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A COMPARISON PRINCIPLE FOR AN AMERICAN OPTION
ON SEVERAL ASSETS: INDEX AND SPREAD OPTIONS

PETER LAURENCE & EDWARD STREDULINSKY

Abstract. Using the method of symmetrization, we compare the price of the
American option on an index or spread to that of the solution of a parabolic

variational inequality in one spatial variable. This comparison principle is es-
tablished for a broad class of diffusion operators with time and state dependent
coefficients. The purpose is to take a first step towards deriving symmmetrized

problems whose solutions bound solutions of multidimensional American op-
tion problems with variable coefficients when the computation of the latter lies

beyond the scope of the most powerful numerical methods.

1. Introduction

An American option gives its holder the right to buy a stock or basket of stocks
at a given price called the strike prior to but not later than a given time T , from
the time of inception of the contract. What distinguishes an American option from
a European option is the possibility of early exercise. In this paper we focus on
American options on two or more assets. A standard example is an index option
that is based on the geometric or arithmetic means of several assets. The S&P 100
index option, traded on the Chicago Board of Options Exchange is an American
option on a value weighted index of 100 stocks. Two other examples are American
options on the maximum or on the spread of two stocks.

It is well known since 1973 [37] that an American call option on a single stock
which pays no dividends and which follows a geometric Brownian motion will not
be exercised prior to expiration and therefore is, for valuation purposes, equivalent
to a European option. This is not the case for American put options. Moreover, in
most cases of practical interest, the stocks underlying the call options pay dividends
and early exercise is then often not optimal.

No closed form solutions are known for American options, even in the case of
one asset, except for the so-called perpetual option, which is of limited practical
interest. In the case of a single underlying asset, a long tradition exists in the
finance literature of seeking analytical solutions which yield good approximations
to the value of the option and to the value Sf (t), 0 ≤ t ≤ T , at which it is optimal
to exercise the option. Some good references in this direction are Barone-Adesi and
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Whaley [10] and the recent paper by Ju and Zhong [30] which contains an extensive
bibliography of previous work.

The literature on options with several underlying assets is less extensive. A pio-
neering paper is that of Broadie and Detemple [15] who use probabilistic techniques
to describe the shape of the free boundary for some of the most important contracts.
Villeneuve [47] further enriched and strengthened the mathematical underpinnings
of Broadie and de Temple’s work. It should be emphasized that the qualitative
results obtained in these papers are set in the standard Black-Scholes framework,
in which all parameters, such as the volatility, are constant, and to our knowledge,
little is known about the free boundary or about the options value, when we leave
this setting. Thus it is desirable to identify features of the underlying volatility, div-
idend and interest processes from which bounds can be derived, that depend on only
partial information concerning these processes. Note that even in one dimension,
the effect of a state dependent or of a stochastically driven volatility, has significant
influence on American option’s value, as discussed in the recent papers by Broadie,
Detemple, Ghysels and Torres [16, 17]) and the assumption that American index
option follows a geometric Brownian motion is weakly founded. Moreover in the
case of American options on several underlying assets even the most recent numer-
ical methods based on Monte-Carlo algorithms, require extensive computational
power, especially in the case of a continuous exercise envisaged here 1 of multiple
underlying assets and state and time dependent parameters. Thus it is desirable to
develop analytic methods which yield useful and stable bounds, that can be used
as benchmarks by the investor. These bounds will not be optimal in general, ie.
if all the parameters, such as the volatility, are known with precision, one can in
principle obtain sharper bounds or better comparison equations. By “stable” we
mean that the bounds change little if the partial information we have about the
parameters is altered a little.

In this paper, we address the following question. Given an American option on
several assets we seek to obtain upper bounds for its value which rely only on partial
information about the volatility, interest rate and dividend processes governing the
stocks evolution under the risk-neutral measure. Such partial information is the best
that one can expect in most cases. Indeed the process of calibration or “backing
out” a reasonable estimate of the stocks volatility from market data is one of the
most active areas of research in modern finance, see for instance Bakshi, Cao, and
Zhiwu [8]. Of the many approaches that have been taken, perhaps the ones most
similar, in the financial context, to the one we will take here, is that of Avellaneda,
Levy and Paras [5], and that of Lyons [36], which was applied in the American
option setting by Buff [18]. These are similar not in the techniques used, but
rather in the types of assumptions that are made about the volatility process. For
instance in Buff’s development of Avellaneda et al.’s uncertain volatility approach,
its assumed that the volatility lies in a “band” [σmin, σmax].

Many pricing methods for index options assume that the latter follows a geomet-
ric Brownian motion. Recent work has found this assumption to be weakly founded
in some cases. See Broadie, Detemple, Ghysels and Torres [16]. In considering the

1In practice American options permit at best daily exercise. Using even the best Monte Carlo

methods, which involves one hundred regressions at each exercise date, an option on 3 underlying
assets, with 100 days to expiration and 5000 paths per stock generated, yields a conservative

estimate of 100× 5000× 3 = 150000 bits to be stored
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use of more complicated models, an important consideration is their tractability.
Monte Carlo methods for options on multiple assets that take into account the
daily exercise feature and the multifactor structure are expensive, especially when
calibrating market data to a rich structure of input parameters and allowing these
to have a non trivial functional form. The method proposed here explores a di-
rection which trades off precision for tractability. At present it produces upper
bounds only and further numerical work is required to assess how sharp these are.
It’s tractability derived from the fact that the upper bounds produced by solving
a one dimensional parabolic variational inequality require only a few seconds on a
Pentium 2 PC.

However preliminary numerical results indicate that the comparison principle
derived in this paper does not produce bounds that are not sharp enough to be
of interest in practice. Thus the present paper should be seen as a first attempt
to adapt the method of symmetrization to the American option problem and the
method will need to be refined in the future (in progress).

To obtain our bounds we will use the method of symmetrization to estimate
the solutions of the options on multiple assets in terms of the solution Vk(r, τ) :
Bk × [0, T ] of a spatially one dimensional parabolic variational inequality

(Vk)τ − λ2
co(τ)(Vk)rr −

(n− 1)λ2
co(τ)

r
(Vk)r +D(τ)(Vk)r + C(τ)Vk − F (r, τ))

= 0 on {Vk > 0}
≥ 0 on Bk ,

(1.1)

where the coefficients λco(τ), D(τ), C(τ) and source term F are determined by the
original volatilities, interest rate and dividend rates by a recipe that we will describe
in section 3, and where k corresponds to the standard cut-off wherein the problem is
localized to a ball of radius k. This equation has time dependent coefficients, with
the exception of the term 1/r preceding the first order derivative (Vk)r, familiar in
physics in deriving the Laplacian in spherical coordinates. Because of its appearance
in a variety of physical contexts, the case of equations of the form (1.1) has been
studied numerically by mathematical physicists and efficient algorithms can be
adapted to deal with the variational inequality.

The method of symmetrization was introduced by Schwarz citeSc, Steiner [42],
and Hardy-Littlewood-Polya [27]. It’s close connection with isoperimetric inequal-
ities was realized by Polya and Szego , and summarized in their book. Bandle [9]
and Talenti [43] pioneered the introduction of symmetrization and rearrangement
techniques in the area of partial differential equations. Kawohl [31] and Mossino
[38] described the state of the art and found many refinements in their books. The
technique has since been substantially developed in work by Alvino, Lions and
Trombetti [1], Gustafsson and Mossino [26], Diaz and Mossino [23], Ferone and
Volpicelli [25], and Kesavan [33], to mention only a few. In recent work by Kinat-
eder and Mac Donald [34] the closely connected problem of the distribution of first
exit times in its dependence on the domain is considered.

The symmetrization method will be applied to the parabolic variational inequal-
ities modeling the multidimensional American option problem. The theoretical
framework for this was provided by Jaillet, Lamberton and Lapeyre Ja-La-La who
showed how to adapt the theory described in Bensoussan-Lions Be-Li theory to the
present setting.
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Our results also apply in the case of an American option on a single asset, when
the parameters are state and time dependent, and bound the price of the option
by the solution of a variational inequality with purely time dependent coefficients.
In light of the recent work of Broadie, Detemple, Ghysels and Torres [16] on the
profound effect that stochastic volatility and dividends can have on the price of the
American option on one dividend paying option, it is possible that our comparison
principle might be of interest also in this setting. To help illustrate what follows in
a simple case, in Figure 1, we illustrate the value of a put on one dividend paying
asset, in the original variables, before the logarithmic transformation is introduced,
at a given time t prior to expiration. The payoff function is (K − S)+. The value
function is tangent to the payoff at one and only one point which corresponds to the
free boundary S(t). In Figure 2, we show the same Figure but after the logarithmic
change of the independent variable and the change of dependent variable u→ u/K.
In the new variables the payoff function is (1−ex)+, so this change of variables also
has the effect of making the transition between ‘in the money’ and out of the money,
occur the value at x = 0. In Figure 3 we computed the difference between the
option value and the payoff in the new variables. Note that in these new variables,
v is nearly symmetric around the y axis. It will not in general be exactly symmetric,
but note that the inverse image of any value y = c, 0 < c < max v consists exactly
of two points. It turns out that this implies that the bounds obtained are sharper
if r ≥ d, then when r < d (and the opposite is true for calls). The reason for this
is that v satisfies in the new variables an equation of the form

vτ − σ2vxx − (r − d− σ2)vx + rv = δ{x=0} + (dex − r)1x<0 (1.2)

Note that right hand side of (1.2) is the sum of a delta function at the value x = 0
and a function which is monotonically increasing if and only if r ≥ d.

This paper is organized as follows: Section 2 – Formulation of the variational
inequalities, background material on symmetrization and isoperimetric inequalities.
Section 3 – Parameters of symmetrized comparison problem. Section 4 – Statement
of Main Results. Section 5 – Proof of Main Results. Section 6 – Explicit form for
regularized inhomogeneous term.

2. Formulation of the Problem

The american option problem is an optimal stopping problem for a vector of
stocks St = (S1

t , · · ·Snt ) which follow a diffusion process

dSit = (r(St, t)− di(S, t))Sitdt+
∑
ij

Sit σ̃ij(S, t)dZ
j
t (2.1)

where r and di are respectively the short rate and the continuously compounded
dividend rate of the i-th stock, σ̃ij(S, t), i = 1, · · · , n, j = 1, · · · , n is the n ×
n dimensional volatility matrix, and (Zt)t≥0 is a standard Rn valued Brownian
motion on a probability space (Ω,F , P ) with respect to the measure P , where P
is the so-called risk neutral measure. Throughout this paper we will frequently use
the Einstein summation convention wherein the summation sign is omitted when
summing over repeated indices,

The value process u of the american option problem time is a solution of the
following problem

ũ(S, t) = sup
τ∈T

E[e−
∫ τ

t
r(Su,u)duψ(Sτ ) : St = S] (2.2)
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where the stopping time τ varies over all Ft adapted random variables and ψ(S) is
the option payoff. Here (Ft)t≥0 denotes the P completion of the natural filtration
associated to (Zt)t≥0. Intuitively the optimal stopping problem consists in finding
the stopping strategy τ that maximizes the expected gain to the holder of the
option. Changing variables as follows

xi = ln(Si/K), i = 1, · · ·n
u = ũ/K

τ = T − t ,

(2.3)

where K is the strike of the option and let Ct, Et, denote respectively the continu-
ation and exercise region for the option, with Ct ∪ Et = Rn. It can then be shown
that u is a weak solution (in a sense made precise below) of Problem (γ1):

uτ − σij(x, τ)
∂2u

∂xi∂xj
− (r − di − σii)

∂u

∂xi
+ ru = 0 (2.4)

x ∈ Cτ , τ ∈ [0, T ]

u = ψ on Eτ (2.5)
u = ψ on ∂Cτ

∂u

∂ν
=
∂ψ

∂ν
quadon ∂Ct (2.6)

The free boundary condition ∂u
∂ν = ∂ψ

∂ν on ∂Ct has a meaning only at regular
points of the free boundary and, to our knowledge, no complete analysis of the
regularity of the free boundary is presently available, especially in the case n ≥ 2.

The spatial part of the operator in (2.4) is denoted LS

LS = −σij(x, τ)
∂2

∂xi∂xj
− (r − di − σii)

∂

∂xi
+ r, (2.7)

where

σij =
1

2K2

∑
k

σ̃ikσ̃jk . (2.8)

The rigorous weak formulation of the problem is formulated in terms of variational
inequalities and was detailed by Jaillet Lamberton and Lapeyre [29] based on earlier
work by Bensoussan and Lions and is subject to the following hypotheses:

(H1) r(x, τ) and dj(x, τ), j = 1, ..n are bounded C1 functions from Rn× [0, T ] to
R, with bounded derivatives and r ≥ 0, dj ≥ 0.

(H2) The entries σ̃ij , i, j = 1, · · ·n, in the matrix σ̃(x, τ), are bounded C1 func-
tions from Rn× [0, T ] to R. σ̃ admits continuous second partial derivatives
with respect to x satisfying a Holder condition in x uniformly with respect
to (x, τ) in Rn × [0, T ].

(H3) The matrix σ = 1
2 σ̃ · σ̃

t satisfies the following property: There exists η > 0
such for all (x, t) ∈ [0, T ]× Rn and all ξ ∈ Rn,

∑
1≤i,j≤n

σi,j(x, t)ξiξj ≥ η
n∑
i=1

ξ2i (2.9)
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(H4) The option payoffs ψ considered depend only on x and in addition satisfy
the condition: There exists M > 0 such for all x ∈ Rn

|ψ(x)|+
n∑
j=1

| ∂ψ
∂xj

(x)| ≤MeM |x| . (2.10)

All option payoffs of interest in practice satisfy this growth condition.
(H5) The interest rate r(x, τ) is bounded below by some positive constant r0.
The variational inequalities considered are formulated in certain function spaces

which we now describe. Let m be a non negative integer and suppose that 1 ≤
p ≤ ∞ and 0 < µ < +∞. Wm,p,µ denotes the space of all functions u whose
distributional derivatives of order less than or equal to m lie in Lp(Rn, e−µ|x|dx).
For brevity we will use the notation Hµ to denote the space W 0,2,µ(Rn) and Vµ to
denote the space W 1,p,µ. The inner product on Hµ is denoted (·, ·)µ. Define a a
bilinear form on Vµ for each t ∈ [0, T ] as follows: For all u, v ∈ Vµ,

aµ(τ, u, v) =
n∑

i,j=1

∫
Rn

σi,j(x, τ)
∂u

∂xi

∂v

∂xj
e−µ|x|dx

−
n∑
i

∫
Rn

ri − di − σii −
n∑
j

(σij)xj

 ∂u

∂xi
ve−µ|x|dx

−
n∑

i,j=1

∫
Rn

(
σij

xj
|x|

∂u

∂xi

)
ve−µ|x|dx+

∫
Rn

r(x, τ)uve−µ|x|dx

(2.11)

Coerciveness. There exist constants α > 0 and ρ > 0 such that for all τ ∈ [0, T ]
and for all u ∈ Vµ

aµ(τ, u, u) + ρ|u|2µ ≥ α‖u‖2µ , (2.12)

where we use single bars | · | to denote the norm in Hµ and double bars ‖ · ‖ to
denote the norm in Vµ. The coerciveness is ensured by hypotheses (H3).

Under the regularity and non-degeneracy assumptions on the coefficients, i.e.
conditions (H1)–(H5) we have the following result

Theorem 2.1. If ψ ∈ Vµ, there exists a unique solution to the following parabolic
variational inequalities defined on [0, T ]× Rn

u ∈ L2([0, T ];Vµ),
∂u

∂τ
∈ L2([0, T ];Hµ)

u ≥ ψ a.e in Rn × [0, T ], u(0) = ψ

∀v ∈ Vµ v ≥ ψ ⇒ (
∂u

∂τ
, v − u)µ + aµ(τ, u, v − u) ≥ 0

(2.13)

where the bilinear form was defined in (2.11).

Remarks 1) The terms
∑n
i=1

∂σij

∂xi
(x, τ) and

∑n
j=1

∑n
i=1 σij(x, τ)

xi

|x|
∂u
∂xj

in (2.11),
arise from an integration by parts, by bringing the derivative respectively on the
volatility coefficient σij and on the exponential damping factor e−µ|x|.
2) Unlike Jaillet-Lamberton-Lapeyre, we will work in the backward variable τ =
T − t.

The proof of Theorem 2.1 is outlined in Jaillet, Lamberton and Lapeyre. It is
based on the treatment in Bensoussan -Lions [12, Chapter 3, Section 4].
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Class of Payoffs considered. The payoffs of practical interest for American op-
tions on several underlying assets, fall into two principal categories.
Payoffs Class A: These payoffs are illustrated by payoffs on a basket or on a
spread. After normalizing the strike to be equal to one with the change of variables
(2.3) these payoffs may be written

η(x) = (x)+ (2.14)

ψC = η(ΦC), ΦC =
n∑
i=1

(wiexi − 1) (2.15)

ψP = η(ΦP ), ΦP =
n∑
i=1

(1− wie
xi) (2.16)

where for an index option all constants wi’s are positive and for a spread some of
the wi are positive and others negative. The simplest example of an index option is
an option on the average of two assets where ψC = (1

2 (ex1 + ex2)− 1)+ for a spread
on two assets ψC = (ex1 − ex2 − 1)+.
Payoffs Class B: Consider η(maxni=1(Φi)) where Φi is a smooth function. In the
present paper we will limit the discussion to payoffs of class A. Option payoffs of
class B require an additional regularization in our treatment due to the presence
of both positive part and max in their definition. This will likely decrease the
tightness of the upper bounds and is best addressed in the context of a different
kind of symmetrization.

Payoff functions of Class A are only Lipschitz and so, for technical reasons, we
will need to regularize them. This is achieved by approximating the payoff ψ by a
function ψε which lies in W 2,p,µ(Rn) and such that ψe → ψ uniformly in Rn. The
explicit form of this regularization will not play a role until §6, see (6.6). Denoting
for brevity, the solution of obstacle problem for given ψ by u[ψ], our strategy below
will be to obtain estimates for u[ψε] and to then carry over these estimates to u(ψ)
using the following result: Under the same conditions as those in Theorem 2.1, we
have that

‖u[ψ]− u[ψε]‖L∞([0,T ]×Rn]) ≤ ‖ψ − ψε‖L∞(Rn) (2.17)

for the proof of which we refer to Bensoussan-Lions and and Jaillet-Lamberton-
Lapeyre.

In the results below, we will frequently work with u = u[ψε]. We use the follow-
ing result, which shows that the problem on all of Rn can be approximated by a
sequence of problems on balls Bk = {x : |x| < k} with k →∞. Let

Bk = {x ∈ Rn : |x| < k}, ∂Bk = {x ∈ Rn : |x| = k},
Hk = L2(Bk), Vk = {f ∈ Hk,∇f ∈ Hk}

and define a bilinear form on Vk for each t ∈ [0, T ] as follows: For u, v ∈ Vk,

ak(t;u, v) =
n∑

i,j=1

∫
Bk

σij(x, t)
∂u

∂xi

∂v

∂xj
dx

−
n∑
i=1

∫
Bk

 n∑
j=1

(r − di − σii −
n∑
j=1

∂σij
∂xj

 ∂u

∂xi
v dx+

∫
Bk

ruv dx

(2.18)
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Theorem 2.2. Under assumptions (H1)–(H5), there exists a unique solution uk
of the variational inequality

uk ∈ L2([0, T ];Vk),
∂uk
∂t

∈ L2([0, T ];Hk)

uk ≥ ψ a.e. in [0, T ]×Bk

∀v ∈ Vk if v ≥ ψ then (
∂uk
∂t

, v − uk)k + ak(t, u, v − u) ≥ 0

uk = ψ if x ∈ ∂Bk
uk(0) = ψ

Moreover the approximate solutions uk have the property that, for t ∈ [0, T ] they
converge uniformly to u as k →∞ on a ball of radius k/2. This result is implicitly
contained in the research report by Jaillet, Lamberton and Lapeyre [1990] which
is a long version of their 1988 article. Since this report is not easily available,
for the reader’s convenience, the salient points of the arguments are described in
Appendix 1. The choice of a ball of radius k/2 is arbitrary. Any radius c(k) such
that limk→∞ (k − c(k)) = +∞ is possible, as is clear from (7.4).

Transformation to a inhomogeneous equation in the continuation region.
We transform the solution of the problem guaranteed by Theorem 2.2 to an equiva-
lent problem with zero payoff and a non-zero source term in the continuation region,
by making the transformation uk → vk = uk − ψ. For brevity let

L2
k = L2(Bk) , V k0 = W 1,2

0 (Bk) . (2.19)

We then obtain the following problem

vk ∈ L2([0, T ];V k0 ) ,
∂vk
∂t

∈ L2([0, T ];Lk2)

vk ≥ 0 a.e. in [0, T ]×Bk

∀wk ∈ V k0 with wk ≥ 0

(
∂vk
∂t

, wk − vk) + ak(t, vk, wk − vk) ≥ −ak(t, ψε, wk − vk)

vk(0) = 0

(2.20)

In later sections the explicit form of the inhomogeneous term −LSψ, (see (2.7)),
where ψ is the payoff function of a basket option, will be useful, and is given below.
The calculation is most easily carried out in the original variables S and then
transfered to the new variables. This form for the right hand side can be derived
in two ways. One is to regularize the payoff function ψ from above and pass to
the limit. The other is to apply Federer’s coarea formula directly to the Lipschitz
function ψ. In the case of a call on an index or a call on a spread we get
Calls:

−LS(ψC) = σijwiwje
xi+xj

1
|∇ΦC |ΦC=0+

δ{ΦC=0}

+ (r − di)wiexi1{∑wiexi>1}(
∑

wie
xi − 1)+

= σijwiwje
xi+xj

1
|∇ΦC |ΦC=0+

δ{ΦC=0} + (r − widie
xi)1{∑wiexi>1} .

(2.21)
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For puts we have:
Puts

−LS(ψP ) = σijwiwje
xi+xj

1
|∇ΦP |ΦP =0+

δ{ΦP =0}+(widiexi−r)1{1>∑
wiexi} (2.22)

where δ{Φ=0} is shorthand for the n− 1 dimensional Hausdorff measure restricted
to the n − 1 dimensional surface {Φ = 0}, ie. Hn−1b{Φ = 0}. Note that the well
known term rK1∑

wiexi>1 that usually appears in the right hand side in our case
has become r1∑

wiexi>1, since we work in the normalized variables.

Semi-discretization of the regularized problem. The estimates obtained be-
low, using symmetrization techniques on the regularized, localized problem, re-
quire the technique of semi-discretization, also known as Rothe’s method. On
the domain Bk consider the following sequence of approximating problems. Let
0 ≤ τ1 ≤ τ2 · · · , τn = T be the partition associated to the n-th approximating
problem where

∆τn =
T

n
(2.23)

Define an approximating elliptic variational problem by letting

(V k0 )+ = {u ∈ H1
0 (Bk) : u ≥ 0} (2.24)

(recall that V k0 was defined earlier in (2.19)). and

am,nk (u, v) =
1

∆τn

∫ (m+1)∆τn

m∆τn

ak(s, u, v)ds, u, v ∈ (V k0 )+, (2.25)

where ak was defined in (2.18). Let

GDε = −LSψDε , D = C or P (2.26)

Recall that ψε is a regularization of ψ and then define

(GDε )m,n =
1

∆τn

∫ (m+1)∆τn

m∆τn

GDε (s)ds . (2.27)

When we average the bilinear form ak(·, u, v) over the time interval [m∆τn, (m +
1)∆τn] , we average coefficients of the operator , eg. r(x, ·), σij(x, ·), d(x, ·).

Now for fixed n, let vm,nk ∈ (V k0 )+,m = 1, .., n be the solution to the following
elliptic variational problem, defined recursively by v0,n

k = 0 and for all w ∈ (V k0 )+,

amk (vm,nk , w − vm,nk )− ((GDε )m,n, w − vm,nk ) ≥
(vm−1,n

k − vm,nk

∆τn
, w − vm,nk

)
. (2.28)

Rewrite this expression as

amk (vm,nk , w − vm,nk ) +
1

∆τn
(vm,nk , w − vm,nk )

≥
( 1
∆τn

vm−1,n
k + ((GDε )m,n, w − vm,nk )

)
, ∀w ∈ (V k0 )+

(2.29)

Writing the problem in this form, makes clear that the coefficient of the zero-th order
term is increased by a factor proportional to 1

(∆τn) and so by well known results our
elliptic variational problem is solvable when (∆τn) is small enough, for arbitrary
inhomogeneity 1

(∆τn)v
n
k + (GDε )m,n. Moreover, one has the convergence result in

Bensoussan-Lions [12] which shows that the solution of this problem converges
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weakly in L2([0, T ] : H1
0 (Bk)) and weak * in L∞([0, T ] : L2(Bk)) to a solution of

problem (2.20).
This completes our discussion of introduction to the optimal stopping problem

and its rigorous formulation. In the next section we give some background material
on symmetrization so that we may then introduce the radially symmetric (in spatial
variables) comparison problem.

2.1. Background material on Symmetrization . We recall some background
material on rearrangements and symmetrization. If φ ∈ L1(Ω) we let

µφ(t) = |{x ∈ Ω : φ(x) > t}|, t ∈ R, (2.30)

where, if A is a Lebesgue measurable set, |A| denotes the n dimensional Lebesgue
measure of A. µφ(t) is called the distribution function of φ. Also we define the
monotone decreasing rearrangement of φ by

φ∗(s) = sup{t : µφ(t) > s : s ∈ [0, |Ω|]} (2.31)

The increasing rearrangement of φ is defined by

φ∗(s) = φ∗(|Ω| − s) s ∈ [0, |Ω|] (2.32)

We also let Ω∗ be the solid ball with the same volume as Ω and define the Schwartz
symmetrization of φ by

φ](x) = φ∗(ωn|x|n) x ∈ Ω∗, (2.33)

where ωn is the volume of he unit sphere in Rn.
If µφ is strictly decreasing and continuous φ∗ is the smallest decreasing function

from [0,Ω] such that φ∗(µφ(t)) ≥ t for every t ∈ R. A basic property of φ∗ , φ] is
that φ and φ∗ and φ] have the same distribution function. This implies that for
any Borel function F we have∫

Ω

F (φ) =
∫ +∞

−∞
F (t)dµφ(t) =

∫
Ω]

F (φ]) =
∫ |Ω|

0

F (φ∗) (2.34)

In §4 we will use the notation φ∗,k and φ],k to emphasize that we are considering
symmetrizations relative to the domain Bk.

Properties of rearrangements. The following properties of rearrangements will
be frequently used in the sequel.

(i) (a) For a constant c, (cf)∗ = cf∗ and
(b) (f + c)∗ = f∗ + c.

(ii) If h is a monotone increasing function then (h(f))∗ = h(f∗)
(iii) If 1A is the characteristic function of a set A then

(1A)∗ = 1A∗ (2.35)

(iv) The Hardy-Littlewood inequalities∫
fg ≤

∫
f∗g∗ (2.36)∫

fg ≥
∫
f∗g∗ (2.37)

(v) ∫ µ

0

(f + g)∗ ≤
∫ µ

0

f∗ +
∫ µ

0

g∗
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(vi) ∫
v>t

f ≤
∫
v∗>t

f∗

(vii) If h ≥ 0 is a non-increasing function,∫ µ

0

(f + g)∗h(s)ds ≤
∫ µ

0

(f∗ + g∗)h(s)ds

(viii) For non negative f and g, Chong and Rice [21],∫ µ

0

(fg)∗ ≤
∫ r

0

f∗g∗ . (2.38)

Background material on Minkowski-Buseman isoperimetric inequality.
Let D be a closed set (not necessarily convex) with boundary satisfying certain
Lipschitz conditions . Given a symmetric non-negative quadratic form Q(x, x) =∑
Qijxixj , consider the action of Q on the unit vector n to the surface ∂D and

integrate it’s square root over the surface

Λ̄ =
∫
∂D

√
Q(n,n) dS (2.39)

Since Q is a convex function (see for instance Bonnessen and Fenchel [13]) the
weight ζ := Q1/2(x, x), which is homogeneous of degree one, can be used to deter-
mine the boundary ∂CQ of a convex set CQ as follows

∂CQ = {ζ−1(u)u : u ∈ Sn−1} (2.40)

Note that CQ is precisely that convex set determined by the condition y : ζ(y) ≤
1. Indeed, for u ∈ Sn−1 ζ( u

ζ(u) ) = 1, since ζ is homogeneous of degree one.Then we
consider (CQ)0 the convex set polar to CQ. This is defined in terms of the support
function

S(u) = max{(u, x) : x ∈ CQ} = max
ξ∈Rn 6=0

(u, ξ)
ζ(ξ)

, (2.41)

of the convex set as follows

(CQ)0 = {y ∈ Rn : S(u) ≤ 1} (2.42)

We are now in a position to state a special case of the Minkowski-Buseman inequal-
ity [19].

Λ̄ ≥ n|D|
n−1

n |(CQ)0|1/n (2.43)
In the case of the convex sets considered in the present paper, this inequality can
be obtained from a scaling argument using the principle axes of the quadratic form
Q.

This inequality holds for any convex function ζ (ie. not necessarily of the form
Q1/2) which is homogeneous of degree one. Note that this inequality is always
stronger than that obtained by applying the standard isoperimetric inequality in
conjunction with the lower bound on the quadratic form Q.

ζ(x) = Q(x, x)1/2 ≥ α1/2|x| , (2.44)

where α is the smallest eigenvalue of the positive quadratic form Q, and where the
classical isoperimetric inequality reads

surface area (∂D) ≥ nω1/n
n |D|

n−1
n (2.45)
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Indeed, merely combining (2.44) and (2.45), would yield

Λ̄ ≥ α1/2nω1/n
n |D|

n−1
n ,

and the inequality (2.43) is stronger because we always have

|(CQ)0|1/n ≥ α1/2ω1/n
n

To see this, it suffices to note that the dual convex set (CQ)0 always contains the
ball of radius α1/2. Indeed for the support function S(u) of CQ we have

S(u) = sup
ξ∈Sn−1

< u, ξ >

ζ(ξ)
≤ 1
α1/2

|u|,

since for ξ ∈ Sn−1 Q(ξ, ξ) ≥ α. Therefore if |u| ≤ α1/2 then S(u) ≤ 1, and so
u ∈ (CQ)0 as required. The parameters of the symmetrized problem are defined in
the next section.

3. Parameters of symmetrized one dimensional-in-space parabolic
variational inequality

Diffusion coefficient. Let Λ(τ) be the largest purely time dependent, symmetric,
positive definite matrix smaller than σ(x, τ), ie.

Λ(τ) ≤ σ(x, τ) ∀x ∈ Rn

and if Λ̃(τ) is any other purely time dependent matrix that is smaller (in the sense
of matrices, ie. the difference is a positive matrix) than σ(x, τ) (which exists since
σ(x, t) is a smooth symmetric matrix) then

Λ̃(τ) < Λ(τ)

Let QΛ(ξ, ξ) be the associated quadratic form. Let

λco(τ) =
{ |{y ∈ Rn : (QΛy, y) ≤ 1)}o|

ωn

}1/n
, (3.1)

where ωn is the volume of the unit ball in Rn. The definition of the polar convex
set was given in (2.42). In the present case it coincides with the set {z ∈ Rn :
(Λ−1(τ)z, z) ≤ 1}, where Λ−1(τ) is the inverse of Λ(τ). As an example, when
n = 2 and λ11 = a2, λ22 = b2 and λ12 = λ21 = 0 the convex set C is the ellipse
a2x2+b2y2 ≤ 1 and the polar set C0 is the ellipse x2

a2 + y2

b2 ≤ 1, i.e., the eccentricities
are switched. The volume of the polar convex set is πab, so the volume divided
by the volume of the unit sphere is ab and

√
ab is larger than the square root of

the minimum eigenvalue, min(
√
a2,

√
b2), of the matrix Λ. The consideration of the

polar convex set is quite natural in cases where the volatility matrix has eigenvalues
that are substantially different in magnitude.

In the context of partial differential equations it’s usefulness was pointed out
and illustrated in Alvino, Ferone, Trombetti and Lions [3]. In such cases it gives
a considerably sharper estimate than the one that would be obtained by using
simply the ellipticity constant of the matrix, which corresponds to the minimum of
the eigenvalues.



EJDE–2003/74 A COMPARISON PRINCIPLE 13

Drift term. First define

D̄ij(x, τ) = r(x, t)− di(x, t)− σii(x, t) +
n∑
j=1

(σij)xj (x, t) (3.2)

Remark It is important to note that the definition of D(x, τ) involves the partial
derivative of the volatilities with respect to the logarithm of the stocks. This
means that if we attempt to use the model to obtain upper bounds for options
in a given market, we build into our implementation of the model a guess at the
size and (certainly) of the sign of these partial derivatives ( a generalization to the
multi-factor model of incorporating information about the so-called “smile”) and
input this information into our “effective parameters”, i.e. the parameters of our
parabolic variational inequality with one spatial variable.

Denote by λ̂ij(τ), i, j = 1, · · ·n, the entries of the matrix Λ−1(τ) and let, for
fixed τ ∈ [0, T ]

D(τ) = λco(τ)
(

max
x∈Rn

λ̂ij(τ)D̄i(x, τ)D̄j(x, τ)
)1/2

(3.3)

Zero-th order term. The next two input functions of the one dimensional prob-
lem are defined in terms of those in the multi-dimensional problem as follows:

C(τ) = min
x∈Rn

r(τ, x) (3.4)

ε family of inhomogeneous terms.

Fε = (−LS(ψε))],k

where LS is given by (2.7) ) and f ],k denotes the Schwartz symmetrization of f ,
defined in §2.1.

4. Main Results

Our main results are the following comparison results.

Theorem 4.1 (Purely time dependent bounds for vk)). Let vk(x, τ), for n ≥ 1 be
the unique solution in L2([0, T ];V k0 ] with vt ∈ L2([0, T ];L2

k], of (2.20) on a large
ball Bk, where ψ is the payoff of a put or call on an index or a spread, and let
Wk = W ε

k be the unique weak radial solution, in the same space, of the following
problem:

(Wk)τ − λ2
co(τ)(Wk)rr −

n− 1
r

λ2
co(τ)(Wk)r +D(τ)(Wk)r + C(τ)Wk = Fε

on {Wk > 0}
(Wk)r(0, τ) = 0 Wk(r, 0) = 0

(4.1)

where,
Fε = −(LSψε)],k,

and where the parameters λco(τ), C(τ), D(τ) were defined in §3, in the case n ≥ 2
and in the case n = 1, λ2

co(τ) = minx∈Rn σ(x, τ) (σ as in (2.8) ), then the following
comparison principle holds∫ V

0

1
e(µ, τ)

v∗,kk (µ, τ)dµ ≤
∫ V

0

1
e(µ, τ)

W ∗,k
k (µ, τ)dµ (4.2)
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where, µ = ωnr
n, V ∈ [0, |Bk|] and

e(µ, τ) = exp
(

D(τ)
(λco(τ))2

µ1/n

)
(4.3)

Note the coincidence region for the radial problem corresponds to the set {Wk =
0} = Bk \ {Wk > 0}.

As a consequence of (4.2), we have the following statement.

Corolary 4.2. Under the same conditions of Theorem 4.1, we have

max
Bk

vk(x, τ) ≤ max
Bk

Wk(x, τ) 0 ≤ t ≤ T (4.4)

For the proof: Divide (4.2) by V and let V → 0.

Corolary 4.3 (Purely time dependent bound for original problem). Let u be the
value of the American option, whose payoff ψ(x) is a call or put on an index or
on a spread, then given δ > 0 arbitrarily small there exists a k = K(δ, n, r, di, σi,j)
such that on the ball of radius k

2 we have

|u(x, τ)− ψ(x)| ≤ max
x∈Bk

W δ
k + 2δ

Remark The dependence on δ is complicated to express but at its root is the
inequality

|u− ψ| ≤ |u− uε|+ |uε − ψε|+ |ψε − ψ|
where uε is the solution of (2.13) with ψε replacing by ψ. The next step is to
estimate uε − ψε on Bk/2 by vk , the solution on Bk of (2.20), using the results of
Appendix 1, and then to estimate vk by Wk using the result of Theorem 4.1.

The results above can be complemented with the following result.

Theorem 4.4 (time and state dependent bounds for vk). Let vk(x, τ), for n ≥ 1
be the solution of (2.20) on a large ball Bk , let z = (

∑n
i=1 |wi|exie−(r−di)τ + 1)

and let W z
k ≥ 0 be the solution of the spatially one dimensional equation

(W z
k )τ − λ2

co(τ)V
z
rr −

n− 1
r

λ2
co(τ)V

z
r +Dz(τ)(W z

k )r − Cz(τ)W z
k

= (−LSψε
z

)],k in the region {W z
k > 0}

∂W z
k

∂r
(0, τ) = 0, W z

k (r, 0) = 0

where the coefficients Dz(τ) and Cz(τ) are defined by the same algorithm (3.3) and
(3.4) as in section 3, but now applied to the new effective drift and zero-th order
terms

(D̄i(x, τ) +
2
z
σij

∂z

∂xj
)

and new zero order term
1
z
(LSz + C(x, τ))

and new forcing term

F zε = (
n∑
i=1

|wi|exie−dit + 1)Fε
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then we have the same estimates as in Theorem 4.1, with vzk = vk

z replacing vk and
with W z

k replacing Wk.

Corolary 4.5 (Time and state dependent bounds). Let u[ψ] be the solution of the
American option problem, with payoff ψ that is either a call or put on an index or
on a spread, then under the same conditions as in Theorem 4.4, for all x ∈ Bk

|u(x, τ)− ψ(x)| ≤ maxx∈Bk
(W z

k )δ) + 2δ∑n
i=1 |wi|exie−(r−di)τ + 1

(4.5)

Remark This second class of bounds can be thought of as deriving a comparison
principle for the price measures in a special set of units, i.e. choosing a numeraire.
The particular numeraire used above is convenient but by no means the only pos-
sible one.

5. Proof of the main results

Estimates for the elliptic variational inequalities associated to the time-
discretized problems. In this section we provide estimates for the elliptic vari-
ational inequalities associated to the time-discretized, and regularized parabolic
variational inequalities. Estimates for the elliptic variational inequalities then lead
to estimates for the parabolic one, using the method of Vasquez [45], as developed
by Ferone and Volpicelli [25] In carrying over the estimates for the elliptic problem
to the parabolic one, we wish to allow the volatility and drift parameters of the
symmetrized problem to be time dependent. This can however be accommodated
by a simple extension of their argument.

For this, let us further simplify the notation by letting

D̄m,n
i = (r − di − σii − (

n∑
j=1

(σij)xj
)m.n (5.1)

We will lighten the notation by dropping, provided the context is clear, the super-
script “n,m” in the presentation below. We also will denote by G−, the part of
the inhomogeneous term that results from solving the elliptic variational problem
in the preceding interval, ie.

G− =
1

∆τ
vm,nk (5.2)

In this simplified notation, the localized and regularized problem on the domain
Bk can then be written in the form, find vk ∈ V k0 such that for all wk ∈ V k0 ,∫

Bk

(σij(vk)xi
(wk)xj

− D̄i(vk)xi
wk + (r +

1
∆τ

)vk wk) ≥
∫
Bk

(GDε +G−)wk (5.3)

and we let

ak(v, w) =
∫
Bk

(σij(v)xi(w)xj − D̄i(v)xiw + (r +
1

∆τ
)v w) (5.4)

We next follow closely the steps in Alvino-Matarasso-Trombetti, 1992, and make the
necessary adjustment to incorporate the use of the Buseman-Minkowski inequality
in the treatment of the principal part and of the drift terms.
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In (5.3), use the test function

φh(x) =


h t+ h < vk(x)
vk(x)− t t < vk(x) ≤ t+ h

0 vk(x) ≤ t

(5.5)

with h ≥ 0 and t ∈]0, sup u[. Since vk±φh ≥ 0 we can replace the test function wk
in V k0 , by the functions vk ± φh. We thus obtain

1
h
ak(vk, φh) =

1
h

∫
Bk

(GDε +G−)φh (5.6)

where, in the present simplified notation, ak(vk, φh) is given by (5.4).
Dividing by h and taking the limit as h → 0, leads in a standard way (see

Alvino-Lions-Trombetti [1]) to the equality (using wk = ±φh)

− d

dt

∫
vk>t

σij(x, τ)(vk)xi(vk)xj =
∫
vk>t

D̄i(vk)xi−
∫
vk>t

(r+
1

∆τ
) vk+

∫
vk>t

(GDε +G−)

(5.7)
Case 1: n ≥ 2 The estimates are now carried out in the following steps:
Estimate from below of quadratic term, using Minkowski-Buseman in-
equality We estimate from below

− d

dt

∫
Bk

σij(x, τ)(vk)xi(vk)xj (5.8)

From Schwarz’s inequality and an argument due to Talenti [34, page 711-713],

− d

dt

∫
vk>t

√
σijvxi

vxj
≤

{
− d

dt

∫
vk>t

σijvxixxj

}1/2{
− d

dt
µvk

(t)
}1/2

(5.9)

Thus we must estimate below the term

− d

dt

∫
vk>t

√
σijvxixxj (5.10)

The basic idea for doing this is to extend the Minkowski-Buseman inequality to
the setting where the surface ∂D is not a Lipshitz surface, but rather is the level
set of an H1

0 (Bk) surface. Such a generalization was in fact obtained by Amar and
Belletini [6] and Alvino, Ferone, Lions and Trombetti [3], who consider an wider
class of functions generalizing those of bounded variation in the usual metric to
the case of the Minkowsky metric. We illustrate the basic idea here by making
stronger assumptions on vk. Let vk be a Lipshitz function function we by applying
the co-area formula, adapted to Sobolev functions, Almgren-Lieb [4] and Ziemer
[48] that expression (5.10) equals∫

vk=t

√
σij

(vk)xi

|∇vk|
(vk)xj

|∇vk|
dHn−1 (5.11)

so that setting

ν =
∇vk
|∇vk|

(5.12)

Equation (5.11) becomes ∫
{vk=t}

√
σijνiνj dHn−1 (5.13)
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and taking ∂D = {vk = t} and Qij = σij in (2.43) and using the assumption
σ(x, τ) ≥ Λ(τ) we see from the definition (3.1) that∫

vk=t

√
σijνiνj dHn−1 ≥ nω1/n

n λco(τ)|{vk > t}|
n−1

n (5.14)

The non trivial technical questions involved in justifying these manipulations for
a class of functions (an appropriate generalization of BV functions) which in-
clude those delt with here are given in Amar and Belletini and in Alvino-Ferone-
Trombetti-Lions. Combining (5.14) and (5.9) we obtain{

− d

dt

∫
vk>t

σijvxivxj

}1/2

≥ nω1/n
n λco(τ)(µvk>t(t))

1− 1
n (− d

dt
µvk>t)

−1/2 (5.15)

Control of the drift term Let

D̄(x, τ) = (D̄1(x, τ), D̄2(x, τ), D̄3(x, τ)) (5.16)

The term −
∫
v>t

D̄i(x, τ)(vk)xi
(x, τ) is estimated as follows. Recall the definition

of Λ and it’s inverse in §3 and denote the entries of the matrix by λij and those
of its inverse by λ̂ij . Then, using the inequality (x, y) ≤ (ζx, ζ0y) for the convex,
positive, homogeneous function ζx =

√
Q(x, x) (Qx, x = λ̄ijxixj and its conjugate,

ζ0y =
√
Q−1(x, x) where Q−1 is the quadratic form associated to the inverse matrix

Λ−1(τ) of Λ(τ))

−
∫
v>t

D̄i(x, τ)(vk)xi
(x, τ)

=
∫
vk>t

(
λ̂ijD̄iD̄j

)1/2 (
λij(vk)xi

(vk)xj

)1/2

=
∫ +∞

t

ds− d

ds

{∫
vk>s

(λ̂ijD̄iD̄j)1/2
(
λij(vk)xi(vk)xj

)1/2
}

≤
∫ +∞

t

ds
(
− d

ds

∫
vk>s

λ̂ijD̄iD̄j

)1/2(
− d

ds

∫
vk>s

λij(τ)(vk)xi(vk)xj

)1/2

(5.17)

Recall the definition (2.19) of D(τ) from §3 (see (3.3)) and note that we then clearly
have (

− d

ds

∫
vk>s

λ̂ij(D̄iD̄j

)1/2

≤ D(τ)
λco(τ)

(−µ′vk
(s))1/2 (5.18)

so that (5.17) can be written

|
∫
vk>t

D̄i(x, τ)(vk)xi
(x, τ)dV |

≤ D(τ)
λco(τ)

∫ +∞

t

(−µ′vk
(s))1/2

{
− d

ds

∫
vk>s

λij(τ)(vk)xi
(vk)xj

}1/2
(5.19)

We use (5.15), rewritten in the form

−µ′vk
(s))1/2µvk

(s)
1−n

n

nλco(τ)

{
− d

ds

∫
vk>s

λij(τ)(vk)xi(vk)xj

}1/2

≥ 1 (5.20)
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and multiply (5.19) under the integrand in by (5.20), so our final estimate of the
drift term is

∣∣ ∫
vk>t

D̄i(x, τ)(vk)xi(x, τ)
∣∣

≤ D(τ)

nω
1/n
n (λco(τ))2

∫ +∞

t

{(−µ′vk
(s))(µvk

(s))
1−n

n (− d

ds

∫
vk>s

λij(τ)(vk)xi(vk)xj )}ds

(5.21)
To estimate the zero-th order term in (5.3) use properties i)(b) and v) and vi)

of the rearrangement to get

−
∫
vk>t

(r+
1

∆τ
)vk ≤ −

∫
v∗,k

k >t

(r∗ +
1

∆τ
)v∗,kk ≤ −

∫
v∗,k

k >t

(C(τ)+
1

∆τ
)v∗,kk , (5.22)

where the last inequality follows from the definition (3.4) of C(τ)
For the inhomogeneous term, we record the following inequality, which is needed

in carrying over these estimates to the parabolic case, using the argument in Ferone-
Volpicelli (see p.563-565)∫

vk>t

e−1(µ, τ)(GDε +G−) ≤
∫
v∗,k

k >t

e−1(µ, τ)((GDε )∗,k + (G−)∗,k), (5.23)

where e is defined below (see (4.3)). The inequality follows immdediately from
Property (vii) of the rearrangement, since e−1 = exp(− D(τ)

λ2
co(τ) )µ

−1/n is, for fixed τ ,
a decreasing function of µ.

Combining the various inequalities, we thus have arrived at the inequality

− d

ds

∫
vk>s

λij(τ)(vk)xi
(vk)xj

≤
∫
vk>s

σij(x, τ)(vk)xi
(vk)xj

≤ D(τ)
n(λco(τ))2

∫ +∞

t

−(µ′vk
(s)(µvk

(s))
1−n

n

(
− d

ds

∫
vk>s

λij(vk)xi
(vk)xj

)
+

∫
v∗,k

k >t

(GDε )∗,k + (G−)∗,k)− (C(τ) +
1

∆τ
)v∗,kk

Now we make use of the following form of Gronwall’s inequality. When v satisfies

v(t) ≤ g(t) +
∫ +∞

t

h(τ)v(τ)dτ (5.24)

and v is zero at +∞, then

v(t) ≤ −
∫ +∞

t

g′(τ)e
∫ τ

t
h(s)ds . (5.25)
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Applying this inequality, with

v(t) = − d

ds

∫
vk>s

λij(vk)xi
(vk)xj

, (5.26)

g(t) =
∫ µvk

(t)

0

(GDε )∗,k + (G−)∗,k)− (C(τ) +
1

∆τ
)v∗,kk :=

∫ µvk
(t)

0

(Rv(s))ds,

(5.27)

h(t) =
D(τ)

n(λco(τ))2
(−µ′vk

(t))(µvk
(t))

1−n
n , (5.28)

we obtain

v(t) ≤
∫ +∞

t

(−µ′vk
(s)R(s) exp

(
− D(s)
n(λco(τ))2

(
∫ s

t

(µvk
(s))

1−n
n µ′vk

(u)du)
)
ds

= exp(
D(τ)

(λco(τ))2
) (µvk

(t))1/n)

×
∫ +∞

t

exp(− D(τ)
(λco(τ))2

(µvk
(s))1/n(−µ′vk

(s)))Rv(s)ds

(5.29)
which introducing the notation

e(µ, τ) = exp
( D(τ)

ω
1/n
n λco(τ))2

)
µ1/n (5.30)

and making a change of variables leads to

v(t) ≤ e(µ, τ)
∫ µ(t)

0

e−1(µ, τ)Rv(µ)dµ (5.31)

Combining this estimate again with (5.15), we obtain

(−µ′vk
(t))−1 ≤ 1

(nω1/n
n )2λco(τ)2

µ
2− 2

n
vk (t) e(µ, τ)

∫ µvk
(t)

0

e−1(µ)Rv(µ)dµ . (5.32)

Arguing as in Talenti [43, pp. 711-713], the last inequality can be expressed in
terms of the decreasing rearrangement

(v∗,kk )′ ≤ 1

(nω1/n
n )2λ2

co

µ
2
n−2(t) e(µ, τ)

∫ µvk
(t)

0

e−1(µ, τ)Rv(µ)dµ, (5.33)

with 0 < µ < |Bk|. With this differential inequality in hand, comparison arguments
for one dimensional differential inequalities, may be used, as discussed in Alvino-
Matarasso-Trombetti, to establish Theorem 4.1, the key point being that when
λco(τ) and D(τ) are defined as in §3, the differential inequality becomes an equality.
The interested reader is refered to the proofs Lemma 2.3 p. 275 and Theorem 3.2
p. 277 of Alvino-Materasso-Trombetti [2].
Case 2: n = 1 The one dimensional case lends itself to the sharpest estimates.
Beginning from (5.7), after using the same test function we have

− d

dt

∫
vk>t

σij(x, τ)(vk)2x =
d

dt

∫
vk>t

D̄i(vk)x −
∫
vk>t

(r +
1
δ
τ)vk +

∫
vk>t

(GDε +G−)

(5.34)
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Letting λ(τ) = minx∈R σ̄(x, τ), and by Shwarz’s inequality we get

−(λ(µ′vk
)−1)

d

dt

∫
vk>t

|(vk)x|2 ≤ − d

dt

∫
vk>t

σij(x, τ)(vk)2x (5.35)

Combining this with the sharp relation

− d

dt

∫
vk>t

|(vk)x| = M(vk)(t), (5.36)

where M(vk) is the multiplicity function of vk, we arrive at the lower bound

M2(vk(t))λ(τ)(−µ′vk
(t))−1 (5.37)

for the left hand side 0f (5.34). Note that since vk is zero on the boundary,
M(vk)(t) ≥ 2 and is equal to 2 for all t if and only if the superlevel sets {vk > t}
are all equivalent to intervals. Deriving these claims rigorously for BV functions is
a bit delicate. A beautiful presentation thereof appears is Talenti [44, pp.102-105].

We estimate the drift term,∣∣ ∫
vk>t

D̄(x, τ)(vk)x
∣∣ ≤ max

R
|D̄(x, τ)|)

∫
vk>t

|(vk)x| (5.38)

and let D(τ) = maxR |D̄(x, τ)|. In the remaining estimates the one dimensional
Schwarz symmetrization (which coincides in the case n = 1 with the symmetrically
decreasing rearrangement) is used and by the same estimates as in the multidimen-
sional case we arrive at the result that vk may be estimated above by the (even in
x) solution of the one dimensional problem

(Wk)τ (|x|, τ)− λ(τ)(Wk)xx(|x|, τ) +D(τ)(Wk)x(|x|, τ) + C(τ)Wk(|x|, τ)
= Fε(|x|, τ) ∈ {Wk > 0}

Wk ≥ 0 in Bk

Wk(|x|, 0) = 0 x ∈ Bk
∂Wk

∂|x|
(0, τ) = 0 0 < τ ≤ T

where Fε(x, τ) = −(LSψε)],k, as claimed.

6. Explicit form for regularized inhomogeneous term

For basket and spread options, in the dimensionless variables, we have

ψC = η(ΦC), ΦC =
∑

(wiexi − 1),

ψP = η(ΦP ), ΦP = (1−
∑

wie
xi) .

We approximate η by a smooth function defined below and let

ψCε = ηε(ΦC) , ψPε = ηε(ΦP ) (6.1)

In the case of calls we consider the upper approximations η+
ε : R → R to the

function η 2

d2

dy2
η+
ε (y) =

1
ε
1 {−2ε<y<−ε} (6.2)

2Note that such smoothings of the function η are well known, but we exploit the specific form

of the smoothing below to use the smoothing in conjunction with the symmetrization
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Thus the derivative (η+
ε )′ grows from zero to 1 on the interval −2ε,−ε. Similarly,

we define η−ε so that
d2

dy2
η−ε =

1
ε
1{ε<y<2ε} (6.3)

and then in all of the above examples we replace η by η+
ε in the case of calls and by

η−ε in the case of puts. Since η±ε thus defined are Lipschitz with Lipschitz constant
equal to 1, it is immediate that for these regularizations, we have the property

|ψDε − ψD| ≤ ε (6.4)

and therefore we may use the comparison principle mentioned in §2. In addition
the first derivatives of ψε are well behaved but the second derivatives are not and
this will be explored below.
Calculation of the smoothed source term The calculation of the action of
the operator ∂

∂τ + LS on the payoff ψε is more straightforward to carry out in the
original spatial variables S. It can then be easily transposed to the new variables
x and new dependent variable u

K . We have

(ηε(Φ))Si
= η′ε(Φ)ΦSi

(ηε(Φ))SiSj = η′′ε (Φ)ΦSi ΦSj + η′(Φ)ΦSiSj

We let
GCε (x) = −LS(η+

ε (ΦC)), GPε (x) = −LS(η−ε (ΦP ))
So,

GDε = −SiSjσi,j
(
η′εΦ

D
SiSj

+ η′′εΦ
D
Si

ΦDSj

)
+ Si(r − di) η′εΦ

D
Si
− rψDε

D+ = C, D− = P, ψD
±

ε = η±ε (ΦD
±
)

(6.5)

For the action of the operator −LS on ψD
±

ε , we get

GD
±

ε (x) =
1
ε

n∑
i,j=1

exi+xjwiwjσi,j1{−2ε<ΦD+<−ε} ±wie
2xi(r − di)η′ε(ΦD

±
)− rψD

±

ε .

(6.6)
Note that the only difference in the form of the right hand side for calls and puts is
the call has ‘+′ and the put a ‘−′ multiplying the term involving a first derivative.

Dependence of the solution on ε and k. With (6.6) we have in fact a 2-
parameter family of comparison problems. In this section we address the question
as to how the bounds derived depend on these parameters. In two important cases
we can give an analytical elucidation of this dependence. In the other cases the
question needs to be investigated numerically. The two cases where an analytical
elucidation is possible are:
• An index Put option (with or without dividends), with payoff ψP = (1 −∑
i wie

xi)+, the dependence of k simplifies considerably. Indeed in this case the
continuation region is, in the original S variables connected and bounded away from
zero where the minimum distance can be estimated via the lower bound on the
volatility matrix in the lognormal coordinates . This is clear intuitively and follows
from the results in Broadie and Detemple [15] and Villeneuve [47]. Translated to
the x variables this means that the continuation region is connected and bounded
away from −∞ , i,e. mini=1,···n minx∈C xi = −L1, in all directions. Furthermore
when any xi is sufficiently large the payoff of the option is zero in the complement
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of the region Cn = C ∩{
∑
i wie

xi < 1} and the right hand side in (6.6) is identically
zero. Let L2 be a constant so large that Cn is contained in B(0, L2). The maximum
value of u−ψD is not reached on the latter set. Thus, if we choose k0 = max(L1, L2)
we can be sure that the maximum of u−ψ will be captured in Bk0 and there is no
need to choose a larger k0. For fixed k the optimal bounds as a function of ε must
be determined numerically.
• For a call or put option on one asset, as shown in Laurence 2000 (pages 49-

51), it is possible to pass to the limit as ε → 0 and derive a limiting comparison
problem for any fixed k. For a put the same considerations as above apply to find a
reasonable value for k. Using put call symmetry as in Detemple 2001 we can then
extend the result to calls.

7. Appendix: The Relation between the solution on all of Rn and
the solution on Bk

In Bensoussan and Lions, 1982, it is shown that uk, the solution of the variational
problem in Theorem 2.2, is also a solution of an optimal stopping problem on Bk.
Let T t,xk = inf{s > t, |Xt,x

s | > k} then uk solves

uk(x, t) = sup
τ∈Tk

E[e−
∫ τ∧T

t,x
k

t r(s)dsψ(Xt,x

τ∧T t,x
k

)]

On the other hand u, the solution on all of Rn, is also a solution of the problem

u(x, t) = sup
τ∈T t,T

E[e−
∫ τ

t
r(s)dsψ(Xt,x

τ )]

So we need to estimate |u(x, t)− uk(x, t)|. The key to such an estimate is to note
that

|u(x, t)− uk(x, t)| ≤ sup
τ∈Tt,T

E
[∣∣ψ(Xt,x

τ )− ψ(Xt,x
Tk

)
∣∣1T t,x

k <τ

]
≤ E

[
2t[2 sup

[0,T ]

|ψ(Xt,x
s )|1T t,x

k <τ

]
≤ 2M

√
E(exp(2M sup

[t,T ]

|Xt,x
s |)

√
P (T t,xk < T )

To estimate the difference between u and uk, we thus need to estimate the two
terms

E(exp(2M sup
[t,T ]

|Xt,x
s |), (7.1)

P (T t,xk < T ) (7.2)

for x restricted to a ball of radius R(k) < k. The dependence of R(k) on k is
clarified below. Details as to how these terms may be estimated are given in the
report by Jaillet-Lamberton-Lapeyre [28, pages 107-109]. We recall the form of the
final estimate and review its dependence on the constants. For (7.1) this takes the
form

sup
(x,t)∈[0,T ]×{x∈Rn:|x|≤k}

E
[
exp(2M sup

[t,T ]

|Xt,x
s |)

]
≤ C <∞,
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where C depends on a pointwise bound on the magnitudes of the drift coefficient
and of the volatility matrix, as well as on T and R. For (7.2) let

σ̂ = sup
( n∑
i=1

n∑
j,k=1

σijσik

)1/2

i.e. a bound for the trace of σ∗σ.

P (T t,xK < T ) = P
(

sup
s∈[t,T ]

|Xt,x
s | > k

)
(7.3)

and then estimate the right hand side below

P
(

sup
s∈[t,T ]

|Xt,x
s | > k

)
≤ nP

{
sup

s∈[0,σ̂2T ]

|Bs| > (k −R−DT )× 1
n

}
where Bs is a standard one dimensional Brownian motion. Thus we get

P ( sup
s∈[0,σ̂2T ]

|Bs| > k −R−DT ) ≤ 2P
(

sup
s∈[0,σ̂2T ]

Bs > k −R−DT
)

= 2(1−N(k −R−DT ))
(7.4)

where N is the cumulative normal distribution function. Therefore in order to
obtain an estimate for (7.2) that becomes small as k →∞ we must choose k to be
large compared to R ie choose k −R−DT � 1.
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Figure 1. An American put option with parameters K = 15,
r = 0, 5, d = .03. Here σ = 0.2 is plotted against spot one year from
expiration. The S coordinate of the point of tangency between the
payoff option value corresponds to the position of the free boundary
at that time
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Figure 2. The American put option with the same parameters
as in Figure 1, but now in the normalized logarithmic variable
log(S/K) and normalized payoff (1− ex)+
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Figure 3. The difference between the option’s value and the pay-
off’s value, in the normalized variables
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