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STABILITY FOR A COUPLED SYSTEM OF WAVE EQUATIONS
OF KIRCHHOFF TYPE WITH NONLOCAL BOUNDARY
CONDITIONS

JORGE FERREIRA, DUCIVAL C. PEREIRA, & MAURO L. SANTOS

ABSTRACT. We consider a coupled system of two nonlinear wave equations of
Kirchhoff type with nonlocal boundary condition and we study the asymptotic
behavior of the corresponding solutions. We prove that the energy decay at the
same rate of decay of the relaxation functions, that is, the energy decays expo-
nentially when the relaxation functions decay exponentially and polynomially
when the relaxation functions decay polynomially.

1. INTRODUCTION

The main purpose of this article is to study the existence of global solutions and
the asymptotic behavior of the energy related to a coupled system of two nonlinear
wave equations of Kirchhoff type with nonlocal boundary condition. Consider the
system of equations

uge — M(||Vull3 + | Vol|3) Au — Aug + fi(u) =0 in Q x (0, 00), (1.1)

v — M(||Vul|3 4 [|[Vol|3)Av — Avy + fo(v) =0 in Q x (0, 00), (1.2)

u=v=0 onTyx(0,00), (1.3)

wt [ o= (VU + Vo@D 0+ Frds =0
on I'1 x (0,00),

vt [t = NIV + VoD G0 + GhNds =0

on I'1 x (0,00),

(U(O,l‘),U(O,JZ)) = (UQ(.T),UQ(Z‘)), (ut(O,m),vt(O,x)) = (ul (x),vl(x)) in 0,
(1.6)

where () is a bounded domain of R, n > 1, with smooth boundary I' = I'g UT';.
Here, 'y and T'; are closed, disjoint, I'g # § and v is the unit normal vector
pointing towards the exterior of Q. The equations (1.4)-(1.5) are nonlocal boundary
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conditions responsible for the memory effect. Concerning the history condition, we
must add the condition

u=v=0 onTlyx]—o0,0].

We observe that, u and v represent transverse displacements. The relaxation func-
tions g; are positive and non decreasing; while the functions f; € C1(R), i = 1,2,
satisfy

fi(s)s>0 VseR

Additionally, we suppose that f; is superlinear, that is
fi(s)s > (2+0)Fi(s), Fi(z) = / fi(s)ds VseR, i=1,2,
0

for some 0 > 0. Also the following growth conditions are satisifed:
fi(x) = fi)] < e+ |27+ [yl Dz —yl, Vo,yeR, i=12,

for some ¢ > 0 and p > 1 such that (n—2)p < n. We shall assume that the function
M € C*(]0, 0o]) satisfies

M(A\) >mo >0, MOX>M()), VA>0, (1.7)

where M(\) = fA

o M(s)ds. Also, we shall assume that there exists x9 € R such
that

IFo={xeTl:v(x) (x—1x0) <0},
I={zel:v(x) (r—=z0) >0}

Let us denote by m(z) = © — xg. Note that by the compactness of I'1, there exist
a small positive constant dg such that

0<do <m(x) v(z), Vreli. (1.8)

The existence of global solutions and exponential decay to the problem (1.1), (1.3)
with 00 = I'y and frictional dissipative damping has been investigated by many
authors (see, e.g. [1, 2, 3, 4, 8, 9, 10, 12] ). There exists a large body of literature
regarding viscoelastic problems with the memory term acting in the domain or in
the boundary. Among the numerous works in this direction, we can cite Rivera
[5] and M. L. Santos [15, 16]. Park & Bae [13] studied the existence and uniform
decay of strong solutions of the coupled wave equations (1.1)-(1.2) with nonlinear
boundary damping and memory source term and M(s) = 1 + s. In the present
paper, we obtained respectively besides the exponential decay and uniform rate of
polynomial decay. Moreover, the system (1.1)-(1.6) is more general than the system
considered in [13], because they only consider the case in that M(s) =1+ s. As
we have said before we study the asymptotic behavior of the solutions of system
(1.1)-(1.6). We show that the energy of the coupled system (1.1)-(1.6) decays
uniformly in time with the same rate of decay of the relaxation functions. More
precisely, denoting by k1 and ks the resolvent kernels of —gj/g1(0) and —g5/g2(0)
respectively, we show that the energy decays exponentially to zero provided k;
and ko decays exponentially to zero. When the resolvent kernels k1 and ko decays
polynomially, we show that energy also decays polynomially to zero. This means
that the memory effect produces strong dissipation capable of making a uniform
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rate of decay for the energy. The method used is based on the construction of a
suitable Lyapunov functional £ satisfying

€2
(1 +t)ott

for some positive constants ci, ¢,y and «. Note that, because of condition (1.3)
the solution of the system (1.1)-(1.6) must belong to the space

Vi={ve H(Q):v=0 on Ty}

The notation used in this paper is standard and can be found in Lion’s book [7].
In the sequel by ¢ (sometime c¢q, ¢, ...) we denote various positive constants inde-
pendent of ¢ and on the initial data. The organization of this paper is as follows.
In section 2 we establish the existence and uniqueness of strong solutions for the
system (1.1)-(1.6). In section 3 we prove the uniform rate exponential decay. In
section 4 we prove the uniform rate of polynomial decay.

CL) < —erl(t) + e or LL() < el L) +

2. NOTATION AND MAIN RESULTS

In this section we shall study the existence and regularity of solutions for the
coupled system (1.1)-(1.6). First, we shall use equations (1.4)-(1.5) to estimate the
terms M (||Vu(t)[[3 + [[Vo(t)[|3) G2 + Gu and M([Vu(®)[3 + [Vo(t)]3) 52 + G-
Denoting by

(9% 2)(t) = / ot - 5)p(s)ds,

the convolution product operator and differentiating the equations (1.4) and (1.5)
we arrive at the following Volterra equations:

8u ou 1 8u ou
2 t t
M([Vu®)[3 + Vo) )5, T 5 +7(0)g (M(|[Vull5 + Vol )5, 5,
1
_ us,
g1(0)
ov  Ov 1 ov Ov
2 2,0V O / 2 2,0V O
MUt} + Vo5 + Gt + 65 = (M(IVulf + Vol 57 + 5
_ L
92(0) "
Applying the Volterra’s inverse operator, we get
ou Ou 1
M 2 2\ ] - __ - k
(ISl + [98) G+ ot = = s (=,
ov  Ov 1
M(||Vull5 + ||VU||§)$ + 671/16 = _gT(O){Ut + k2 x v},
where the resolvent kernels satisfies
1 1
ki + ——gixk;j=———=g, fori=12.
(0) 9i(0)
Denoting 7 = _- (0) and 15 = %0), we obtain
ou
M([[Vull3 + [ Vol3 )* + (Tyt = —7i{ue + k1(0)u — ki (t)uo + K xu}  (2.1)
ov
M([Vull3 + Vo3 )* + =t = —m{ve + ka2 (0)v — ka(t)vo + Ky x v} (2.2)

ov
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Reciprocally, taking initial data such that ug = vg = 0 on I'y, the identities (2.1)-
(2.2) imply (1.4)-(1.5). Since we are interested in relaxation functions of exponential
or polynomial type and the identities (2.1)-(2.2) involve the resolvent kernels k;,
we want to know if k; has the same properties. The following Lemma answers this
question. Let h be a relaxation function and k its resolvent kernel, that is

k() — k = h(t) = h(2). (2.3)

Lemma 2.1. If h is a positive continuous function, then k is also a positive con-
tinuous function. Moreover,
(1) If there exist positive constants co and v with c¢g < v such that h(t) <
coe™ 7, then, the function k satisfies

k’(t) < CO(’Y - 6) efet7
YT—€—0Co
forall0 <e<y—cp.
(2) Givenp > 1, let us denote by ¢, := SUpP;cp+ fg(l—&—t)p(l—i—t—s)_p(l—i—s)_p ds.
If there exists a positive constant cy with coc, < 1 such that h(t) < co(1+
t)~P, then, the function k satisfies
€0 -
k(t) < ———(1+t)7P.
)< =21+)
Proof. Note that k(0) = h(0) > 0. Now, we take ty = inf{t € RT : k(¢t) = 0}, so
k(t) > 0 for all t € [0,to[. If to € R, from equation (2.3) we get that —k = h(tg) =
h(tp) but this is contradictory. Therefore k(¢) > 0 for all t € Rj. Now, let us fix e,
such that 0 < € < v — ¢o and denote by

ke(t) := ek(t), he(t) = e“h(t).
Multiplying equation (2.3) by et we get kc(t) = he(t) + ke * he(t), hence

sup k.(s) < sup he(s)—l—(/ coel™s ds) sup ke(s) < co—i—cio sup kc(s).
0

s€[0,t] s€[0,t] s€[0,t] (y—¢€) s€[0,t]
Therefore,
ke(t) < M’
Y—€—Co

which implies our first assertion. To show the second part we use the notation
Bpt) = (14 PK(),  hy(t) i= (1 + DPR(D).
Multiplying equation (2.3) by (1 + )P we get

@wz%@+fmwﬂm+w@wuw%@w,

hence
sup kp(s) < sup hp(s)+cocp sup kp(s) < co+cocp sup kp(s).
s€[0,t] s€[0,t] s€[0,t] s€[0,t]
Therefore,
co
ky(t) < ———
P( ) -1 COCp’

which proves our second assertion. [
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Remark: The fact that the constant ¢, is finite can be found in [14, Lemma 7.4].
Due to this Lemma, in the remainder of this paper, we shall use (2.1)-(2.2)
instead of (1.4)-(1.5). Let us denote

t
(G300 = [ gt = 9lo(t) - (s) s
0
The following lemma states an important property of the convolution operator.

Lemma 2.2. For g, € C'([0,00[: R) we have

(a0 = 59010 + 59T 5 7 o0 = ([ als)as)iof].

The proof of this lemma follows by differentiating the expression gp.
The first order energy of coupled system (1.1)-(1.6) is defined as

E(t) :== E(t,u,v)
1 2 1 2 1= 2 2
=5 | lwl*de+ 5 [ |ve[*de + SM(|Vullz + [[Voll2) + [ Fi(u)da
2 Ja 2 Ja 2 Q

+/F2(v)dx+§k1(t)/ \u|2dr1—ﬁ/ K, Oudr;
Q 2 r 2 ry

+ 2hot) [ 02Dy — 2 | k,Dwdry.
2 Ty 2 Iy

The main goal of this work is given by the following Theorem.
Theorem 2.3. Let k; € C?*(RY) be such that ki, —kl, k!’ > 0 fori = 1,2. If

1"

(ug,v0) € (H2(Q) N V)2 and (uy,v1) € (H?*(Q) ﬂ V)2 satisfy the compatibility
conditions

ou Ouy

M(|[Vuoll3 + [ Vwoll3) 5 + -+ 7iun =0 onl'y, (2.4)
81} Ov

M(|[Vuoll3 + [[Vwol3) 5> + 2 - + 7201 =0 onT'y. (2.5)

Then there exists only one solution (u,v) of the system (1.1)-(1.6) satisfying
u,v € L0, T:V), wuy,v € L0, T:V),
Uge, Ve € L2(0,T 2 L2(Q)), Au,Av € L>®(0,T : L*(Q)),
Aug, Avy € L*(0,T : L*(2)).

In addition, considering (1.8) and assuming that there exist positive constants by,
by such that

ki(0) >0, k()< —biki(t), K/(t)>—boki(t), i=1,2or (2.6)
ki(0) >0, K(t) < —biki()", K > bk, p>1, i=1,2
(2.7)

then the energy E(t) associated to problem (1.1)-(1.6) decays, respectively, a the
following rate

E(t) < a1e—*2'E(0), (2.8)

E(t) < WE(O), (2.9)

where aq, as and ¢ are positive constants.
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Proof of the existence of regular solutions. The main idea is to use the
Galerkin method. To do this let us take a basis {w; };en to V which is orthonormal
in L?(Q) and we represent by V,,, the subspace of V generated by the first m vectors.
Standard results on ordinary differential equations guarantee that there exists only
one local solution

(W™ (), 0™ (£) = Y (gan()s hjam (£) w0,

Jj=1

m
of the approximate systems

[ witwda + MO O + [V @) [ Vum - Vwdo

Q Q

+ [ Vui" - Vwdz + / filu™)wdx (2.10)
Q Q

=-—71 [ {u}" + k1 (0)u™ — ki (6)u™(0) + k] * u™ }wdly
I

and

[ otz + MV O + [V @) [ Vo Vwds

Q Q

+/VU{”-deJ:+/ fo(v™wdx (2.11)
Q Q

=7 | {v" + k2(0)0" — ko (t)v™(0) + kg * v Jwdl'y,
I

for all w € V,,, with the initial data
(u™(0),v™(0)) = (uo,v0), (u;*(0),v"(0)) = (u,v1).

The extension of these solutions to the whole interval [0,7], 0 < T < o0, is a
consequence of the first estimate below.

A priori estimate I. Replacing w by u/, (¢) in (2.10) and v}, (¢) in (2.11), respectively,
and then adding the results and using Lemma 2.2 we conclude that

d
—E(t,u™,v™) < cE(0,u™,v™).

dt
Integrating over [0,¢] and taking into account the definition of the initial data of
(u™,v™) we conclude that
E(t,u™ o) <e¢, Vtel0,T], Vm€eN. (2.12)

A priori estimate II. First, we estimate the initial data uj}(0) and v}}(0) in the
L2-norm. Letting ¢ — 07 in the equations (2.10)-(2.11), replacing w by u!/,(0) and

"

v’ (0), respectively, and using the compatibility conditions (2.4)-(2.5) we get

g ()13

= M(||Vuol3 + [ Vuol13) /Q Augufy (0)dx + /Q Auyuf (0)da — /Q f1(uo)uy (0)da,
lvii (0)113

= M([Vuol2 + [ Vo) / Aol (0)dz + / Avyof? (0)dz — / folvo)ulp (0)de.
Q Q Q
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Since (ug,vg) € [H%(2)]?, the growth hypothesis for the functions f; and f together

with the Sobolev’s imbedding imply fi(ug), f2(vo) € L?(£2). Hence

[uft (0)ll2 + v (0)]l2 < ¢1,  Vm €N, (2.13)

Differentiating the equations (2.10)-(2.11) with respect to the time, replacing w by

"
m

th /ﬁ \dx+l/\v e} (/|Vu |dx+l/|Vv 2da

= —M(|Vu™|3 + | Vo™ ||3) /Vut Vug't’da?—&—/ V- Vv{?dx}

u (t) and v/ (t), respectively, and summing the results we arrive at

—MMWWWﬁHWWM)/VMWWW+/VWW¢M}
/Vu Vuttda:—&-/ Vo™ . vafdm /f1 Yuytugy dx
A fé(vm)vfnvg‘da:—ﬁ/ |uft|?de — 7 A k1 (0)uy ujpdly
—i—7'1ki(t)/F u™(0)uppdly — /F(k:l*u Jeuprdly — 7'2/ loi | da

— T k2(0)v" vy dly + Tgkilz(t)/ o™ (0)vdly — 7'2/ (kb * v™)opdly.
Iy

Fl 1—‘1

Noting that
¢
(K}« u™)y = K (t)ug* + / Kt — s)u™ (-, s)ds,
0
¢
(ky *xv™); = Ky (t)vg" +/ ky(t — s)o™ (-, 5)ds
0

and using Lemma 2.2, we obtain

th /|u |dx—|—/|vtt| dx + 11k (t / [ug™| dFl—ﬁ/ k1 Ou*dly

— Toko(t) [o|2dTy — 7o kQDU dF1 /|Vu |dx—|—/ |Vl ?de
I

M(||Vum§+|wm||§){/ vu;”-vu;';d;z:+/ vv;”.vufgda;}
Q Q
/Vu Vuttdx—i-/ Vo™ Vvl?dx /fl Yutugy de
/f2 Jotvdr — 1 |utt|2dx—|—7'1k"1(t)/ u™(0)ujpdly
Iy
k:’ / |u"|?dly — Tl k”l:lu;”dfl—rg |v |*dx

+71k;g(t)/ o™ ()vttdr1+71k2 / ™ [2dT, —% k/Ourdr, .
Iy Iy
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Let us take p, = 2n/(n — 2). From the growth condition of the functions f; and
from the Sobolev imbedding we have

/f1 Yuytugy de
< [ (2 s
Q
/pn 1/2
gc[/(l+2|um|p ! "d / |ui® |p"dx {/ |u;?\2dx]
Q
m|2 n/2 m|2 1/2 m|2 1/2
Sc[ (1+|Vu™| )dx} [ [Vui| dw} [ luiz] dm} :
Q Q Q
Taking into account the estimate (2.12) we conclude that
1/2 1/2
/f1 Yuytugy de <c{/ \Vu;n|2d:c} {/ \utt|2dx}
Q
gc{/ |vu;n|2dx+/ |u:;|2dx}.
Q Q

(2.14)

Similarly we get

/f2 Yotoppde < c{ /Q|Vvl”\2da:+/ lvit | da:} (2.15)

Note that Young’s inequality, the first estimate and hypothesis on M give us

M(||VumH§+\|wm||§) /vu;"wvumdwr/wt ngdx}

(2.16)
gc{/(wum?ﬂwt ?)dz + ~ /\Vutt| de+ /\vw dz}
Q
and similarly
20 (9 3+ (Vo )] [ amapde+ [ omopde)
Q Q
/ Vu™ - Vullds + / Vo' - Vojida ) (2.17)

Sc{/(\Vu;”|2+|VUZ”| ) + = /|vug;| dz + /|w;¢| dr}.

Substitution of inequalities (2.14)-(2.17) into (2.14) yields

1d
77{/ |utt|2dx+/ |u;;}|2d:c+ﬁk1(t)/ |u;"|2dr1—ﬁ/ EyDul™dl
2dt T, T,
1
+72k2(t)/ |vp"| drlf@/ kgmv;”drl} /|Vutt\ da + > /|V’utt\2dx
Fl I—‘1

T1C T2C

< 2 ). lug|?dl’y + — 5 |v0| dr'y +c/ (|IVui"? + |Voi*|?)dz

+c /|Utt 2dz+/ v |2dx
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Integrating with respect to time and applying Gronwall’s inequality we conclude
that for all m € N and all ¢ € [0,7],

/|u |2dx+/|v |dac+/ /|Vu |d:r+/ /|Vv |2dx < c. (2.18)

A priori estimate III. Replacing w by —Au}* in (2.10) and by —Awv{® in (2.11),
respectively, and then using the Green’s formula and addlng the results yields

/uttAu?ldx /vl?Av{”dx—l—M(HVumH%—l—HVU"‘H%){/ Au Auitdx
Q Q Q
+/ AvavZ”dx}—&—/ \Au;”|2dx—|—/ |Av™ |2 dx

Q Q Q

fiw™ Aulrdx + [ fa2(v™)Av{*dz.
Q Q

Using similar arguments as in (2.18) we conclude that for all m € N and all all
te€[0,7T],

T T
A3 + / | Aug ()3 + | A0™ 2 + / A @I2dt<c.  (219)

Now, from estimates (2.12), (2.18) and (2.19) and of the Lions-Aubin’s compactness
Theorem we can pass to the limit in (2.10)-(2.11). The rest of the proof is a matter
of routine.

3. UNIFORM RATE OF EXPONENTIAL DECAY

In this section we shall study the asymptotic behavior of the solutions of system
(1.1)-(1.6) when the resolvent kernels k; and ko satisfy (2.6). Our point of departure
will be to establish some inequalities for the strong solution of coupled system (1.1)-
(1.6).

Lemma 3.1. Any strong solution (u,v) of the system (1.1)-(1.6) satisfy

d T
ZE() < =5 | fuPdly+ SR [ fuoPdly+ T (1) |u\ dr
t 2 Fl Fl
_ k”DudFl 2 o 2dry + Bkz / |v0| dr,
2 2 Jr,

—k2 / v|2dD, — 2 k; 'Dvdly — /{|Vut|2+|Vvt\ Y.
Proof. Multiplying the equation (1.1) by u; and integrating by parts over € we get
1 d
2dt/ |ug|*d + M(||vu|\2+uv 3 )7 /\Vu\zdz+/F1(u)dx+/ V|2 d
Q Q

8u 8u
= [ A@nvug + 19 g - 5

Similarly we have

M/ vy 2dz + M(|\VuH2+HVvH t/ |Vv\2d:v+/F2(v)d:v+/ Vo2
Q Q Q
ov 8’Ut

}utdl“l

g {(M([Vull3 + [Voll3) 5 + 5 oedls
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Summing the above identities, substituting the boundary terms by (2.1)-(2.2) and
using Lemma 2.1 our conclusion follows. [

Let us consider the binary operator

@omuw:Akuf@wmfw@m&

Then applying the Holder’s inequality for 0 < u < 1 we have

t
(ko0 < [ [ k(a2 as] (kD) 0. (3.1)
Let us introduce the functionals

N(#) ::/(Iut\2+ oo + Fi (w) + Fa(v))da + M(|Vull3 + [ Vo])3),
Q

Y(t) = /Q {m-Vu+ (g — O)ufudr + /Q {m-Vv+ (g — 0)v}vyde,

where 6 is a small positive constant. The following Lemma plays an important role
for the construction of the Lyapunov functional.

Lemma 3.2. For any strong solution of the system (1.1)-(1.6) we get

d 0
@df(t) < —5/\/’@) + C/ (Jue? + k1 (B)ul® + |k o ul® + |1 (t)uo|*)dly
I
+c/ (o2 + ks (E)0]2 + | o 0] + [k (£)vo|2)dTy
Iy

+e / (Vurl? + Vo) do,
Q

for some positive constants ¢ and €.

Proof. From equation (1.1) we obtain

d n
%/S; ut{m -Vu+ (5 - H)u}dx

:/utm~Vutdx+(E—9)/ lug|2dx
Q 2 Q
+/ m - Vu(M(|Vul|3 + |Vv||2)Au + Auy — f1(u))dx
Q

4G5 =) [ wOIITulf + [Vol) A+ A = fi () da.
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Performing a integration by parts and using the Young’s inequality, we get

d

= ut{m Vu-l—bzg(— — 0)u}dx

1
< 3 /. m - v|ug|2dly —9/ lug|?dx
Oouy n
+/Fl< (173 + 19013 2 + ) L Fut (5~ yuyar,
*(1*9)M(||VU||§+||Vv||§)/Q|VU|2d$
+ecM(Hw\|§+||W||§)/ |Vu|2d:c+ce/ |V, |2de
Q

/f1 udm—i—n/Fl( )dx

M|Vl + [Vo[2) / m - v|Vuf2dT,

1\3\3

l\')\»—\

11

where € is a positive constant. Taking into account that f; is superlinear we conclude

that

jt/ut{m Vu+(f—9)u}dx

gl m - v|u,|2dly 79/ |y dae
2 Jr, Q
ou
+/< (I7ull3 + 19013 5 + 5t L - Fu+ (5 — O)u} ar
Iy
(1= OM([Vul + [Voll2) / Vuldz

+ecM(||Vu||§+||W||§)/ |Vu\2dm+c€/ Vo [2dz
Q Q

1
-3 -0@+0) [ B - MVl [V0lE) [ mevvalan,
Q I

Similarly, using equation (1.2) instead of (1.1) we get

d
vt{m Vv—&-(f—@) }dx
dt
1
<= m~u\vt|2dl"1—9/ v¢|2dx
2 Jr,
+ [ Ouvulg+ 9ol + 50 {m- To+ (5 — o) ar
. ul|5 £y vt (5 v 1

— (L= 0)M(||Vull5 + HW\@)/QIVvI?dl’
+ecM(||vU||§+||vv||§)/ \Vv|2d:c+ce/ |V |2da
Q Q

n 1
~(5 =02 +5) [ Falo)do — 3M(Vull + [Vol}) [ m-v|VoPary,
Q Iy
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Summing these two last inequalities we arrive at

GO <5 [ vl oy =0 [ Quef 4 )i

+ [ IVl + 19015+ Ft) {m- Vut (5 Oy} ars
+ [ vl + 9o, + 50 {m- T+ (5 - oo} ars

— (1=0)M([|[Vul3 + [[Vv[|35) /Q(|VU|2 + [Vo[?)da

+ ecM ([ Vull3 + [ Vo][3) /Q(WU\QCZI + [Vo]?)da

+c€/g(|Vut\2 + IV~ (3 —9)(2+6)/§2F1(u)dx

- (5 =00 +6) [ Faoas = SVl + 190l [ mevivupar,

1
= MUVl + [VelB) [ mev/Voary.
Using Poincaré’s inequality and taking 6 and e small enough we obtain

d 1
PO < —ON () +Ce/<lwtl2 + Vo) de + 5/ m - v(fudl® + [oe*)dly
Q I

1
= MUV + [9e1R) [ me (Va4 Ve
8114
+/Fl< (Ivull3 + 1013 2+ %) Lo Gt (2~ yuy ar,
2 200 Oy f n_
+/F1(M(||Vu||2+||Vv||2)aV+ ) {m- Vot (5 — )} dl.

(3.2)
Now, we analyze some boundary term of the above inequality. Applying Young
and Poincaré’s inequalities we have, for €; > 0

[ QrQval + 190l 52 + S {m - Fut (5 - O)udr
|1

< [ {Im-Vul? + (5 - 0)’[ul*}dry
I
ou 6ut

e [ IOMTul+ 190D + GOy

< elc{ m - v|Vu|?dly +N(t)}

Iy

ou Ou
+ ey g (M (| Vull3 + [[Voll3 )*Jrft)I?dFl
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Similarly, we obtain

[ Qrvul + 9ol D00+ %) L ot (2~ o} ar,y

<e [ {lm-VoP + (5 —6)’ o L,
T

ov  Ov
+ e g (M (|| Vull3 + [[Voll3 )5, +*t)\ dl'y

< elc{ m - v|Vo|?dly —l—N(t)}
Iy

ov
+ea | (M (|[Vull3 + [[Voll3 )*+*t)\ dr'y.

Substituting the two inequalities above into (3.2), choosing €; small snough and
taking into account that the boundary conditions (2.1)-(2.2) can be written as

ou
Ull2 —_— —_— —T11U¢ 1 U— K oU— Ry Uo g,
M([|Vull3 + [ Vol3 ) + 6t) {ue + ka(t)u — K k1 (t)uo}
Bv 81}
M([[Vull3 + [ Vol3 )5, a;) = —7o{vs + ka(t)v — ky o v — k2(t)vo},
our conclusion follows. O

To show that the energy decay exponentially we need of the following Lemma
whose proof can be found in [16].

Lemma 3.3. Let f be a real positive function of class C*. If there exists positive
constants vyg,v1 and co such that

F1() < =70f(t) + coe™ ™,
then there exist positive constants vy and c such that f(t) < (f(0) +c)e 7.

Next, we shall show inequality (2.8). We shall prove this result for strong
solutions, that is, for solutions with initial data (ug,vo) € (H2(Q) OV)2
(ur,v1) € (H*(Q)N V)2 satisfying the compatibility conditions (2.4)- (2.5). Our
conclusion follow by standard density arguments. Using hypothesis (2.6) in Lemma
3.1 we get

%E(t) S 75 (\ut|2 — bgk'lﬂu + blkl(t)|u|2 — |k1(t)u0|2)df
IS
-
=5 [ (joel® = b2kgOo + bk (8)]0]® — [k (t)vol*)dT
I'y

- / (Vusl? + Ve )
Q
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On the other hand applying inequality (3.1) with 4 = 1/2 in Lemma 3.2 we obtain

GV <=M +C [ (el + k@l ~ KDu+ [ (0w )

+C | (Jvef* + k2 () [v]* — k4O + |ko(t)vo|*)dD

'
+ ce /Q(|Vut|2 + |Vve|?)d.
Let us introduce the Lyapunov functional
L(t) := NE(t) + (1), (3.3)
with N > 0. Taking N large, the previous inequalities imply that

9 £(1) <~ B() + 2N R () E(0),

where R(t) = ki1(t) + ka(t). Moreover, using Young’s inequality and taking N large
we find that

TE() < £() < 2NE(). (34)

From this inequality we conclude that
d 0
aﬁ(t) < —§£(t) + 2N R%*(t)E(0),

from where follows, in view of Lemma 3.3 and of the exponential decay of ki, ko,
that
L(t) < {L(0) + c}e M1,

for some positive constants ¢,vy. From the inequality (3.4) our conclusion follows.

4. UNIFORM RATE OF POLYNOMIAL DECAY

Our attention will be focused on the uniform rate of decay when the resolvent
kernels kq and kg satisfy (2.7). First of all we will prove the following three lemmas
that will be used in the sequel.

Lemma 4.1. Let (u,v) be a solution of system (1.1)-(1.6) and let us denote by
(¢1,02) = (u,v). Then, forp>1,0<r <1 andt >0, we have

14 (1—r)(p+1)

(/F \k§|lj¢id1"1) A= (D)

t 1
r T GFD 1
< 2(/0 ki (s)| ds||¢i|\2Loo(o,t;Lz(r1))> B / |k |1 571 Opydly

Iy
while for r = 0 we get

p+2

(/m \kg\m@drl)m

¢ pt+1 1
<2 [ ot e, s+ s Mney) [ kD0,
1
fori=1,2.

For the proof of this lemma see e. g. [15].
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Lemma 4.2. Let f > 0 be a differentiable function satisfying

C1 1+L

) < — Htfe 4 —=—f for t>0,

0 5030 4 00

for some positive constants c1,ca, o and B such that 3 > o+ 1. Then there exists
a constant ¢ > 0 such that

ft) <

c
(1+1t)e

For the proof of this lemma see e. g. [16].

Next we show inequality (2.9). We shall prove this result for strong solutions,
that is, for solutions with initial data (ug,vo) € (H?(Q) ﬂV)2 and (ug,v1) €
(H*(Q) N V)2 satisfying the compatibility conditions (2.4)- (2.5). Our conclusion
will follow by standard density arguments. We use some estimates of the previous

section which are independent of the behavior of the resolvent kernels k;, ko. Using
hypothesis (2.7) in Lemma 3.1 yields

f() for t>0.

d
@Fo<—5 | (Iuaf? + bo [ =K 71 Dt bady ™ (1) uf? — [k (8o ) T
il 2 14+ 1+3 2 2
—5 (|Ut| +b2[—k2} P+1|:|U+b1]€2 (t)‘U| —Ikg(t)’()o‘ )dF1

Iy
Applying inequality (3.1) with u =
estimates

2(p+1) and using hypothesis (2.7) we obtain the

K, oul? < c[—K]" P00, |k, o vf? < [k FT O,

The above inequalities in Lemma 3.2 yields

d 0 1+1 1
GO0 < =GN+ [l + B O + [ D o)y
1

1
+ c/ (Jve)® + k;+” (t)|v]? + [fk'Q]H'P%DU + |k (t)vo|?)dT 1.
Iy

In this conditions, taking N large the Lyapunov functional defined in (3.3) satisfies

9 L1) <~ SN () + 2N R (1) E(0)

N L :
_ﬁ{/ [_k;}”mmudF1+/ [—k"z]HmDvdrl}-
2 r, I

Let us fix 0 <r <1 such that =7 <r < p+ From (2.7) we have that

pF1”

oo
1
17‘ — .:
/0 il SC/o I+ =% for i=12.

Using this estimate in Lemma 4.1 we get

/ [~k 7 Oudly > ¢E(0)” T e (/
r,

I

)

[k’]DudFl) T (4

/ [—k5) 5100 Ty > cE(0)” T0eF0 (/
Iy

- kQ]DvdH) TG (4.2)
1

On the other hand, from the Trace theorem we have

B0 T < cB(0) TR A (1), (4.3)
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Substitution of (4.1)-(4.3) into (4.1) we obtain

%L(t) < —cE(0)” T w0 B(t) " TmT0 + 2N R2(H) E(0)

I , I+ =G
— cE(0)” 0=nG+D {( [—kzl]DuaTl)
r

1

o=
+(/ [—kg]mvdrl) e “’}.
I'y

Taking into account the inequality (3.4) we conclude that

9ty < ———C ()T 4 2ANR2 (1) (),
dt L£(0) TG0

for some ¢ > 0, from where follows, applying Lemma 4.2, that

C
L(t) < mﬁ(o)-

Since (1 —7)(p+ 1) > 1 we get, for t > 0, the following bounds
tlullFzr,) + ol 7er,) < EL(E) < oo,

t t
/0 (ull2aey, + ol220,,) ds < c/o () ds < oo.

Using the above estimates in Lemma 4.1 with r = 0 we get

1 1+p11
/ [~ &, 71 Oudl, > L( / [fk’l]DudF) i
Fl 1_‘1

1 oy
/ [ &) 7 Dodl; > ;(/ [—k;]mvdr) o
T Iy

Using these inequalities instead of (4.1)-(4.2) and reasoning in the same way as
above we conclude that
d c

L)< - —
dt (=< L£(0)75T
Applying Lemma 4.2 again, we obtain

£0) S g L)

L) 5T 4+ 2NR2(t)E(0).

Finally, from (3.4) we conclude
c

BW) < 5 e PO

which completes the present proof.

Remark. We would like to mention that for 3 or more variables:u,v,..., the same
procedure can be used to obtain similar conclusions.
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