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ASYMPTOTIC BEHAVIOR FOR A HEAT CONDUCTION
PROBLEM WITH PERFECT-CONTACT BOUNDARY
CONDITION

ANDRES BARREA & CRISTINA TURNER

ABSTRACT. In this paper we consider the heat conduction problem for a slab
represented by the interval [0,1]. The initial temperature is a positive con-
stant, the flux at the left end is also a positive constant, and at the right end
there is a perfect contact condition: ug(1,t) + yu(1,t) = 0. We analyze the
asymptotic behavior of these problems as v approaches infinity, and present
some numerical calculations.

1. INTRODUCTION AND PRELIMINARIES

When two bodies A and B are in perfect thermal contact at a boundary .S, the
boundary conditions are

aV ov
Ky — Koee
1877 287’]7 OHS,
V=wv, onls;

where V', v are the temperatures of A and B, K; and K5 are their thermal conduc-
tivities, and 7 is the outer unit normal. Assuming that K; > K5, we can consider
that V' = V(t) = v|s. Then by means of an energy balance, we get a boundary
condition for v:

v

v ,0v
KQ/L%dS+MCE_O7 (1.1)

where M and ¢’ denote the mass and the specific heat of the body A. This kind of
boundary condition has been widely investigated; see for example [3, 4, 5].

We consider a one-dimensional slab [0, ¢] with its face y = ¢ in perfect thermal
contact with mass M per unit area of a well-stirred fluid (or a perfect conductor)
of specific heat c;. In this case the condition (1.1) is given by

kvy (£, 7) + Mycsv, (¢, 7) = 0. (1.2)
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This condition appears in several interesting applications such as heat condensers
[3]. We consider the heat conduction problem

kvy, = pcvr, in [0,4] x (0,71,
v(y,0) =V >0, 0<y<Y,
kvy(0,7) =qo >0, 0<7<T7T,
kvy(¢, 1)+ Mycsu-(0,7) =0, 0<7<T,

(1.3)

where k is the thermal conductivity, p the density, g the heat flux, and c the
specific heat of the material. All of these constants are positive. With the change
of variables

Y kT

T = i t= w, v(y, ) = cu(x, t).

problem (1.3) is transformed into the problem
Ugpe = Uz, in [0,1] x (0,77,
u(z,0) =M >0, 0<z<I1,
ug(0,¢8) =¢>0, 0<t<T,
yue(1,t) +u,(1,8) =0, 0<t<T,

where

clqo Mycy kT
M = Wy, 1= T, T:Tcﬁz'

Roughly speaking, we expect that as ¥ — +oco the solution to (1.4) converge to the
solution of the problem

Uge = ug, in [0,1] x (0,77,
u(z,0) =M >0, 0<z<lI,
uy(0,8) =¢>0, 0<t<T,
w(l,t)=0. 0<t<T.

(1.5)

In the case of models of heat conduction in material media it is natural to attempt to
determine the temporary range of validity (i.e. the solution remains positive). Here
an important limitation of this range is imposed by the change of phase phenomena.
An extensive bibliography on phase-change problem can be found in [6].

In [7] the authors studied this problem with temperature and convective bound-
ary conditions at x = 1. They obtained an explicit expression for the approximation
of the time of phase change ¢, for the problem (1.5), namely

VTM |2
2q)'

ten = ( (16)
Here we prove that the solution of the problem (1.4) converges to the solution
of the problem (1.5) using (1.6). This relation was obtained in [8] using Laplace
transforms.

Next we prove that the solution to the problem (1.4) converges to the solution
of the problem (1.5) in the L® norm. In fact, by using a numerical scheme we
visualize this convergence. The formulation and the results of the numerical scheme
are provided.
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2. ASYMPTOTIC BEHAVIOR OF PROBLEM (1.4)

Lemma 2.1. The solution to (1.4) satisfies
(1) If ugp(x,t) >0 then u(0,t) < u(x,t), for0<z<1,0<t<T.
(2) For all (z,t) € [0,1] x (0,T), us(z,t) <O0.
Proof. Let v = u,. Then v satisfies
Vg = vg, in [0,1] x (0,77,
v(z,0)=0, 0<z<1,
v(0,t)=¢q, 0<t<T,
v(l,t) +yv,(1,t) =0, 0<t<T.

(2.1)

By the maximum principle [10], minv(z,t) = min{q,0,v(1,t)} for 0 < z < 1
and ¢ > 0. Assuming that v(1,t) < 0 (we remark that ¢ > 0) it follows that
minv(z,t) = v(1,t). By Hopf’s lemma (see [10]), v,(1,t) < 0, which contradicts
the last equation in (2.1) (v > 0). Therefore, uy(z,t) > 0. This proves part 1.

Let v¢(x,t) = u(z,t + ) — u(z,t). Hence

€

o, =i, inD=1]0,1] x (0,T],
u(x M, 0<zx<1,
vl Z (= ) (2.2)
vS(0,6) =0, ,0<t<T
vo(1,t) +yvi(1,t) =0, t>0.
Let us show that u(x,e) — M < 0 for all £ > 0. By the maximum principle and

Hopf’s lemma we have
max v (z,t) = max{u(z,e) — M,v°(1,t)},

for 0 <z <1and 0 <t <T. Assuming that maxv®(z,t) = v°(1,t9) > 0, then it
follows that vE(1,¢9) > 0. From (2.2) it follows that v(1,%p) < 0, which implies
that v°(1,t) decreases in (tg—e, tg). This contradiction proves that that v¢(x,t) < 0.
Hence

153
lim S5 Y (z,8)

= <
0 c ut(xat) = 07

which completes the proof. ([

Since wu(xz,t) — M satisfies (1.4) with zero initial condition, by the maximum
principle and Hopf’s lemma, it follows that u(x,e) — M < 0 for all € > 0.

Lemma 2.2. (1) Let uy, be solutions to Problem (1.4) with v1 and v2 respec-
tively. If v1 < vo then uy, < Usy,.
(2) Let us be the solution to Problem (1.5). Then uy < us for all v > 0.

Proof. Let z = u., — u-,. Then for x = 1 the function z satisfies
ZJC(L t) = u’)’zz (17 t) - u"/l,; (17 t)

72Uy, (L t) + Y1Uny,, (17 t)

Y2 (U, (1, 1) = Uy, (1,2)) + (71 = 72)usy, (1,1)

_72275(17 t) + (71 - ’72)u’ylt (1, t)
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By Lemma 2.1, z(x,t) satisfies:
Zex = 2, in [0,1] x (0, < T,
z2(xz,0) =0, 0<z<1,
2(0,t) =0, 0<t<T,
zz(1,8) + 22:(1,¢) >0, 0<t<T.

(2.3)

By the maximum principle and Hopf’s lemma, for 0 < x < 1and 0 <t < T we
have

min z(x,t) = min{0, z(1,¢)}.
Assume that min z(z,t) = z(1,%9) < 0, then using Hopf’s lemma,
z(1,t0) < 0.
From (2.3) (72 > 0) it follows that z(1,%9) > 0. This implies that z(1,t) increases
in (to — &,t9), which contradicts that z(1,%p) is a minimum. Therefore we obtain
that z(x,t) > 0.
Setting z = us — -, We obtain
Ze(L,8) +72e(1 1) = oo, (1,8) =y, (1,) + ¥ (too, (1, 1) — un, (1,1)),
= —(uq, (1,8) + yury, (1,1) + oo, (1, ) + Yoo, (1, 1)
= Uso, (1,1).
The function (z,t) = ue, (z,t) satisfies the heat conduction problem:
Ope =0;, D={(z,t):0<2<1,0<t<T},
0(x,0)=0, 0<z<1,
0(0,t) =¢q, 0<t<T,
0,(1,) =0, 0<t<T,
Using the maximum principle and Hopf’s lemma we obtain
0 <0(x,t) = ueo, (z,t) < gq.
From the above inequality, we conclude that
0<2(1,t) +ya(lt) < g
Using maximum principle and Hopf’s lemma, we deduce that z(x,t) > 0. O
Remark From lemma 2.2, we can assure the existence of a function u*(x,t) such
that im0 uy(z,t) = u*(z,t) a.e. z € [0,1], and u*(z,t) < uso(x, ).
Let || - [|oo be the L>([0, 1] x [0,T]) norm:

u(z,t)]loc = sup |u(z,t)].
[0,1]x[0,T]

In the next lemma, we prove that the convergence is uniform and that u*(z,t) =
Uoo(x,t) a.e. x € [0,1]. For this proof we use Laplace Transforms [1].

Lemma 2.3. With the above notation,

too (@5 2) = (2, €)oo < % (2.4)
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Proof. Taking w = us — U, we have

Wgz = Wt, [07 1] X (OaT]a (25)
w(z,0)=0, 0<z<1, (2.6)
we(0,8) =0, 0<t<T, (2.7)
0 <wg(1,t) +ywe(l,t) <gq, 0<t<T. (2.8)
Note that since u and u, are increasing functions and v, < u, we have
HUOO(m?t) _uv(xvt)HOO :uOO(lvt)_u’Y(lvt)’ (2'9)
Applying the Laplace Transform,
Wew(s,z) — sW(s,x) =0, (2.10)
We(s,0) =0, (2.11)
0 < Wa(s, 1)+ syW(1,t) < <, (2.12)
s
where s is a positive parameter. The general solution to this problem is
W(s,x) = C(s,q,) cosh(y/sx). (2.13)
Replacing (2.13) in (2.12),
q q
C < < .
(s:0,7) < s(y/ssinh(y/s) + ys cosh(y/s)) — ~s2 cosh(/s)
Therefore,
q
%% < = 2.14
(s.7) < (2.14)

To obtain a bound for w(1,t), we apply the inverse Laplace Transform at z = 1 to
(2.14):

wi, ) < 2, (2.15)

From (2.9) and (2.15) we obtain !
Jttoe (2, 8) = s (2, 8)ow < L5, (2.16)
which proves the proof. O

3. NUMERICAL SCHEME AND RESULTS

We preset a short description of our numerical scheme, for problem (1.4), and
refer the reader to [2] for more details. First, we consider the weak formulation for
the problem (1.4):

1 1
/ w(, )(a)de + / (1, 8) o () = (1, )5(1) — (0, £)(0)
0 0

= —yu(1,8)p(1) — go(0),

where ¢(x) belongs to H(0,1). We will consider a finite element method for the
discretization of the space variable.

Let #; = i/N for 0 < i < N be a partition of the interval [0, 1] into subintervals
I; = [z;,2;11], of length h = 1/N. Let V}, the set of continuous functions which are
linear on each I;. We consider the basis functions of V}, taking as usual ¢;, with
¢i(z;) = 6;5. We define a partition {0 = t9 < t1 < --- < tpr = T} of the interval
[0,T], with equal subintervals At =t —tx_q and k=1,..., M.
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We consider the following approximations for u(x,tx) and u(z, ty):

N
u(w,te) = > Ufgi(x)
1=0

N

By using these approximations in the weak formulation, we obtain the following
linear system for U* = (U¥,... U¥):

AU =BU* '+ C for k=1,2...
U? = (2;,0).
where A and B are symmetric tridiagonal matrices and C' = (—qAt,0,...,0)T. The
coefficients of these matrices are:
by if j=i=1
o 28t fj=jfori=2,...,N

Ai':
J %-F%—fy ifj=i=N+1
%f% ifj=i+1for ¢=1,...,N.
and
b ifj=i=1
5, - 2 fj=jfori=2,...,N

ifj=i=N+1

ifj=i4+1fori=1,...,N.

In the case of problem (1.5) we obtain the similar linear system for the discrete
scheme where we replace the last file in the matrices A and B for (0,...,0,1).
Now, we show examples that verify the theoretical results obtained above. For all
examples we set h = At = 1073,

ol WIS,
I
S

Example 3.1. In this first example, we show that the solution to problem (1.4)
satisfies the hypotheses of Lemma 2.1 (i.e. u; < 0, u, > 0). We set ¢ = 10,
M = 100 and vy = 25 in the problem (1.4). In figure 1 we show the solution for
different times ¢; for j = 1,2,3,4. We plot the temperature u(z,t) with respect to
x for different t.

Example 3.2. We take the following values for the data in the problem (1.4):
q = 10, M = 100, vy = 1, 72 = 25 and 3 = 50. Figures 2 and 3 show the
convergence when vy — oo at x =0 and z = 1.

We observe that the solution u, ~ u for large values of ~.

Example 3.3. To present numerical evidence of Lemma 2.3, we take ¢ = 10,
M = 100 and T = 10. We consider the parameter v — 400 and we show that
[|ttoo — Uy || 0o is bounded for f(v) = %. This example shows that the bound f(vy) =

% actually estimates ||tuso(2,t) — uy(2,)||0o-
Concluding Remarks. We have proved that the solution to the problem (1.4)
converge in L*°-norm to the solution of problem (1.5). Moreover we have illustrated

this convergence and the properties of the solution of problem (1.4) using a finite
element method in the space variable.
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FIGURE 2. Convergence at x =0
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