, v exist at (x,y). Hence we find that

02 f(2) = Yo u(z, y) + iy v(z, y)
= =iy f(z0)
= -y u(z,y) + Iy v(z,y).
Consequently, ¥, v = 9, v and ¥, v = =9, u. ([
Corollary 6.2. If f has a second v-derivative at z,, then
0% f(z0) + 93 f(2,) =0 (6.6)
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Proof. From the v-Cauchy-Riemann equations, it follows that 92 f(z,) = 92 f(z,)
and —92 f(z,) = U2 f(z,). Thus
03 f(z) + 05 f(z0) =02 f(2) = 92 f(2) = 0
(I
From (6.6), it follows that 92 u(z, y)+0% u(z,y) = 0 and 93 vu(x, y)+9; v(z,y) =
0. The operator (J, = 92 + 1912! is called the v-Laplacian. Functions satisfying the

v-Laplace equation O, u(x,y) = 0 in a domain are said to be v-harmonic in that
domain.

Example. Consider 23" = (z @, wey)>". Then

Zgn Z <a3n)x3(n—k) (WGy)?)k

«
b—0 3k

< ),Lk YB3 —h)
a3k
[n 1

(a3n>(_1)€w3(71—2€)y61+2 Z (043n) 1) (n=26-1), 6643

(6774 A6r+-3

Il
—
erll M: i

— o

(]

0
3n (2, y) +ivsn(z,y) .

Then us, (z,y) and vz, (z,y are v-harmonic functions for all z, y. In the particular
case n = 2, we have

§1

e .
zp=a%— 0+ Z(ai) 2?y® = ug(z,y) +ive(z,y)

and
ﬁx U = d61'3, ’l9y U = —d6y3
ds

Q@
U, v6 = dgy>, and Wy v6 = dez®  since ( 6) =
1 a3

Qas
Hence
19:26 Ug + 19321 U = a6(1/) - OéG(I/) =0
V3 v+ 0506 =0+0=0

Example. It is clear that the Humbert function G,(z,) is v-analytic for all z,.
Further, we have

Gu(2) = Gu(x @y wey) = Gu(2)Gy (wey) = Gu(2)(cos, (y) + isin, (y))

the v-analogue of Euler’s equation. Therefore,

Gy (2v) = Gu(x) cosy (y) + i Gy (x) sin, (y) = u +iv
and

Uyu = Gy(x)cos,(y), Vyv=—G,(x)cos,(y),

Voot = Gy (2) cosy, (y),  Iyyv = —Gu(z) cos, (),
in,(y), V.v=Gu(z)sin,(y),
Y), Vpev =G, (x)sin,(y) .
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Thus the real form of the v-Cauchy-Riemann equations hold and G, (z) cos, (y) and
G, (x)sin, (y) are v-harmonic functions.
One can verify that the following functions (1) E,(z,), (2) cos,(2,), (3) sin,(z,),
(4) cosh,(z,), and (5) sinh,(z,) are v-analytic functions for all z,,.
The generalized diffusion equation
0 u(e,,t) = 5 (e, v:1)
has a solution u(z,y,t) = exp(—2k%t) cos, (kx) cos, (ky)+ an arbitrary v-harmonic
function. With suitable coefficients {ay, ., } for uniform convergence, the generalized
wave equation
O, u(z,y,t) = 92 u(z,y,t)
has solutions
(o)

u(z,y,t) = Z A, m S0y, (nz) sin, (my) cos(Ap mt) + hy (2, y)

n,m=0

where A, = (n?+m®)'/2? and h, (z,y) is a v-harmonic function. Also for suitable
coefficients {an.m }, the generalized wave equation
2

0, u(zay7t) = @u(x,y,t) (67)
has solutions
o0
u(z,y,t) = Z Qp,m sin, (nzx) sin, (my) cos(An,mt) + hy(z,y)
n,m=0

where A\, = (n?+m®)'/2 and h, (z,y) is a v-harmonic function. Two other forms
for real solutions of (6.7) are given by

oo

u(x, Y, t) = Z Gn,m COSy (nx) COSy (my) COS()‘mmt) +h, (x, y)
n,m=0

U(IC, Y, t) = Z Up,m siny, (nz) COSy (my) COS(An,mt) +hy (1'7 y) .
n,m=0

Certainly the solution forms are valid for compact support sequences {an m }. Fi-
nally, we note that 92 is the sixth order operator given by

6v 3v(3v —5) 36v(1 —v) 2v(v—1) D2 2v(v —1)

— D*+
x x2 3 zt

D%+ D*+ D

2 _ 6
9y =D+ o
where D = %. Thus the techniques introduced in this paper can solve some
exceedingly difficult partial differential equations.

7. v-DIFFUSION POLYNOMIALS

The simple set of polynomial solutions in H, are associated with the initial con-
dition u(x,0) = z3". In a certain sense they are generalized Hermite polynomials.
The function et*’ G, (zz) is a v-diffusion. Multiplying and rearranging the infinite
series, we get a sequence of polynomials given by

3 x v T ZSn
¢ Gez) = Y pn(’t()) . (7.1)

« 14
n=0 3n
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Thus

n

v Oégn(V)
z,t) =
pn( ) ];) Oég(nfk)(V) k'

23—k ¢k

(7.2)
— nyn = (_l)k(_n)k kat*k
= (1/3)n(l/+2/3)n33 t kZ:O (1/3)(V+2/3)k k1 33k

Therefore, the 3rd order polynomials p¥(z,t) can be written as hypergeometric
functions given by

| 2
pn@,t)—:fzn)(w?/i’»)n?)?’_; o [1/?;3v+2/3’ 27J (7.3)
=— t"1F2[1/3,u+2/3’_27t}

It is easy to show that e!?» 3" = p¥(z,t). Thus the p% (x,t) are in H,, and p (z,0) =
x3n

For the ordinary diffusion equation u,, = u;, Widder [34] has established a series
expansion of solutions in terms of heat polynomials which are essentially modified
Hermite polynomials. Cholewinski and Haimo [11] have presented a similar devel-
opment associated with Bessel functions and the Euler operator A, = D? + 2?” D,.
Expansions in terms of the v-diffusion polynomials pZ (x,t) does not yield as rich a
theory as that of Widder.

Theorem 7.1. Let v > 0 and let s and t be arbitrary complex numbers, then

1990 pyuz(xvt) = 33”(” +v— 1/3)(n - 2/3)pz 1('7j t) = d3n(y) p;_l(.ﬁ,t) ’ (74)

_ - 3n\ v 3(n—k)
69l/ ) - .'L't ) 75
wt) =3 (G Jotte 0y (75)
ot = 3 (ot (7.6)
=0

e,y =3 (“3”)pz<x, 0y —1), &

— \asy
R (78)
7" = —_ z,t), .
=0 a3k (n—k)' Pk
PPy /3(x,8),t) = py(z,s +1t), Huygens’ property (7.9)

Proof. Since ¥, commutes with e, we get
9, pl(z,t) = 0, et

_ et19,, 19,,153n

_ d3n(’/) et19,,x3(nfl)
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Thus the {p¥ (z,t)}5° is a basic sequence for the delta operator ¥,. From (7.1), we
obtain by Cauchy multiplication

o Pn(@,1) 3, o ()72
G,(xz2) = S —_—
7;) asgn (V) 7;) n!
— 2 Gasa(v) ()R
= : R (a,t
7; asn (V) kZ:O ask(v) (n—k)! pi(@ )
oo x?mZBn
. asgn (V)

Therefore, comparing coeflicients, it follows that

Pi(, )

3n " ag,(v) ()R
Tt i
which is (7.8). Using (7.2), we get the equivalent composition property
o = (Pl s (@, 1), —1).
Since G, (22)G,(zy) = G, (2(x @, y))) we get
etZSG,,(z(a: DL y))) = etZSG,,(xz)Gl,(zy)

p'rl;(x S2% Y, t) Z3n
Q3n

M

0

3
Il

(y2)*"

a3

= pruz<x7t) Z?m
Q3n

M

" p=0

ZSn o asn . .
P Z( ’ )pk(wvt)y:“ k),

(67
0 3n k—0 3k

0

3
Il

M

n

Comparing coefficients, we get the generalized binomial property

o0

v a3y, v n— v n
it ou .0 = 3 (S )k = hle0) 0 )
k=0

where v is an umbral variable, in this equation
k
pz/g(:v,t)3 = paiys(z,t) = pp(a,1).
In the same manner, we also obtain the Huygens type property

o0
6%}
Pt =3 (5 )kl 4l

k=0
= (Pl /5(,t) @0 Pl 5(y,5))"

3n

Since p¥ (x,0) = z°", we get

(l‘ DSy y)3" = Z <a3n)p2(x’ t) p’rulfk}(y7 _t)
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Finally,
(s+t)2> G ( ) tz3 i p;(:c,s) 3n
e J(xz)=¢e B/
n—0 Q3p
-3 tn 25" i n(2,8) s,
|
n=0 s n=0 3n
e 3n M n—k
z 3n t v
=) — ). Pr(z,;s)
| s
n—0 Qa3n

and, upon comparing coefficients, we get

p;jz(pZ/iﬂ(xa s),t) = pp(z,s+1)
(]

Next we introduce a class of generalized Laguerre polynomials associated with
the ¥, operator. For the purposes of this paper we are interested in the v-diffusion
counterparts. We define the nth v-Laguerre polynomial by

g () = LG, (2) = (=1)"(1 = 9,)*" 712 n=0,1,...

Expanding the binomial, we get the representation

Sn@) = <a - 1) Qanll) (gt (7.10)

k=0 (V)

Next we have

1911? @ _ n 19 a+n—1_.3n
0. —1 3n($)—(1)19_1(1 9] z

— (71)n+1d3n(1/)(1 _ ﬁy)a+(n*1)*11.3(n71)
= d3"£?(n71)(x) .

Thus the sequence {L£§,, (x)} is the basic sequence of 3-parity polynomials associated

with the Laguerre type delta operator ﬁﬂfl. The {£§,(z)’s are hypergeometric

functions. From (7.10), we have

i DT (o +n) Qsn a3k
‘ Na+k) asp (n—Fk)!
3k

k=
_ (a)nasa(v) (—n)kx
! ];) 3T (1/3)s (v + 2/3)r (@)

il
97

o (a)n a3n(”) -n

B n! 113 [1/3,1/+2/3,a
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In the case that a = 0, we get

_ aza(v) -n x>
Lon(x) = == 1F% {1/3,1/—&—2/3,71 27}
Consider the series expansion
1 0 1)k g3k 3k
Gy
(1 — 23) (z (= 1/3 kz_o (1 — 23)k+1
7% k: 3k 53k i(aJrk)ngm
o !
k=0 m=0 me
Z Z k 3k Oé 4 k) 3(m+k)
k=0 m=0 agp mt .
Since the resulting double series is absolutely convergent for |z| < 1, we may collect
terms in 23" and we get
1 a+n—1\as, (V) s
Gy
= @ o) Z% am kz%) ( n—k >a3k(u)x

zzﬁsni(l“)zsn_

n—0 Qa3
(7.11)
From the generating function (7.11), it follows that

o — (@30 pa
£ a ) =3 (O£

k=0

It is also a consequence of the idempotent composition Tfl) °7 1921) = 1} that
3
gn (L (1)) = 2"

In quantum mechanics the associated Laguerre polynomials L (z) = 88—; L, (x)
appear in various wave functions. We introduce v-associated Laguerre polynomials,
given by

U5 L3, (x)
Theorem 7.2. We have
«@
I Li(2) = (~1)" —— Lgi" ()

O3 (k—n) 3(k—n)
Proof. Consider
1 z 23" z
vy v =(-1)" ,
N e s A R CE Vel
o0 a+n
_ Z(_l)n 3m (x) ZS(m—i—n)
Q3m
3k
_ 1 n 3n £a+n T z
Z Q3(k—n) 3('“7")( )a3m,

n OL
_Zﬁ 3k 53k
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This theorem follows by comparing coefficients. By commutativity and the binomial
theorem, it follows that

a+n _ - n a3(k*”) a+l
Laitny (@) = Z (g) As(k—t—m) Loy (@) -

O

The polynomials e+ £§, (z) = LS, (x,t) are v-diffusion polynomial solutions
of the initial value problem 9, u(z,t) = %u(m,t) with u(x,0) = LS,(z,t). A
simple calculation gives the composition equation £, (z,t) = LS, (p}, 5(2,t)). The
generating function of the sequence {£$,}5° is given by

1 t% Z _ = £gn(m7t) 3n
e Gy (x (2371)1/3)_; P (7.12)

Moreover, a calculation using commutativity yields

19@ a a
m 3n(1'7t) = d3n(’/)£3(n—1) (l’,t)

Multiplying (7.12) by G, (y m) yields the addition formula

n

e%1

50000 :0) = 3 () 2540006501 0)
k=0 \43k

Likewise, suitable multiplication of generating functions of the type (7.12) gives the

Huygens equation

- Q3p a
500t +9) =Y () €505 10 0:)
k=0 3k
which is a v-diffusion polynomial.

If we multiply the power series in 23

, we have upon rearrangement

()G, (az) = 3 Tnl2) an

n=0 A3n
where
[n/2] k
v On (_1) n—
HSn(m) = Z £C3( 2k) .
o 3kQ3(n—2k)

The H%,(z)’s are called v-Hermite polynomials. A simple calculation shows that
Uy Mz (%) = dan (V) Hy( 1) (@)

thus the H%, (z)’s form a basic set of polynomials associated with ¥J,. Further, we
have

H?Vm(_‘r) = (_1)7LH§n(x)7
(67
Hg(0) = (=) 2 Mg, 5(0) =0
3¢
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A manipulation of the Pockhammer functions yields the identity

A3(n—2k) =

Q3n 376k

20k (—n/2)k(—n/2 + 1/2)1(1/3 — n/2)k(2/3 — n/2)r(1/6 — 552)r(1/6 — 5=1),,
Therefore, the v-Hermite polynomial can be represented as a hypergeometric func-
tion, namely,
Hzn(z) =
-n/2,n/2+1/2,1/3 - n/2,2/3 —n/2,1/6 — 212 1/6 — vE2=1
1/3,v+2/3

Corresponding to the initial value problem ¥, u(z,t) = wi(x,t) with u(z,0) =
HY, (z) we get the polynomial solutions with the generating functions

3 = HY (Z‘ t)
etz GV _Z2 GV r2) = 3n\"» Z3n
(~hGufez) = 3 T
It follows that 9, HY,,(x,t) = dgn(l/)Hg(n_l)(Ji,t) and

[n/Q] Qsp (_1)k
Hip (@ t) = Y ey oy (a,1)

=0 A3k O3(n—2k)

123
1,371 6F2 . :| )

26

The HY,,(x,t)’s are called the v-Hermite diffusion polynomials.

Various forms of the v-Hermite diffusion polynomials have appeared in the work
of Bateman [2] and Langer [24]. Bateman’s polynomials are given by

L((1)2)vy+o+n+1) a 7 —n 2

To+ 12w+ 1)n!l Tw+1) " |lv+1L(1/2v+o+1[" |-

Setting v = —2/3 and then o := v, we get
xﬂ .

Tio (@) =

—2/3,1 _ (v+2/3)n s
T 25 (@) = IT(1/3) v /31F2[

Letting 2?2 := 23/(27t) and using (7.3), we obtain

—n
1/3,v+2/3

,2/37#( 2’3/2 ) _ (V+ Q/S)n 3t1/3 —-n i
" VaTt’ nlT(1/3) Y213, 0+ 2/3| 27t

— (_l)n 3t1/3tin u( t)
~ 3z T(n+1/3)n! Pnl2 0

Thus
p —t) = (- - 3
n(z,—t) = (=1)" 3 (n+1/3) nlgn—1/3 szfQ/g’#( %)

Bateman’s generating function [2, p. 574] is given by

295\/1?
V91—t

S T @yt =2 (1 =) ( ).t <1.
n=0
Substituting ,we get the generating function

o0

Z(—l)"t*”pﬂz,—t)y”: W'z ( 2232y )
£ 35T (n+1/3)n! 31—y P Ana -y
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ly| <1 and ¢ > 0 which is a source solution type generating function. In terms of
the source solutions this is written as

o~ (CD™MT P (2 )y Bt viays 1y
HZ:O 337(1/3),, n! - (g) IC,,(;mtT)

A recurrence formula for the functions f,(z) =1 Fa(—n;1 + a, 1 + ;) which are
modified Bateman polynomials is given by

(@+n)(B+n)falz) = (3n* =3n+ 1+ (2n—1)(a+ ) + af — 2) fa-1(2)
+n—-1)Bn—-34+a+B)fn—2— (n—1)(n—2)f,—3(2) =0;
see Rainville [26]. Letting o = —2/3, 3 = v — 1/3, and z = —23/(27t), we obtain
the recurrence relation
p(,t)
=[3n2 —=3n+1+(2n—1)(v—1) = (2/3)(v — 1/3) + 2/ (27t)|127tp"_, (x, 1)
—(n—=1)3n—-3+v—1)(n—>5/3)(n+v—4/3)(27)*p"_,(x,t)
—(n—1)(n—2)(n—"5/3)(n—8/3)(v+n—4/3)(v+n—7/3)(27)%p"_5(z,t)

with p}(«,t) = 0, whenever the subscript k is negative.
The first four v-diffusion polynomials are

py(z,t) =1, pY(x,t) =2°+9(v+2/3)t,
py(z,t) = 28 + 72(v + 5/3)23t + 324(v + 2/3) (v + 5/3)t2,
p4(x,t) =2 + 63(3v + 8)2t + 3756(3v + 8)(3v + 5)2t?
+ 756(3v + 2)(3v + 5)(3v + 8)t2

8. v-AIRY BERNOULLI POLYNOMIALS AND ASSOCIATED AIRY DIFFUSIONS

Corresponding to the classical Bernoulli polynomials we obtain v-Airy Bernoulli
and their associated r-diffusion polynomials. The properties of these polynomi-
als can be established using the Rota operator calculus [28]. However, the basic
properties used in this section follow by manipulation of infinite series.

We define the v-Airy Bernoulli polynomials by the generating function

t3n = By ()
G (at) = Yy Bk y3k (8.1)
GO 1" 2 )
forn=0,+1,42,... . For n = 0, we get Bg;:(x) = 2%F. Setting 2 = 0, we obtain
the v-Airy Bernoulli numbers given by
£3n = B;Y(0)
——— G, (at) = =8k 23k (8.2)
[G,(t) — 1] I;J azk (V)

Let 6, = G,,(ﬂ;;/ %) =1 be a v-difference operator. In a suitable Rota calculus, we
have

By (z) = {} nxi"“. (8.3)
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This is easy to verify directly. Furthermore, from Equations 8.1 and 8.2, we get the
v-binomial representation

k

n,v Q3L n,v n,v :

B = 3 () B ) = @1 0, 0)* (5.4
=0

using umbral notation. It also follows from (8.1) that

9, By () = 3%k (k + v — 1/3)(k — 2/3)B0_ («)

_ (8.5)
= d3k(U)83(’k71)(a?) .
Using the binomial theorem, we get
oy Gu(at) =[Gy (93/%) —1]" G(at)
=Y <Z)G (W33 (=1)"*Gru(at)
+=0 (8.6)
=Y (-1 < ) G, (1) Gy (at)
k=0
= [Gu () = 1]" Gy (at).
Applying 6, to (8.1), we get
3" > 0,85 ()
— G (xt) = VE3k \7) 43k
AU TGS a3k<u>
n—1,v
_ Z B ) ey (8.7)
agk (v
= idgk(u Bg’;l )
=0 azk (V)

Comparing coefficients, we get
8,85 (x) = By (x @, 1) — By (x) = dai(v) By, 1Y (). (8.8)

This is an analogue of the basic difference equation for the classical Bernoulli poly-
nomials.
The equation

t3(n+m) 0 Bn+m,u(x ) y)
—_——— Gy t v = 2k . tSk 8.9
(G, () — 1n*m (t(z & y)) ];) () (8.9)
yields the identity
k
a3k
Bner,y T 6911 y ( )Bn vV Bm,z: y
36 ;% 50 (2) 3(k e)( ) (8.10)
= (By" (x) @, B (y))*
a binomial of Rota type. Taking m = —n, we get the hypergeometric result
k
a3k n,v m,v
o =3 (a B @B ) (s.11)

L=
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Next we obtain solutions of the v-Airy heat equation corresponding to the initial
value polynomials B3} (z). They are given by
e BYY (x) = By (x,1)
ke
t" ask(v)
z B 8.12
pr 0 a?)(lc—l)(l/) j(kfl)(l') ( )

= p(B " (2),1)

where the p¥,(z,t) are the v-diffusion polynomials of Section 7. The v-Bernoulli
heat polynomials are also given by the generating functions

3n 3 > B (x .
e O = 2 S (819)
v k=0

The generalized Huygens property for the v-Bernoulli heat polynomials follows from
(8.13), adn we get

k
v a3k n,v m,v
By ot s) = 3 (008 )85 OB 1)

=0 \3¢ (8.14)
= (B (1) ®, B (y, )™
Taking m = —n, we get the relation
LN i
v 3 n,v —n,v
php( @y y,t+5) = Z (agg)B‘% (x, t)B?)(k_é)(y, s). (8.15)
£=0
Letting s = —t, it follows that
k
Q3 n,v —n,v
(LC @, y)?)k — Z <a3é>83£ ($7 t)BS(kff) (yu _t) . (816)
£=0
Since 6, and e*’= commute, it follows from (8.8) that
Oy By (x,t) = d3k(’/)8g(;1!11j) (z,1). (8.17)
For k > n > 0, it follows that
By ety = 2y ). (5.18)
A3(k—n)(v)

The v-Bernoulli heat polynomials can be expressed in terms of v-diffusion polyno-
mials. From (8.13) or 8.14, we get

k
) A3k )
By (x,t) =) <a3£>8;’(g£) (, t)phy(, 1) (8.19)
£=0

which expresses B3;” (x,t) as a sum of hypergeometric functions.

In order to calculate B3}”(z,t), we have to be able to calculate the v-Airy
Bernoulli numbers. The elementary relation

tSn t73n

G 1 G 17 (8.20)

implies that
(By (2, t) &y By (y,5))* = dos, b =0,1,... (8.21)
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where d¢  is the Kronecker delta function. In multinomial form (8.21) can also be
written as

asg —1l,vp—1v n,v _
3 <a35>8350 Byl B =g (8.22)
£=(Lo,l1,....0n ) LENTTL |L|=k -

Since By, (0) = dax(v), (8.22) yields the recursion formula

n,v an(y)a3k a3(k+n)> n,v
Bl = 3 E ( By, 8.23
o Q3(k+n) Q3e B ( )
where the summation is taken over [£| = k+n,0< /¥, <k, ¢; >0,i=0,1,...,n—1,

£ = (607613 v aén) S N:.H_l-

9. A PRIMITIVE INTEGRAL FOR ¥,

Associated with the differential operator 1, we introduce a formal or primitive
indefinite integral that commutes with ¥, up to constants. Recall that d,(v) =
ala+3v —1)(a—2) and do13(v) = (a+ 3)(a + 3v + 2)(a + 1). We define

a+3
/xa o, (z) = B 1z’ +cpr' T ey, ifa# —1,-3,—(3v +2)
da+3(V)

s (9.1)

_ 2 _
ferclz +ceolnx +c3, forv=1/3

l
/$_3 Oy (x) = ﬁ +az? F et 4oy, v 1/3

1
= 1 (lmc)2 + 02x2 +colnx +c3, forv=1/3

2]
/xil 0y (x) = 2:31/713:1) +ea® 4™ fe3, v#-1/3

1
= —ZmQZnaj—Fclx—Fchnx—Fc?,, v=1/3

and

1-3v
-(3(n+2) 5 - = 2 1-3v
T () = +c1x” + cox +c3, v#1/3.
/ (z) (1+3)@r—1) " 2 n vl
In each of the above, we have 9, [2®9,(z) = 2. The indefinite integral is ex-
tended to 3-parity polynomials and formal power series in 2. In which case we take
c1 and ¢ to be zero. We are primarily interested in the case of a a nonnegative
integer divisible by three. If p(z) = Y_}'_, arz®®, then a simple calculation shows

that

x)—l—c:/ﬁzp(:n) =93, /
In general, as in elementary calculus, if ¥ f(z) = F(z), we take [ F(x)d,(z) =
f(x) +c.

The functions G, (z) and G,(x) play the roles of e and e~? for the primitive
indefinite integral.
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Theorem 9.1. For v > 0, we have
() 0y (x) = Gu(x) +c,

[ 6@ 0,@) = ~G, (@) +c.

Proof. We have 9, G, (z) = G,(x), or working with the power,

st 3n o 3n+3 st 3n
T x T
/Z—&,(m)zzdi—kc: —+c=Gy(z)+c
n—0 Qasnp n—0 Qas3np 3(n+1) n—0 Qasnp
since d3(n+1)0é3n = 043(n+1)(V). [l

v-Primitive Integrals:

coshy (z) 0, (x) = sinh, (z) + ¢,

sinh, (z) 0, (x) = cosh, (z) + ¢,

/
/
[ Eu@,0) = ~iEufa) + e,
/ sin, (2) 9, () = — cos, () + ¢,
/ cos, () 8, (x) = sin, (z) + c,

v t
[rivta o, - Popn@?
d 3(n+1)

a+n n A3(k—n o
[ £@5in) aute) = (<17 T £,
Hi i1 () +e

[0, = =
3(n+1)
Actually, the constant ¢ can be replaced by the general solution of the differential
equation 9, y(x) = 0. In general this is given by y(x) = c12? + coa!™3" + ¢,
depending on the parameters as in (9.1).
A generalized v-definite integral associated with 9, is defined by

Db 3(n+1) jz2@b
/ 2370, (x) = z
y

Ba dS(n+1) yDa
(I o b)S(n+1) _ (y o a)S(nJrl)
B d3(n+1)(1/> '

The definite integral is extended by linearity to Ps the polynomials is ® and also
to the formal power series F3 in z3. The v-definite integral f;gaﬂab commutes with
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9, on Ps3 (or F3). We have

z®b 3(n+1) _ p)3(n+1)

R

zDa A3(n+1)

_ (:L‘ ey a)?’” _ (l‘ D b)3n

x®b
= / 9, 25" 0,(z2).
xPha
The result extends to Ps by linearity. It is easy to show that
b x®b
/ (2@ b)*" 0y (2) = / 19, (2) 9.2)
a adb

and therefore by linearity f:p(z ®b)0,(z) = ffgbb p(2) 9,(z). Note that (9.2) is

the v-analogue of the elementary change of variable formula
x x+b
/ f(z+b)dz=/ f(z)dz.
a a+b

10. AN ORTHOGONALITY RELATION

Since the v-diffusion polynomials p,(z,t) are three-parity polynomials they can-
not be orthogonal in the usual sense with respect to a measure, see [14]. In this
section we obtain a multiple integral orthogonality relation.

By Erdélyi, [17, p. 218,], we have

/ e By cnsa b L AN dE =0l O P La () (10.)

0 @+ 1),
where Rep > 0 and LY is a Laguerre polynomial. Since

3

27t

azn (V) .,
iy (z,t) = 3T()t 1F5(—n;1/3,v +2/3| —

)

a change of variables in (10.1) yields the following result.

Theorem 10.1. Let v > 0. Then

(=n"
33n¢n+1/30(n 4+ 1/3

(o) .3
T / e~ T ¥ (2, —t)dz = TV3LYY3(), n=0,1,...
n. Jo

By the usual orthogonality of the Laguerre polynomials, we obtain

| B e e s g < T2

- (10.2)

where 0, ,, is the Kronecker delta and Re(v —1/3) > —1. Thus (10.2) is valid for
v >0.

Theorem 10.2. For v > 0, we have

1 A A 2 + y3 -7, v v v—
?(t) /0 A /0 GXp(— 27t )6 pn(zv _t)pm (ya _t)T ! dr dz dy
= a3n(V)§n,m

(10.3)

n=0,1,2,..., where a,(t) = 332" T2/30(n + 1/3)1'(1/3)T(v + 2/3).



EJDE-2003/87 THE GENERALIZED AIRY DIFFUSION EQUATION 37

Proof. Using Theorem 10.1 and Fubini’s Theorem, we get

/ Tl/SLfn_l/g (T)Li’l_l/g(r)e_TT”_l dr
0

1
(33ngnH1/3T(n 4 1/3) n!)?

oo oo z3 o0 y3
X / etV ldr / e~ 2T pY (z,—t) dz / e~ 2T pr (y,—7)dy
0 0 0

1
"~ (3377 1/30(n + 1/3) nl)?

3 "-/
/ / / I TR (2, )Py, )7y dr dz dy

(v+n+2/3)
n!

Adjusting the constants yields the theorem. (Il

By Erdelyi, [17, p. 149], we have the relation
/ etV lem W dt = z(g)”/QKl,(al/Z)
0 4
where K, is a modified Bessel function. With a suitable change of variables, we

obtain
o0 .3 3 3 3 v 3 3
/ 67%7”*1677 dr = 2[2 ty ] /QKV(Z(L ty )1/2>.
0 27t 27t

Substitution into (10.3), gives the equation

Z +y v/2 23+y3 1/2
| | iz iy, ~t) dzd
on(t) / / 27t ( 27t ) (2, =)l (y, —t) dz dy

- a3n )671 m

forn=0,1,2,.... Under suitable conditions on the sequence {as,}§°, the function

oo
t) =) agmpl(,t)
m=0

is in H,(0,00) for ¢ > 0. In the usual calculus manner the coefficients are formally
determined by

”3 +i‘/ v 24y v
agn/ / g K205 P e 0w, ) dzdy

We will consider convergence criteria in the next section.

11. v-DIFFUSION POLYNOMIAL EXPANSIONS

The diffusion polynomials p¥ (z,t) satisfy the v-Airy diffusion equation
dyu(x,t) = Dyu(z,t). Since the partial differential equation is linear, finite linear
combinations of the diffusion polynomials are also solutions in H, (0 < z < o0), for
all t. Hence we expect to obtain infinite series expansions

oo
t) = Z agmPin (2, 1)
m=0
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with possible convergence in a strip |t| < o.

Theorem 11.1. Let v > 0, then

Py (2, )] < M agpel™ 1 (11.1)
Proof. Since
_tZ p’ﬂ ) t 3n
G,(
Z s

is an entire function, we find by Cauchy’s Theorem that

—t23
y as e G (x2)
pn(%t):J/FTild%

211

where T is the unit circle, |z| = 1. Since G, (z) is an entire function of order one,
we have |G, (x2)| < Mel®#. Therefore,

oy (z,1)] < M% /el""/’z‘*‘“‘z‘3 |dz| < Mas, (v)el*I 1t
r

Since |Gy (22)| < G, (|z||z]) = Gu(|x]) on |z] = 1, we also get the estimate
[P (2, 8)] < aznG(Jz))el

Theorem 11.2. Suppose Y. |an| < 0o, then the series

o0

v
t
S a pi(z,t)
— Q3n
n=0

converges absolutely and locally uniformly for |x| < co and |t| < co.

Proof. By the estimate (11.1), it follows that

‘Z p” ’<Me|r‘+|t|2|a | < o0

Thus the series converges absolutely and locally uniformly by the Weierstrass M-

test. Since (;?T”p;’l(x,t) = %, it also follows that the differentiated series
converges locally uniformly and therefore the series represents a function in H, for
|z] < oo and [t] < oco. O

Let

2
27t |

= 23" 1
Ru(z) = = F
() n;) 30(1/3), (v +2/3)n (1/3, v+2/3
Then using Stirling’s formula we get
3nlog 3n
lims =3/2
D g B (1/3), (v 273
Therefore, R, is an entire function of order 3/2. Furthermore,

1 3/2
2n
limsup 3n | — =

e
n—oo | 3(A/3)(v +2/3)l VB
Therefore, R, (x) is of type 3%/5
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Lemma 11.3. Let § > 0. Then

p(lzl.[t) _ o" [t \np (2l
AN e LI ) VAR
az,(v)  ~ nl (1+ 5) R (51/3)

Proof. We have

ph(lzl, ) _ 6" o= (1"
Qa3p S ﬁ Z (5) 33k(1/3)k6(y—|—2/3)k

n=0
o 0" o= () ([N
<Ru(5i3) o Z% )\ s
0 e 2l
since
\I\sk |:L‘|
5F T
/3 123 s
Lemma 11.4.

o
py(x,t) > —3'nt", fort,xz >0
n!

39

Proof. Since the coefficients of p¥ are positive, it follows that p¥ (x,t) > p¥(0,t) =

QX3n M
et

O

Theorem 11.5. If the series Y -, anp4(zo,to) converges for to > 0 and zo > 0,

then the series

Z anpy(z,t) and Z andsn,(V)py 1 (2, t)
n=0

n=0

converge absolutely and locally uniformly in the strip |t| < to and >, anpl(x,t)

is in H,(Ry) for |t]| < to.

Proof. Since the general term of a convergent series must go to zero,
lim anp;, (20,t0) =0.
n—oo

By Lemma 11.4, it therefore follows that

n!
fn = O(a?mtg )

Using Lemma 11.3, we get for § > 0

S

< MR, ((;lfc)?,)Z(éHt')n
=0

infty

=SB (§ 1) R (

51/3)

to

which converges for d+|¢| < t9. Since § > 0 is arbitrary it converges for (6+|t]) < to,
and as before for |t| < t9. The Weierstrass M-test provides the local uniform

convergence.
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Let f(z) = Y oo ,anz" be an entire function of order p, p > 0, and of type
0 < 0 < c0. The type is determined by

£
3n = g

. 3n
limsup — |a,
n—oo €P

see for example Boas, [6, p. 11]. Therefore,

eap\3n/p
lan| < M (37) (11.2)

O

Theorem 11.6. If f(z) = >.°, a, 23" is an entire function of order p with 0 <
p < 3/2 and of type 0, 0 < 0 < oo, then

u(w,t) = anpl(x,t) (11.3)
n=0

is in H,(R) in the strip |t| < 1/(op)3/? and u(z,0) = f(z).
Proof. Using (11.2) and Lemma 11.3, for § > 0 we obtain

oo 3 0 eop 3n/p 03y, n |.’17|
nzzoanpn(x,t)éM; (3—”) S @+ )Ry (5175 (11.4)
Using Stirling’s formula, we get the estimate
el=303p=173n/p QW(Up)iin/p
} T'(1/3)I'(v +2/3)

(%)WP 8 (1/8)n (v +2/3)n ~ |

Now

1-3p3p—143n/ 2 3n/p
e 3 ] v _ 2mlop) = 0(1)

I'(1/3)I'(v +2/3)
for 0 < p < 3/2. Thus the series in (11.4) is dominated by

2
1305

MERgE7s) DAl o6 + 1))

which converges for (op)3/#(§ + |t|) < 1. Since § > 0 is arbitrary we get absolute

and local uniform convergence for |t| < W, by the Weierstrass M-test. Since
the order and type of an entire functions is not changed by taking derivatives, a

similar type argument shows that the derived series

Z and2npzr/zfl (1’, t)

n=1

also converges absolutely and locally uniformly for |¢| < W. It follows that

u(x,t) given by (11.3) is in H,, in the stated strip. O

In the classical case developed by Widder [33] or in the Bessel function case
treated by Bragg [8] and Cholewinski and Haimo [11], a series expansion of the
type given by (11.3), leads to an integral representation of u(z,t). In both of those
cases the representation depends on the fact that the diffusion polynomials can be
represented by Gaussian type integrals in terms of the source function. In the H,
case the corresponding integrals diverge.
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The theorem does not imply that the given strip is the best possible. For example
3n
with G, (z) = >_°7 / Z— an entire function of order one and type one, we get

n=0 az,
t)
u(z,t) = e anx

Q3n

which converges for all  and ¢. The theorem gives the strip |¢| < 1.
Next we consider a sequence of complex numbers {a,, }§° for which |a, |as,(v) =
O(1). Using Stirling’s formula, we find that

3nlog 3n <1

1 =
An, ‘

lim sup ]
n— o0 og |

Thus the function f(z) = >.,° ,a,2" is an entire function of order less than or
equal to one. Likewise another calculation using Stirling’s formula yields

. 3n
lim sup — |a,|'/3" < 1
n— oo e

Thus f(z) is of growth < {1,1}. We let f,(z) =Y oo ;a2 with 0 <7 < 1 be
the “Abel means” of f.

Theorem 11.7. If |ay|as, = O(1), then

Z anr™"py (2, 1)

is an entire function in the variables x and t and it is in H, for all x andt.

Proof. By Theorem 11.1, we get the domination

oo oo
S Janlr® o (2, )] < Ml S 0, ag,r®

n=0 n=0

oo
< Mel=lHlt Z 3
n= O
= MeleHlt _—_— <
1—173
for 0 < r < 1. Once again the Weierstrass M-test gives absolute and locally uniform
convergence for z and ¢ in C, the complex numbers.
In the case a,, =
generating function

3n _3n

we get Gy (rz) = >0, “oo— and we recover the

1
azn(v)’

v
t
up(x,t) = 6”3Gy(m:) = AG) 3.
n=0 A3n

12. ASSOCIATED FUNCTIONS

A sequence of v-associated functions is defined as
an
Qn(z,t) = (=00)" Ko (,) = (-1)" 5.0
where K, (z,t) is the source solution of ¥, v = w;. Expansions in terms of the
QY (x,t) are related to Laurent expansions for analytic functions, see Widder [34] for

Ky (z,t),
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the ordinary heat equation or Cholewinski and Haimo [11] for the Bessel function
case. Since —9, Q% (z,t) = (—=0,)" T Ky (z,t) = Q% y(2,t), and 2 Q%(z,t) =
—Q% 1 (x,t), it follows that ¥, Q¥ (z,t) = & Q¥ (x,t) for t > 0.

By our previous integral representation,

Ky (z,1) :/ e~ G, (wy) dn(y), >0
0

Since G, (zy) and its derivatives are entire functions of growth {1,1}, we obtain
and integral representation for Q¥ (x,t), namely,

Qn(z,1) = /000 Y e G, (zy) dny (y) (12.1)

The growth condition yields the necessary domination integrals for the absolute and
local uniform convergence. Further, Fubini’s Theorem yields the series expansion

_ Z sm /OO efty3y3n+3m+3u+l %
m=0 0 Cv

_ i H™T(n+m+v+2/3) ™ (12.2)
= Q3m 3V+2/3]_"(V + 2/3) tn+m+u+2/3

% n+v+2/3)  a®
T @ P13, v+2/3] 27t

A direct calculation employing the coefficients of Q¥ (x, t) shows that Q¥ is an entire
function of growth {3/2, W}, for t # 0, which is the growth of IC, (x,t).
Next we obtain an upper bound of |Q% (z,t)| that applies to the variables v, n,
x, and t.
Lemma 12.1. Let v > 0. Then
. e12/2
Q@ (2, 1) < M(v+2/3)n pEETACYLE t>0 (12.3)

Proof. Since G, (x) is of growth {1,1}, we have

|22 +]y|?
2 .

G (zy)| < Mel*!Ivl < Me
Let € > 0. Since 32/2 < ey?, we get

o0
Q4 (,1)] < Melel*/2 / yPre eV 12 dn, (y)
0

lz|? /2 00 )
€ 3
M ———F7 —(t=e)y®, Bnt3v+1 g
~ T T(v+3/2) /0 ¢ Y y
_ pelalrre Fntv+2/3)
Me (t — e)ntv+2/3” fort >e>0.
Since € > 0 is arbitrary, we obtain inequality 12.3. 0

The integral (12.1) leads to a number of generating functions involving the as-
sociated functions Q%. We have for ¢t > 0

o0 v t
S Mzn:;@(x,_wrt) with z < t
n.
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for
> QY (z,t) & P —t?
> %z = [ VTG, (vy)dn,(y)
n=0 ’ 0
The integral is dominated by
oo
M/ (=0 gleyl dn,(y) for z—1t<0.
0

Therefore, the interchange of summation and integration is valid for z — ¢ < 0. In
a similar fashion, it follows that

ni;() %23” _ /0°° eftyffgy(:ﬂy)gy(yz)n,,(y) =Kz @, 2,t)

This series is also the symbolic time series solution given by G, (2D, / Ny (2, 1).
Let ¢(z) = >_°7 , an2™ be an entire function of growth {3, c},that is for € > 0

[6(2)] < Mel7+I"
Theorem 12.2. If ¢ is of growth {3,0}, then
3
uet) = [ G n)oly) dn(v)
0
is in Hy, fort> o > 0.
Proof. Since G, is of growth {1,1}, we find that
[ Gutane o] < M [ ey an, )
0 0

< oo, for t>o+e€.

(12.4)

Since € > 0 is arbitrary, the integral converges absolutely and locally uniformly.
Since derivatives of G, are also of growth {1,1}, similar domination integrals allow
the interchange of integration and differentiation. It readily follows that w is in H,
fort >0 > 0. O

The integral representation also leads to an infinite series for u(x,t). By (12.4),
we also have

o0 o0 o0
| / G, (2y) Y any dn(y)| < M / e™e™t el dny, (y) < o0
0 o 0

Thus by Fubini’s Theorem and domination for the differentiate integrals we get

u(x, t) = Z an/ Go(y)y® ™" dn, (y)
n=0 0
= (-1)"an?; /0 G (zy)e™™ dn, (y)
n=0
= Z an(fﬂu)nlcu(l', t)
n=0

- Z anQTVL(x’t)

n=0

which converges of all x and ¢t > o.



44 F. M. CHOLEWINSKI & J. A. RENEKE EJDE-2003/87

Theorem 12.3. If the series

D baQi ()
n=0

oo

converges absolutely for t > o, then ¢(y) = > oo byy®" is of growth {3,0}.
Proof. By the alternating series test

(zy)®
a3

1— <G, (zy), z,y>0.

Hence we get
& A 3 4.3 v
/ (1- e)” Jy*e™ dn, (y) < Qp(w,t).
0

Next
> —ty3 3n d _ (V + 2/3)n
e ) = e

Therefore,
Ib | (V+2/3 nily
&) V+2/3 E (v+2/3), — 073 E bn | |QY (2, 1)]

and lim,, % (1/ + 2/3)}/_?1 = 0. By Stirling’s formula (v + 2/3)%/™ and (v +

2/3)3,,/4?1 ~ ne~!. It follows that |b,|'/™ < ﬁ < £ (0 + ¢) since the series

converges for t = o + €. Consequently
lim sup 3n\bn\% <o+e
n—oo

and therefore € > 0 arbitrary implies that ¢(y) is of growth type {3,0}. O

Example. Let ¢(z) = ¢’ which is of growth {3, |a|}. Applying the bound (12.3),
Stirling’s formula and the root test to the series

oo an
Z ﬁQZ(xat)
n!
n=0
we get
o] (v +2/3)n }1/" _ Jal

lim su { .
P t

00 nltn

Thus the convergence follows for 0 < |a| < t.

13. BESSEL CALCULUS CONNECTIONS

The elements of the calculus associated with ¥, can be associated with the ele-
ments of the calculus associated with the Bessel calculus. Formally the associations
can be obtained through the use of a generalized Hadamard product. However, we
present most of the results as integral representations between the elements of the
respective calculi.

Let v > 0 and u = v+ 1/6, then the Bessel coefficient is bay, (1) = ban(r+1/6) =
22" n! (v+2/3),,. Thus we have the coefficient relation az, () = (27)"(1/3),b2 ().
We associated with a v-exponential power series

n=0
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the power series

Z b2n

n=0

Theorem 13.1. Let v > 0 and f(2) = Y00 =22 23" be an entire function of

n=0 asz, (V)

order py with 0 < py < 3. then fu(z) =Y .2, bza?u) 22" s an entire function of
order py, = 2ps/(3 — py).

Proof. By Stirling’s formula it follows that

log asn (V)
Srloe3n lbz"g‘) —1/3 asn— 0.
nlog 3n
Since limsup,,_, o i’;lfagﬁ?‘ = py, we find that
dnlogdn 1 1 -
log a?m 1312: | log’ log| 2n 1/3 + 3 pf Pr-

3n10g3n + 3 2nlog(% 2n)
Solving for py,, we get

_ 2py
3—py

Example. consider the entire function f(z) = exp(z3) of order 3. We have

X (_1\n X 1\n23n v
n=0 n n=0 agn(V)
and
_ o (=1)"3%(1/3)n (v +2/3)n S2n 27 22

Since 1Fy(1/3|z) converges for |z| < 1, fu is holomorphic in the disk |z| < 2/3. In
this case fy is not an entire function.

Example. The function G, (z) = > -, % is an entire function of order 1. We
have

Z bzn - V+1/6(z)

is also a known entire function of order 1. The functions G,(z) and I,(z) are zeta
functions in their respective calculi. We also have G, 4(z) = J,(2).

Proposition 13.2. Let v > 0 and f(z) = >, ot 23" be an entire function
of order {3,0} with o > 0, then the integral

o) 2y
/ e~z f(zy)dy (13.1)
0

converges absolutely and locally uniformly for 0 < (zz)? < 52— with z > 0.
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Proof. For € > 0, we have the domination

_ 428 (o+e)23y3
‘ e i flzy dy‘ <M e 2% e dy
0

and the theorem follows. O

If f(z) is an entire function of order 0 < py < 3, then it readily follows that the
integral (13.1) converges absolutely and locally uniformly for z, 2 > 0. Thus in this
case summations can be interchanged with the integration.

Proposition 13.3.

o 3n,..2n+2/3
4Zy 3 3 X
/O ety dy = s L+ 1/3)

Proof. With the change of variables s = 33, the integral reverts to a gamma function
integral representation. ([

Theorem 13.4. Let f(z) = > ", N E) 23" be an entire function of order < 3,
then

1/322/3 00
At ) pend Z = fpler)  (132)

forx,z > 0.

b2n

Proof. Since f is of order less than three, we can invert the integration and sum-
mation in the integral 13.2. the result the follows by a term for term application of
Proposition 13.3. O
The next result shows that the source solution in the v-calculus is related to the
Gaussian source solution of the radial heat equation
%u  2uou Ou

Aaj(u)u(x,t):@—&— B Bt pw=v+1/6 (13.3)

see Cholewinski and Haimo [11].

Theorem 13.5. Let v > 0. Then
3y+2/3m—2/3 00 48 1 22
W /0 27 2722 K:V(y’t) dy = We it
fort >0 and x # 0.

Proof. Since K, (y,t) is an entire function of order 3/2, we can interchange the
summations and integrations in the following equations. Using Proposition 13.3,
we obtain

o a4y 1) o0 o
/ e 1) dy = 75 V+2/3 Z 33"n' (1/3)n / Iy dy

0
1/3 2/3 & n QTLt—n
(3t V+2/322/3 Z 22n n!
2/39v
I'(1/3)2%/32 1 e

v+2/3 (2t)vr2/s ©
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Next we let P, ,,,(z,t) denote the radial heat polynomials of Cholewinski and
Haimo [11] and of Bragg [8]. We have

- T(p+1/2+n) _
P, £ = 92k n 2(n—k) ¢k
(1) kzzo (k Tp+1/2+n—k) "

Theorem 13.6. Let p!(x,t) denote the v- diffusion polynomials associated with
J,. Then
22n+2/3x72/3 00 4y3
337 (n+1/3) / € TP Y = Poaye(e:1)

The proof follows by using (7.3) and Proposition 13.3, the result follows by
interchanging the finite summation and integration.

Theorems 13.5 and 13.6 show that v-diffusion polynomials and radial heat func-
tions can in some cases be related by an integral equation.

Let Wy, ,(z,t) denote the Appell transform of P, ,(z,t) given by

1 _a?
Wn,u(xvt) = W@ 4t Pn”u(l'/t—l/t)

= t72"Gy (2, t) Py (2, 1)

(-2 (v +1/2)

T T uti/2gntuil)2 1F1[

n+v+1/2 _iz .
v+1/2 4t |’

see Cholewinski and Haimo [11]. W), ,,(x,t) is a solution of the radial heat equation,

(13.3), and plays the role of z~(+1) in radial heat expansions, see for example
Widder [34] for the classical heat theory.

Theorem 13.7. Let Q¥ (x,t) be the v-associated function given by (12.2), then
-1 n3u+2/322n71/ 0 3
s | e ay
0

I'(1/3)x2/3
= n,u+1/6(x, t)
_ 4—2n 1 _%P
= (2t)r+1/6+1/2 © naw+1/6(T, —t)

Since Q% (y,t) is an entire function of order 3/2, the proof follows by a term for
term application of Proposition 13.3.

This result shows that in a v-Appell transform theory the functions Q¥ (y,t)
play the role of the W), ,(x,t) in the radial heat equation. The generalized Hankel
translation defined by Bochner [7] or Delsarte [15] is given by

L(p+1/2) 1/2y i 2pt1
f(x@ty)—i f{z* + y* — 2zycos 0}/?) sin®**1 0 do
A ( ) 1/2 / (13.4)
/ J(2)Dy(,y,2) du(2)
where Sus/2 )
Do,y 2) = o DALY (12 (1, y, 202

T () 7172
and A(x,y, z) is the area of a triangle with sides x,y, z is g there is such a triangle,
and otherwise D(z,y,z) = 0. The measure is given by

x2H
dp(z) =

d
22T (u+ 1/2)
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In the case f(z) = 2", we get the Bessel binomial

(0 y)*" = / 20D, (2,9, 2) du(z)
0

—n,—n —p+1/2|2?

p+1/2 y2] '
Hirschman developed the Banach algebra for £1[0, 00, du] with translations given
by (13.4), see [21]. At the present time a Banach algebra associated with 1, and
the translation (x @, y)3" is unknown. In this paper the v-translation f(z @, y) is
defined for a restricted class of functions.

:y2n2F1|:

Theorem 13.8. Let v >0 and let p = v + 1/2. Then

22n+4/3 —2/3 s (ul
m Gt
I'(1/3) 233" 1/3 / /

forxz,y > 0.

N
1\7

(2, w) " dzdw = (20, )

The proof follows by interchanging the finite sums in the iterated integrals and
by Proposition 13.3.

The integral relation given by Theorem 13.8 can be extended by a number pf
classes of functions f(z). For example if f is defined by the Stieltjes integral

2) = / G, (x) dB(z) (13.5)

where 8(z) is increasing and bounded with compact support for df(z) in (0, 00).
Then

1F(2)| < gy(a|z|)/0a 05(x) < M

where a is is the least upper bound of the support of df(z). In this case f is an
entire function of growth {1,a} and it follows that

f(z @y w) = / G(22)G, (we) dB ()
with "
£ @0 0)] £ Gule)Gulwr) [ dole) < Aeclelel

0
We define

folz) = /0 - J,.(xt) dB(t*3).

Thus fp(x) is an entire function which is bounded on the real axis. We have

A< [T aenlaser) < [T ase) < o

0
since |J,(zt)] < 1. From the Hankel translation theory it follows that

o0
foleowy) = [ 3ut2)3,(t9) dB(E).
0
Theorem 13.9. Let f(z) be defined by (13.5). Then for x,y > 0,

24/3 i 3 3
(23T (13) / / 7OE) f(z 0, w) dzdw = fi(z 0uy).  (13.6)
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Proof. The integral in (13.6) is dominated by

M/ / -3 ( %+;*2)dwdz<oo

and therefore converges absolutely and locally uniformly. Hence we can invert the
following iterated integrals. We note that by Theorem 13.4, it follows that

® a4z 2?/3T(1/3) 3/2
/(; e 27 2 gy(tZ) dz = TJ“(I‘t / )
We have

/A T "’)/ Go (2t)Gy (wt) dB(t) dw dz

/ dp(t / (wt)e” = “ dw / G, (2t)e” 7 37 dz
22/37(1/3 _4 el
22/(3/ : / W (@t®?) dp(t / Gu(wt)e 7 v dw

(zy)*/°T(1/3) :
= T [ a3, dst
2/3F 1/3 2
= % fo(x @, y), with the change of variables t, = t3/2
Hence the theorem follows. ([l

3n

The basic translation kernels (z @, 3)?" and (x @, y)>" can also be related to

each other by Beta function integrals.

Theorem 13.10. Let v > 0 and let v, = v+ 1/6. Then
1
(z0y. y)*" = / 7231 =) 2B P @, y? P (1 — )Y dt/B(1/3,n+1/3).
0
Proof. The generalized binomials are related by
<0‘3n(V)) (an(V*)> (1/3)n
ask(v) bar (V) ) (1/3)k(1/3)n—k
bon (V) B(1/3,n+1/3)
bor(v)) B(1/3+k,n—k+1/3)’

where B(p, q) is the Beta function. We have

1
/ t72/3(1 . t)72/3($2/3t1/3 @, y2/3(1 _ t)l/S)Sn dt
0

— zn: <bgn(u*)) ( B(1/3,n+1/3) B(1/3+k,1/3 +n — k)a2ky2(n=Fk)

pars bor(vs)) B(1/3+k,n—k+1/3)
- b2n(V*)) 2k, 2(n—k)
=B(1/3,n+1/3 E "

= B(1/3,n+1/3)(z 0y, 1)*"
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and the theorem follows. O

The basis addition formula for Bessel functions is given by the integral

3y (@ @0, ) = / 30 (D@9, ) iy () = T ()T (1)

Using the previous theorem, a calculation shows that

1
Jv*(fv®uy)B<1/31,1/3)/O 72/3(1 — ¢)=2/3

2/3 (x2/3t1/3 D, y2/3(1 _ t)1/3)3
X1k [1/3,y+2/3 1 at
=J,. (2)Ju.(y)

14. GENERALIZED POSITIVE DEFINITE KERNELS

Bochner [7] obtained a positive definite theory associated with Bessel functions.
Bochner’s main result was extended by Cholewinski, Haimo and Nussbaum [12].
The positive definite results depend on the Banach algebra associated with kernel
functions, see Hirschman [21]. In this section we obtain partial results concerning
positive definite functions associated with the (z@®, y) translations. Banach algebra
results are not available in this latter case.

Let f(x) be a function on 0 < z < oo for which the v-translation function
f(x @, y) is well defined. The function f is said to be v-positive definite if

n
> aia;f(a; @y y;) >0 (14.1)
i,j=1
for all finite sets 0 < x1,x2,..., T, and complex a1, as,...,a,. We write f € PD,,.

Since the discrete sum 14.1 implies its continuous counterpart, see for example
Widder [34], p. 270, we have for suitable real valued continuous functions ¢(z)
that

1() = / h / " o(2)6(y) (i o yy) dno(y) dn (&) > 0

Let ¢(z) be a function on 0 < z < oo such that the integral

| 16 6(2) dnufe) (14.2)
0
converges locally uniformly for z in RT. We define the LT, transform of ¢ by
LT,(0) = 3() = [ 6()Gu(w2) dnn (o) (14.3
0

This is a generalization of the Laplace transform or of the Hankel transform in the
Bessel function case. Clearly this transform is linear on the functions for which
14.2 converges. If G(t) is any function on 0 < ¢ < oo for which the integral

/O " G, (1) dp(t)

converges locally uniformly for z in RT, the LT,-Stieltjes transform of 3(t) is given
by

Bs(z) = /0 G, (at) dB()
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Examples. A. Let ¢(z) € C§5(R™), with ¢(z) = 0 for > a then

|¢3<z>s/000| (@16 (@2)| dn, (a /|¢> )1, (22)] digy () < M €212

Thus ¢ is an entire function in z of order 1 and type a.
B. Let (z) be an increasing function on 0 < x < oo, which is constant for « > a,
then

st < [ 16, (0] dste) /Igya:tldﬂ()<Me“‘””'

Thus BS has an extension to an entire function in x
C. Let ¢ be a continuous function on 0 < z < oo, such that |¢(x)| < M exp(—z)
with p > 2. Then gf)(z) is given by 14.3 is an entire function in z.

Let 3(z) be an increasing function as in Example B and ¢ be an element of
CSS(RT). The function

fas) - | " G (2)9, (y2) dB(2)

is well-defined and, using Fubini’s Theorem, we get

/ / oz (x @y y) dnp (x)dn, (y)

- / 48(z) / ()G, (22) d () / 3w)G, (=) dn,(y)  (14.4)
- / B)PdB(z) > 0

Theorem 14.1. Let
:/ G(xz)dp(z)
0

with B given by Example B, the f is in PD,.

Proof. Let 0 < x1,22,...,2, and a1, as,...,a, be arbitrary, then
Zatajf T Py xj) = / \Zazgl,zz| dp(z) >
4,7=0 0

Example. The source kernel K, (z;t) is v-positive definite. We have

K, (a:) = / " exp(—ty)Gu () d (3)

and

o) n
Z a;a; K, (x; By a;31) =/ exp(—ty*)| Y aiGu(ziy)[* dipnu(y) > 0
i,j=0 0 i=1

Following S. Bernstein [5] we define a function f(z) on 0 < a < = < b to
be v-absolutely monotonic if it has non-negative 9, -derivatives of all orders, i.e.,
f(x)>0,0<a<x<b k=01,2,....
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Examples. The following functions are r-absolutely monotonic:
(1) f(z) =>p_arz® with a;, > 0o0n 0 <z < oo.
(2) f(z) =3 peyara® for 0 < 2 < p with a, > 0.
(3) flz) = [;° Gu(xy) dB(y) for 0 < 2 < co with 3(y) increasing and constant
for y > a > 0. Functions given this way are also in PD, on 0 < z < o0.

Theorem 14.2. Let ¢ € C§5(0,00) be a non-negative function and let

w0 = [ ep(-t)0(2)0, (52)Gu w2) di (2).
0
Then u(x @, y;t) is a v-positive definite Airy diffusion.

Proof. By Theorem 4.1, u(x @, y;t) is in £1((0,00),dn,(x)) for t >0 and 0 <y <
o0, and clearly u is in H,(R*,t > 0), 0 <y < co. Let 0 < z1,22,...,7, and let
Qaiq,Q,...,a, be arbitrary complex numbers, then

> cutyulei 0, 25i0) = [ exp(-t5)6) Y aiciGu(ain)Gulasn) dn, (o)

i,j=1 i,5=1
— [ exp(-ts)0)| Y- aiG(win) din () 2 0
0 i=1
(14.5)
since ¢(y) > 0. Note that Inequality (14.5) is also valid for ¢ = 0. O

Corollary 14.3. The function u(x ®, wey;t) = u(z,;t) is a v-analytic function of
the umbral variable z, .

Proof. We have
e @ wait) = u(zit) = [ exp(-tu?)ow)G, )G (yw) dn ().
Interchanging differentiation and integration, we have
Uy u(zy;t) = /000 exp(—tw?)p(w) (—w)3G, (zw) G, (yw) dn, (w) = —yu(z;t).

Thus the v-Cauchy-Riemann equations hold for z,y > 0 and therefore u is v-
analytic in the “z,-umbral plane”. (Il

Corollary 14.4. The function

ole By yit) = / " exp (1 $(w)Gy (2)Gy () dig ()

is a v-positive definite Airy diffusion. Moreover, v is a v-absolutely monotonic in
the x (or y) variable. The function v(z,;t) is also v-analytic.

The above results are also valid for §(t) increasing and constant for ¢ > a > 0.
In this case we have

w(z @y y;t) = / " exp(— 1w G, (xw)Gy (yw) dB(1)

o(e @y yit) = / " exp(tw®G, (aw)G, (yw) dB(1)
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In general functions defined by integrals of the type

= /0 h Gu(xy) dB(y)

are absolutely monotonic for suitable increasing functions 3(y). However, the rep-
resentation is not necessarily unique as the following example demonstrates.

Example. Let
oo . 1
Sp = / u®™ 3u? exp(—= u) sinéudu.
. 2 2

A calculation shows that s, = 3(3n+2)!sin m(n+1) =0, forn =0,1,2,.... Next
we have

i = 3. 257 — / " d3(u)
0
where 8(u) = [ 3exp(—3t)t?* dt. Let

a(u) = /Ou 3t? exp(—%t) (1 —sin ?t) dt .

Then - -
/ u¥ do(u) = 3- 250D (3n 4 2)! = / u®™ dB(u)
0 0
with B(u) # a(u). Consider

= /OOO G, (zu) dp(u).
We have . ,
@) <M / ? expl(— 5 + )u) du

for 0 <z < % It easily follows that f is absolutely monotonic for 0 < = < 1/2.
However

3. 23(n+1) (3n+2 "
f(x)zg):ﬁnn!( Yo (v + 2) " _63223

2
3)”+1 Sn

In

l
3
v+

w\w

which converges for |z| < 1/2, and

/Ql,xudﬁ /g,,xuda)

Theorem 14.5. Let a.(t) be an increasing function on 0 < t < oo with compact
support in [0,a], a > 0, and let
/ G, (2t) dac(t)

If f(x0) =0 for some xg > 0, then f(x
Proof. We have

0< pin = / 3" da (t) < a®” / do(t) < a®" M
0 0

/ G, (zt) da, =

and
n

||M8

a3n
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with f an entire function. Since p, > 0, f(zo) = 0 implies p, = 0 for n =
0,1,2,.... 0

Corollary 14.6. Let
u(et) = [ explts’) G (an) dac (). (14.6)
0

If u(zo,to) = 0 for some xg > 0 and to > 0, then u(x,t) = 0.

Proof. Clearly wu(z,t) is an absolutely monotonic v-Airy diffusion. The theorem
implies that u(x,ty) = 0 for > 0. Hence we obtain

0< / doc(y) < / exp(toy®) Gu (zy) dae(y) = 0

and therefore da.(y) is the zero measure.
Thus this v-Airy diffusions given by the representation 14.6 are positive functions
if ao(y) is different from a constant. O

Theorem 14.7. Let a.(y) be an increasing function with compact support and let

) = / " G, (o) daly) (14.7)

fx)  Of(x) 0*f(x)

f
flz)  If(z) 2 3
f(z) =20, I >0, |df(x) O%f(x) 9°f(x)]=0,... (14.8)
and
P20 sy wip)| 20 050 o0 o) 20

for 0 <z < oo.

Proof. From the integral representation (14.7), it follows that

wvw>ﬁwf"%uwm%@m

[Z I f(x) x)aa; = / G, (zy) (Z azt?”) dae(y) >0

1,7=0

Z 192+j+m]c alaj / gl/ xy Sm (Za t37‘> dC\(C ) >0

2,7=0 1=0

for m > 1. Since the quadratic forms are positive definite the associated determi-
nants are non-negative. Letting 9" f(x) = u, = fooo y*" dae(y), we get that the

quadratic forms
n n
E Mitjaidy, E Hitj+10ia;
4,J=0 4,J=0
are non-negative. The v-generating function of the moments {p, }5° is

/j’n 3n
043n
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an entire function.
Let

ule,t) = / " explty®) G(ay) dae () (14.9)

then the determinants given by (14.8) with f(x) being replaced by u(x,t) for fixed
t > 0 are non-negative. Since u(z,t) is absolutely monotonic in the usual Bernstein
sense, it follows that the determinants

u  Dwu D?u

D
u(z,t) >0, D“u D;Z >0, |Dwu D> Ddul|>0,... (14.10)
K ¢ D?w D} wuD}u
and
Dy D?u Dju
2 t t t
Dyu(z,t) >0, ‘gtgz g?Z >0, |D>u Diu Diul>0,...

Dju D}u Dju
are also non-negative. We also obtain that the v-diffusions given by equation (14.9)
is logarithmically convex for

? - — |5 ulT 2
Ll log u(x, £) = u(z,t) gtzu(j(a;)tp(gt (z,t))

o =0

by (14.10). From the extension of (14.10) to D{*u(z,t), etc., we also get
u(x,t) < Dyu(z,t) S D2u(x,t) _—
Dyu(z,t) = D?u(x,t) — Dju(x,t) ~

Thus D" u(x,t) is also logarithmically convex. O

15. v- ASSOCIATED NONLINEAR EQUATIONS

Associated with the v-Airy diffusion equation we obtain a non-linear partial
differential equation which is linearized by the v-Airy equation.

We let A(v) = D2+ 22 D, = 2=2 Dz D denote the Euler-radial operator with
v > 0. Further we define a non-linear differential operator by

3 1
K,(6) =2 Dya™ Dyé— 5 6 = = 67 + 5 6" — 60

15.1

_@_’_37”%_31 _K¢2+1¢3_¢% ( :

C0x2 oz Or a2 x 9 Ox
Theorem 15.1. Let v > 0, if u(x,t) is a solution of the v-Airy equation

ou(zx,t)
You(x, t) =
u(z,t) T
then ¢(x,t) = —3 % u(z, t)/u(z,t) is a solution of the non-linear partial differential
equation
op(xz,t) 0 B 1, v, 6v
0 = D K(0) = o~ 0AWI6 + (3 7 — 62)(0e — 3) 4 06 (15

Proof. Letting u, = —% du, we get u% = % o %qbgc. Hence

0 , ,
ﬁ — DzzfduDrxduuz
ot
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implies that

39 _ V¢u+u¢z+¢uz)
ot
= Dy(—— Uy + u¢s + puy)
I uy U Uy
x? u x
It follows that
8lnu 3v 1 v
_¢LL *¢x_72¢+7¢3_7¢2_¢¢x:Ku(¢)
T 9 T
and therefore,
0¢ 0
Y _TK
ot Oz /(@)
O
In the case that v = 0, we have the equation
99 _ %9 32¢ 3 99
e S i - 15.
ot 0z° (9952 ¢ Pz = oz (15.3)
which linearizes to the Airy equation % = %. The KdV equation
9¢ 9o P
ot +69 Oz + or3

linearizes to the Airy equation dt + ax = 0. Replacing t by —t gives the form of
the Airy equation of this paper.
We note that if ¢(x, t) is a solution of the non-linear equation (15.2) then formally

ant) = B exp(—3 [ o000 d)

is a solution of the v-Airy equation.

The differential form of (15.2) suggests a conservation of “mass” for suitable
solutions. If ¢(z,t) is a solution of (15.2) such that ¢ and all of its derivatives
vanish at +oo, i.e., ¢ € C§°(R), then

[ 8= [ - i

which implies the conservation form

oo
/ ¢(x,t) de = constant,
— 00

a conservation of mass interpretation.
Associated with the v-diffusion polynomials p?(z,t) we obtain an infinite se-
quence of rational function solutions of (15.2). We have
2 1 3.3
v—mnl|(——)1|.
(=2

v 1) = 3nF _ I J—
pn(xv) 3 0[ 77,,3 nag
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Therefore,

v _ a v v

wi(@,1) = =3 = pl (2, 6) /D] (2, 1)

_9£ 3F0[1*n,2/3—n71/371/7n|(*%)Bt]
z 3F0[7n32/3*n71/371/7n|(7%)3}]

(15.4)

is a solution of the non-linear partial differential equation (15.2). From this equation
it follows that

y 9In
wy(z,t) ~ -
as © — oo. The first four w!’s are given in the table:
wg(z,t) =0,
—9x?
234+ 9(v+2/3)t
1825 + 648(v + 5/3) 2t
28+ 72(v + 5/3)22t + 324(v + 2/3)t2
928 + 1215(v + 8/3)2%t + 4536(v + 5/3)922>
29+ 408 (v + 9/3)26t + 1512(v + 5/3)0232 + 120 - 36 (v + 2/3)3t3

The source solution of the v-Airy equation also yields a solution of (15.2). We have

22/31(2 23/2
K:V(xat) :¢ 'J72/3 i
Jr+2/34v+1 \/ﬁ

WT(Ivt) =

wy (z,t) =

Wy (z,t) = =3

and therefore

0
o (,0) = =3 2 Ky (o, 1) /K (1) = (

Let z = 2\}”;% The recursion formula for Bessel functions J,_1(2) + J,11(2) =

22 J,(z) gives a continued fraction representation of the solution w, (z,t). We have
a3\ 4 1
wleh==\7) 7% “wmo i
3z _16 _ 1
3z 22 Jf% (Z)
Z J_1a (Z)

3

Thus the non-linear equation (15.2) has continued fraction solutions.
The associated functions Q¥ (x,t) also yield solutions of (15.2). We have

W (e t) = —3 2 Qh(ent)/Q, )

n+v+5/3] s
(ntv+2/3) 22 2 {4/3,y+5/3“27t} (15.5)
(v+2/3) 9t m v +2/3]  w '
21/3,042/3) 2
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Using the asymptotic estimates of Marichev [25, p. 71], we get

2

v x
Wn(x7t)Nﬁ

as ¢ — oo for t > 0.
Next we will show that the non-linear partial differential equation (15.2) has
time periodic solutions. Let

Cy(z,t) = exp(ity®)G, (wery) = exp(ity®)E, (zy)

which is a complex solution of the v-Airy equation, where wg = exp(in/6). Since

0 z2y3 Ty 3
%gl/(mvy) = WOF2[4/3W+5/3| (g) ]
we find that
2.0, (x,t)
_ 9 Ox TV\*
Cy(x,t) = -3 Cowd)

. a2y’ .0F2[4/37V+5/3|i(%>3]
(v +2/2) (B3, +1/3]i (%))

a solution that is independent of ¢.
The function C,(x,t) is periodic in the ¢ variable, we have

Cy(@,t +21k/y*) = Cy(2,1)
for y # 0. The real and imaginary parts of C,(x,t) are also v-diffusions. We have

exp(ity®) B, (zy) = (costy® + isinty®)(cos, (xy) + isin, (zy)).
Hence
R, (z,t) = Reexp(ity®)E, (zy) = cos(ty?) cos, (zy) — sin(ty®) sin, (zy)

and

I, (z,t) = dmexp(ity®) B, (vy) = sin(ty®) cos, (zy) + sin, (zy) cos(ty®)  (15.6)
are t-periodic v-diffusions. It follows that
cos(ty®) £ cos, (vy) — sin(ty®) Z sin, (zy)

cos(ty3) cos, (xy) — sin(ty3) sin, (xy)

Ry(x,1) =-3

and
sin(ty®) 2 cos, (zy) + cos(ty®) £ sin, (zy)
sin(ty?) cos, (vy) + cos(ty?) sin, (xy)
are t-periodic solutions of the non-linear partial differential equation (15.2). Both
of these functions can be expressed in terms of hypergeometric functions.
Actually, there exist a hierarchy of generalized Airy equations and the associated
non-linear partial differential equations. We present a few of the equations and
results without proofs. Let vy and vo > 0, then the next simplest higher order Airy
equation is given by

dy(z,t) = -3

Ju 3 0 5 o° 94
o (x B +3(1 + 2+ 3)x o +9(2v1 + 2v5 + 1112 + 2)x Bt 5
o? vy 02 vy O '
+3(6V1V2+3V1+31/2+2)$—97@ ?%)u
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Let v = (v1,12) and let

v n 36
p(x,t) = 2°" 6Fo(—n,n,2/3 —n,2/3 —n,1/3 —1vy —n1/3 — vy —n| ;t)

then py(z,t) is a polynomial solution of 15.7 for n = 0,1,2,.... Moreover, we have
the generating function

3

exp(t=*) oF5(1,1/3,1/3, 11 + 2/3,v5 +2/3] (%))

oo

B pr(z,t) 23"
= 2 S 3 o+ 20 2

n=0

Theorem 15.2. Let v1 and vy > 0 and let u(x,t) be a solution of the higher order
Airy diffusion (15.7). Then ¢(z,*t) = —3 2 u(z,t)/u(z,t) is a solution of the
non-linear equation

oo 0 10
50 = 2z T K = 3 5o (@ Ko (0)Kyz) ()
2 02 2 0,1 P (15.8)
263K 7772_3073](
S0P Ky (0) + 3 505 6 = 00) o (5 Ko (6)
The functions
v a v |4
wn(@,t) = =3 5 pu(e, t)/py(z, 1)
9 6Fo(—n,1—n,2/3-n,2/3—n,1/3 — v —n, 1/3 —nuy —n| 35t)
B 6Fo(—n,—n,2/3—n,1/3 —v1 —n, 1/3 —nuz — n| 5t)
are rational function solutions of (15.8), n =0,1,2,.... It can be shown that (15.8)

also has t-periodic solutions.

16. CONSTANT COEFFICIENT v-DIFFERENTIAL EQUATIONS

In this section, solutions of polynomial operators with argument ¢, are obtained
in a number of cases. First of all we consider solutions of the differential equations

(W, —a®)y(z) =0 (16.1)
where a is some complex number. For a series of the form ZZO:O cnx™ T, we obtain
(oo}
Z n{(Bn+N)Bn+ A +3v —1)(3Bn + A — 2)23 T — 323230}

n=0

with indicial equations f(A) = A\ + 3v — 1)(\ — 2) and skip number three. For

v > 0 and v different from %, we obtain three linearly independent solutions of
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(16.1). They are, corresponding to the indicial roots 0, 2, and 1 — 3v respectively

[e%S)
a/?)’l’bx?)n

axr\3
Gow) = 3. Grmartiga ez, 0 BB 281 ()1
oo 3n,.3n+2 3
o a’nx _ 2 a
G0 = GG am), " ol a3 (5)
%9 3n,.3n+1-3v
(3) _ a”T
Gy (az) nz:% 33mnl(4/3 = v)n(2/3 = v)nn!

ax\3
:$1_3V0F2[4/3—V72/3—l/| (?) ]

In the latter case we must have v such that 4/3 —v, 2/3 —v #£0,—1,—2,.... The
function G, (ax) is the basic zeta function of this paper associated with oJ,.

If p(¥, = Y p_, axV¥ is a monic polynomial operator, we find that p(J, G, (rz) =
p(r3)G,(rz). We let p(r®) = [[p_,(r® — ry). If the ry’s are distinct, we get the
general solution of the equation p(d,)y = 0 is given by

n
y(@) = Y {ewGu(ry/ s) + enGP (r*z) + eun G (ry/ ")}
k=1

We are interested in determining solutions in the repeated root case. Thus we need
to obtain solutions of the equation (9, — a®)*y = 0. Due to the failure of a nice
Leibnitz type product formula for 9* (uv), an exponential shift type equation is not
available for our repeated root equation. In the classical case the exponential shift
formula (D — a)*(e®®v) = e*® D¥v, leads to solutions in the case of repeated roots
for constant coefficient equations in D. A new method that works in a number of
cases follows.

For m a non-negative integer, we define

[e%S)
a3nx3n

Gy—m(az) = nz::o 33nnl(1/3), (v —m +2/3),
00 3n ,.3n+2
@) _ S
GuZn02) = 2., Gt e 3y~ ¥ 1)

with v such that (v —m+2/3) and (v —m+4/3) are not zero or a negative integer.
The v-Airy operator can be written as

3
19u = ﬁy—m + 77?-/\/'(-/\/‘_ 2)
x
where A/ = 2D is the numbers operator.

Theorem 16.1. For restricted v and 0 < k <m

3k
m! a (2)

(m—kK)! (v+2/3—m)y o)

0, —a®)*G? (azx) = (azx) (16.2)

Proof. We consider the case k = 1, the general case follows by iteration. By (16.2),
it follows that

v—m

Wy — G2 (az) = ?;L?N(N — NGy (az)
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where AN/ = zD is the number operator. Since

%N(N —2)2%" = 3m(3n)(3n — 2)x3(n71)

we get

3m > m(n —2/3)x3 (=D g3n

= -2 Gl/—m =

. NN -2) (ax) ; 3301 (n — DI(1/3)n(v — m + 2/3)n

3
ma
= = m 273 Fr-m-nla)

Since (9, — a®)"Gy_(m—1)(az) = %Gu(aaz), (9, —a®)™ TG, (ax) = 0.

Hence the equation
(0 —a®)"Fly(z) =0
has solutions G, (ax), G,_1(az),...,Gy_m(az). O

In the case of repeated roots corresponding to G,(,Z)(ax), we have the equations
m! a3k (2)

(m—Fk)! (v+4/3—m) =y (47)-
Therefore, (9, — a®)™ly(z) = 0 also has G (az),G? (ax),...,G? (ax) as

solutions.

¥, — a®)"GP (ax) =

Based on the exponential shift equation (D — a)Fz"e?® = o= k),m” keat  we
can find solutions of the eigenvalue problem for the wave operator (% — —) The
eigenvalue problem

0 0
t A t 16.3
(5 = 2)ula,t) = Nu(z, ) (16.3)

has polynomial type solutions u, x(z,t) = e**(x +¢)". We will an analogue of this
result for the corresponding 1, problem.
The corresponding eigenvalue problem in the v-Airy case is given by the equation
0
(9, — E)u(m,t) = Nu(x,t) (16.4)

Using (15.6), we find that solutions corresponding to u(z,0) = G,_,(Az) for suit-
able v are given by

(19 —A)Go-n(A2)

-

Z’A("E, t) = exp

(19 - 2)kG, ()

I
[M]8
N‘“‘

£l
I
<

nINR G, (i (M) (16.5)
(n—k)(r+2/3—-n)

k‘
I?
tk)\BkGV (n k)()\l‘)
(v+2/3—n)

8|F|/]8

Solutions of the eigenvalue equation (16.4) also lead to solutions of the previously
encountered non-linear partial differential equation

0 0
a ¢(xat) = % KV(¢)
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Let uy be a solution of the eigenvalue equation (16.4) and let

r:
Then
% + Xy = du = D(x~3 Dx*u, = —% Dx=3 Da* ue.
Therefore, as before we find that
(X = K 9)
and
o or(wt) = DE(9) (16.6)
Thus solutions of 16.6 for suitable v and n a non-negative integer are given by
Cyy A, 1)

qg;fb x,t ,335”7
,)\( ) Cﬂ)\(l_’t)

3k i)
>h—o (1 )(u+2//\3 ), Oz Gy (n—k) (Ax)
k )3k
Yo () rzrs=mys Go—(n—k)(Az)

which is a quotient of sums of hypergeometric functions. That is

7 3k
S O(L)WOFQH/?),I/—FL’)/?)—H-F/H (22

-3

)3

gb,ul)\(a?,t) = —x” £k 23k ; x
oo ( /)lefti(yw/g_n)k oF2[4/3,v+5/3 —n+k| (7)
for n =0,1,2,.... In the same manner, we find that
k\3k (2)
mA A P k: (V+4/3—n)
is a solution of the eigenvalue problem (16.3) for n =0, 1,2,.... Hence for suitable

v we obtain solutions of the non-linear partial differential equation (16.6) given by
2),v
2 Cr(L; (z,t)

oY \(a,t) = —3 f’x%
O (1)

n 3k (2)
_3 Zk:O( ) 1/+4/)E’> n)k am Gl/ (n—k)()\x)

>0 (1) (u+t2k//\33kn Gf)(n k)(Ax)
o Do ()t o P22/ + 43— n kI ()]
Siico () sy oFal5/3, v +4/3 = n+ k| (3))
forn=0,1,2,....
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