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ASYMPTOTIC BEHAVIOR FOR A HEAT CONDUCTION
PROBLEM WITH PERFECT-CONTACT BOUNDARY

CONDITION

ANDRÉS BARREA & CRISTINA TURNER

Abstract. In this paper we consider the heat conduction problem for a slab
represented by the interval [0, 1]. The initial temperature is a positive con-
stant, the flux at the left end is also a positive constant, and at the right end

there is a perfect contact condition: ux(1, t) + γut(1, t) = 0. We analyze the
asymptotic behavior of these problems as γ approaches infinity, and present
some numerical calculations.

1. Introduction and preliminaries

When two bodies A and B are in perfect thermal contact at a boundary S, the
boundary conditions are

K1
∂V

∂η
= K2

∂v

∂η
, on S,

V = v, on S;

where V , v are the temperatures of A and B, K1 and K2 are their thermal conduc-
tivities, and η is the outer unit normal. Assuming that K1 � K2, we can consider
that V = V (t) = v|S . Then by means of an energy balance, we get a boundary
condition for v:

K2

∫ ∫
S

∂v

∂η
dS + Mc′

∂v

∂t
= 0, (1.1)

where M and c′ denote the mass and the specific heat of the body A. This kind of
boundary condition has been widely investigated; see for example [3, 4, 5].

We consider a one-dimensional slab [0, `] with its face y = ` in perfect thermal
contact with mass Mf per unit area of a well-stirred fluid (or a perfect conductor)
of specific heat cf . In this case the condition (1.1) is given by

kvy(`, τ) + Mfcfvτ (`, τ) = 0. (1.2)
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This condition appears in several interesting applications such as heat condensers
[3]. We consider the heat conduction problem

kvyy = ρcvτ , in [0, `]× (0, T ],

v(y, 0) = V0 > 0, 0 ≤ y ≤ `,

kvy(0, τ) = q0 > 0, 0 < τ ≤ T ,

kvy(`, τ) + Mfcfvτ (`, τ) = 0, 0 < τ ≤ T ,

(1.3)

where k is the thermal conductivity, ρ the density, q0 the heat flux, and c the
specific heat of the material. All of these constants are positive. With the change
of variables

x =
y

`
, t =

kτ

ρc`2
, v(y, τ) = cu(x, t).

problem (1.3) is transformed into the problem

uxx = ut, in [0, 1]× (0, T ],

u(x, 0) = M > 0, 0 ≤ x ≤ 1,

ux(0, t) = q > 0, 0 < t ≤ T,

γut(1, t) + ux(1, t) = 0, 0 < t ≤ T,

(1.4)

where

M = cV0, q =
c`q0

k
, γ =

Mfcf

ρc
, T =

kT
ρc`2

.

Roughly speaking, we expect that as γ → +∞ the solution to (1.4) converge to the
solution of the problem

uxx = ut, in [0, 1]× (0, T ],

u(x, 0) = M > 0, 0 ≤ x ≤ 1,

ux(0, t) = q > 0, 0 < t ≤ T,

ut(1, t) = 0. 0 < t ≤ T.

(1.5)

In the case of models of heat conduction in material media it is natural to attempt to
determine the temporary range of validity (i.e. the solution remains positive). Here
an important limitation of this range is imposed by the change of phase phenomena.
An extensive bibliography on phase-change problem can be found in [6].

In [7] the authors studied this problem with temperature and convective bound-
ary conditions at x = 1. They obtained an explicit expression for the approximation
of the time of phase change tch for the problem (1.5), namely

tch =
(√πM

2q

)2
. (1.6)

Here we prove that the solution of the problem (1.4) converges to the solution
of the problem (1.5) using (1.6). This relation was obtained in [8] using Laplace
transforms.

Next we prove that the solution to the problem (1.4) converges to the solution
of the problem (1.5) in the L∞ norm. In fact, by using a numerical scheme we
visualize this convergence. The formulation and the results of the numerical scheme
are provided.
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2. Asymptotic behavior of problem (1.4)

Lemma 2.1. The solution to (1.4) satisfies

(1) If ux(x, t) ≥ 0 then u(0, t) ≤ u(x, t), for 0 ≤ x ≤ 1, 0 < t ≤ T .
(2) For all (x, t) ∈ [0, 1]× (0, T ], ut(x, t) ≤ 0.

Proof. Let v = ux. Then v satisfies

vxx = vt, in [0, 1]× (0, T ],

v(x, 0) = 0, 0 ≤ x ≤ 1,

v(0, t) = q, 0 < t ≤ T,

v(1, t) + γvx(1, t) = 0, 0 < t ≤ T.

(2.1)

By the maximum principle [10], min v(x, t) = min{q, 0, v(1, t)} for 0 ≤ x ≤ 1
and t > 0. Assuming that v(1, t) < 0 (we remark that q > 0) it follows that
min v(x, t) = v(1, t). By Hopf’s lemma (see [10]), vx(1, t) < 0, which contradicts
the last equation in (2.1) (γ > 0). Therefore, ux(x, t) ≥ 0. This proves part 1.

Let vε(x, t) = u(x, t + ε)− u(x, t). Hence

vε
xx = vε

t , in D = [0, 1]× (0, T ],

vε(x, 0) = u(x, ε)−M, 0 ≤ x ≤ 1,

vε
x(0, t) = 0, , 0 < t ≤ T

vε
x(1, t) + γvε

t (1, t) = 0, t > 0.

(2.2)

Let us show that u(x, ε) − M ≤ 0 for all ε ≥ 0. By the maximum principle and
Hopf’s lemma we have

max vε(x, t) = max{u(x, ε)−M,vε(1, t)},

for 0 ≤ x ≤ 1 and 0 < t ≤ T . Assuming that max vε(x, t) = vε(1, t0) > 0, then it
follows that vε

x(1, t0) > 0. From (2.2) it follows that vε
t (1, t0) < 0, which implies

that vε(1, t) decreases in (t0−ε, t0). This contradiction proves that that vε(x, t) ≤ 0.
Hence

lim
ε→0

vε(x, t)
ε

= ut(x, t) ≤ 0,

which completes the proof. �

Since u(x, t) − M satisfies (1.4) with zero initial condition, by the maximum
principle and Hopf’s lemma, it follows that u(x, ε)−M ≤ 0 for all ε ≥ 0.

Lemma 2.2. (1) Let uγi
be solutions to Problem (1.4) with γ1 and γ2 respec-

tively. If γ1 ≤ γ2 then uγ1 ≤ uγ2 .
(2) Let u∞ be the solution to Problem (1.5). Then uγ ≤ u∞ for all γ > 0.

Proof. Let z = uγ2 − uγ1 . Then for x = 1 the function z satisfies

zx(1, t) = uγ2x
(1, t)− uγ1x

(1, t)

= −γ2uγ2t
(1, t) + γ1uγ1t

(1, t)

= −γ2(uγ2t
(1, t)− uγ1t

(1, t)) + (γ1 − γ2)uγ1t
(1, t)

= −γ2zt(1, t) + (γ1 − γ2)uγ1t
(1, t).
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By Lemma 2.1, z(x, t) satisfies:

zxx = zt, in [0, 1]× (0,≤ T ],

z(x, 0) = 0, 0 ≤ x ≤ 1,

zx(0, t) = 0, 0 < t ≤ T,

zx(1, t) + γ2zt(1, t) ≥ 0, 0 < t ≤ T.

(2.3)

By the maximum principle and Hopf’s lemma, for 0 ≤ x ≤ 1 and 0 < t ≤ T we
have

min z(x, t) = min{0, z(1, t)}.
Assume that min z(x, t) = z(1, t0) < 0, then using Hopf’s lemma,

zx(1, t0) < 0.

From (2.3) (γ2 > 0) it follows that zt(1, t0) > 0. This implies that z(1, t) increases
in (t0 − ε, t0), which contradicts that z(1, t0) is a minimum. Therefore we obtain
that z(x, t) ≥ 0.

Setting z = u∞ − uγ , we obtain

zx(1, t) + γzt(1, t) = u∞x
(1, t)− uγx

(1, t) + γ(u∞t
(1, t)− uγt

(1, t)),

= −(uγx
(1, t) + γuγt

(1, t)) + u∞x
(1, t) + γu∞t

(1, t)

= u∞x(1, t).

The function θ(x, t) = u∞x
(x, t) satisfies the heat conduction problem:

θxx = θt, D = {(x, t) : 0 ≤ x ≤ 1, 0 < t ≤ T},
θ(x, 0) = 0, 0 ≤ x ≤ 1,

θ(0, t) = q, 0 < t ≤ T,

θx(1, t) = 0, 0 < t ≤ T,

Using the maximum principle and Hopf’s lemma we obtain

0 ≤ θ(x, t) = u∞x
(x, t) ≤ q.

From the above inequality, we conclude that

0 ≤ zx(1, t) + γzt(1, t) ≤ q.

Using maximum principle and Hopf’s lemma, we deduce that z(x, t) ≥ 0. �

Remark From lemma 2.2, we can assure the existence of a function u∗(x, t) such
that limγ→∞ uγ(x, t) = u∗(x, t) a.e. x ∈ [0, 1], and u∗(x, t) ≤ u∞(x, t).

Let ‖ · ‖∞ be the L∞([0, 1]× [0, T ]) norm:

‖u(x, t)‖∞ = sup
[0,1]×[0,T ]

|u(x, t)|.

In the next lemma, we prove that the convergence is uniform and that u∗(x, t) =
u∞(x, t) a.e. x ∈ [0, 1]. For this proof we use Laplace Transforms [1].

Lemma 2.3. With the above notation,

‖u∞(x, t)− uγ(x, t)‖∞ ≤ qT

γ
. (2.4)
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Proof. Taking w = u∞ − uγ , we have

wxx = wt, [0, 1]× (0, T ], (2.5)

w(x, 0) = 0, 0 ≤ x ≤ 1, (2.6)

wx(0, t) = 0, 0 < t ≤ T, (2.7)

0 ≤ wx(1, t) + γwt(1, t) ≤ q, 0 < t ≤ T. (2.8)

Note that since u∞ and uγ are increasing functions and uγ ≤ u∞, we have

‖u∞(x, t)− uγ(x, t)‖∞ = u∞(1, t)− uγ(1, t), (2.9)

Applying the Laplace Transform,

Wxx(s, x)− sW (s, x) = 0, (2.10)

Wx(s, 0) = 0, (2.11)

0 < Wx(s, 1) + sγW (1, t) <
q

s
, (2.12)

where s is a positive parameter. The general solution to this problem is

W (s, x) = C(s, q, γ) cosh(
√

sx). (2.13)

Replacing (2.13) in (2.12),

C(s, q, γ) ≤ q

s(
√

s sinh(
√

s) + γs cosh(
√

s))
≤ q

γs2 cosh(
√

s)
.

Therefore,
W (s, x) ≤ q

γs2
. (2.14)

To obtain a bound for w(1, t), we apply the inverse Laplace Transform at x = 1 to
(2.14):

w(1, t) ≤ qt

γ
. (2.15)

From (2.9) and (2.15) we obtain

‖u∞(x, t)− uγ(x, t)‖∞ ≤ qT

γ
, (2.16)

which proves the proof. �

3. Numerical scheme and results

We preset a short description of our numerical scheme, for problem (1.4), and
refer the reader to [2] for more details. First, we consider the weak formulation for
the problem (1.4):∫ 1

0

ut(x, t)φ(x)dx +
∫ 1

0

ux(x, t)φx(x)dx = ux(1, t)φ(1)− ux(0, t)φ(0)

= −γut(1, t)φ(1)− qφ(0),

where φ(x) belongs to H1(0, 1). We will consider a finite element method for the
discretization of the space variable.

Let xi = i/N for 0 ≤ i ≤ N be a partition of the interval [0, 1] into subintervals
Ii = [xi, xi+1], of length h = 1/N . Let Vh the set of continuous functions which are
linear on each Ii. We consider the basis functions of Vh taking as usual φi, with
φi(xj) = δij . We define a partition {0 = t0 < t1 < · · · < tM = T} of the interval
[0, T ], with equal subintervals ∆t = tk − tk−1 and k = 1, . . . ,M .



6 A. BARREA & C. TURNER EJDE–2003/84

We consider the following approximations for u(x, tk) and ut(x, tk):

u(x, tk) ≈
N∑

i=0

Uk
i φi(x)

ut(x, tk) ≈ 1
∆t

N∑
i=0

(Uk
i − Uk−1

i )φi(x).

By using these approximations in the weak formulation, we obtain the following
linear system for Uk = (Uk

0 , . . . , Uk
N ):

AUk = BUk−1 + C for k = 1, 2 . . .

U0
i = (xi, 0).

where A and B are symmetric tridiagonal matrices and C = (−q∆t, 0, . . . , 0)T . The
coefficients of these matrices are:

Aij =


h
3 + ∆t

h if j = i = 1
2h
3 + 2∆t

h if j = i for i = 2, . . . , N
h
3 + ∆t

h − γ if j = i = N + 1
h
6 −

∆t
h if j = i + 1 for i = 1, . . . , N.

and

Bij =


h
3 if j = i = 1
2h
3 if j = i for i = 2, . . . , N

h
3 − γ if j = i = N + 1
h
6 if j = i + 1 for i = 1, . . . , N.

In the case of problem (1.5) we obtain the similar linear system for the discrete
scheme where we replace the last file in the matrices A and B for (0, . . . , 0, 1).
Now, we show examples that verify the theoretical results obtained above. For all
examples we set h = ∆t = 10−3.

Example 3.1. In this first example, we show that the solution to problem (1.4)
satisfies the hypotheses of Lemma 2.1 (i.e. ut ≤ 0, ux ≥ 0). We set q = 10,
M = 100 and γ = 25 in the problem (1.4). In figure 1 we show the solution for
different times tj for j = 1, 2, 3, 4. We plot the temperature u(x, t) with respect to
x for different t.

Example 3.2. We take the following values for the data in the problem (1.4):
q = 10, M = 100, γ1 = 1, γ2 = 25 and γ3 = 50. Figures 2 and 3 show the
convergence when γ →∞ at x = 0 and x = 1.

We observe that the solution uγ ≈ u∞ for large values of γ.

Example 3.3. To present numerical evidence of Lemma 2.3, we take q = 10,
M = 100 and T = 10. We consider the parameter γ → +∞ and we show that
‖u∞−uγ‖∞ is bounded for f(γ) = qT

γ . This example shows that the bound f(γ) =
qT
γ actually estimates ‖u∞(x, t)− uγ(x, t)‖∞.

Concluding Remarks. We have proved that the solution to the problem (1.4)
converge in L∞-norm to the solution of problem (1.5). Moreover we have illustrated
this convergence and the properties of the solution of problem (1.4) using a finite
element method in the space variable.
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Figure 1. Solutions to (1.4)
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Figure 2. Convergence at x = 0
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Figure 3. Convergence at x = 1
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