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GEOMETRIC PROPERTIES OF SOLUTIONS TO
MAXIMIZATION PROBLEMS

FABRIZIO CUCCU, KANHAIYA JHA, & GIOVANNI PORRU

Abstract. We investigate the geometric configuration of the maxima of some

functionals associated with solutions to Dirichlet problems for special elliptic

equations. We also discuss the symmetry breaking and symmetry preservation
of the solutions in some particular cases.

1. Introduction

Let Ω ⊂ RN be a bounded domain with a smooth boundary ∂Ω and let D ⊂ Ω
be Lebesgue measurable. Consider the Dirichlet problem

−∆u(x) = χD(x) in Ω,

u(x) = 0 on ∂Ω,
(1.1)

where χD(x) = 1 if x ∈ D and χD(x) = 0 if x ∈ Ω \ D. Since χD(x) is not
continuous, (1.1) is understood in the weak sense. By standard results on elliptic
equations, problem (1.1) has a unique solution u ∈ H2(Ω) ∩ C1(Ω) ∩ C0(Ω) [14].
Of course, the solution does not change if D is replaced by a new set which differs
from D by a subset of measure zero.

In a previous paper [8], we have introduced and discussed the maximization
problem

max
|G|=α,|D|=β

∫
Ω

χGuDdx, (1.2)

where G ⊂ Ω, 0 < α ≤ |Ω|, 0 < β < |Ω| and uD is the solution to problem (1.1).
The sets D and G are defined apart subsets of measure zero. In [8] we have found a
result of existence for general Ω, α, β, and a result of uniqueness in case Ω is a ball
or, for general Ω, in case α = |Ω|. We also have proved that when α = β problem
(1.2) reduces to the maximization of the energy integral

max
|D|=β

∫
Ω

|∇uD|2dx, (1.3)

extensively investigated in [1,5,6,7,9,11].
In section 2 of the present paper, we shall prove that if β ≤ α and (D,G) is a

solution to problem (1.2) then D ⊂ G. As a consequence, for β = α we must have
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D = G. This special case has been investigated in [8] by using a different argument.
The interest of our result relies in that the solution of problem (1.2) is not unique
in general.

In section 3 we shall consider a special example to show that if Ω is symmetric, a
solution (D,G) to problem (1.2) may not be symmetric. This phenomenon, known
as symmetry breaking, was already observed in [6,9,11] for problem (1.3). Of course,
in this situation we have multiple solutions.

In section 4 we prove that if Ω is Steiner symmetric and if (D,G) is a solution
to problem (1.2) then both D and G are Steiner symmetric. This fact was already
observed in [8] by using a result described in [2]. Here we use a different approach
which may have independent interest.

Several open problems remain. One is the uniqueness of the solution to (1.2) for
larger classes of domains Ω and general α and β. We think that the convexity of
Ω should be sufficient to have uniqueness. Another problem is the investigation of
the shape of the optimal pair (D,G) in case uniqueness holds. We believe that D
and G are convex when Ω is convex.

A physical model of problem (1.2) is described in [8]. Many others models leading
to equation (1.1) and its generalizations are discussed in [10].

2. Geometric properties

Problem (1.2) with α = |Ω| reduces to

max
|D|=β

∫
Ω

uDdx = max
|D|=β

∫
D

w dx,

where w = w(x) is the solution to the Saint-Venant problem

−∆w(x) = 1 in Ω,

w(x) = 0 on ∂Ω.

The maximizing domain D is unique in this case and can be expressed as D =
{x ∈ Ω : w(x) > t} for a particular t (see [8]). Therefore, from now on we consider
α < |Ω|. We state now our main result of this section.

Theorem 2.1. Let |Ω| > α ≥ β > 0 and let (D,G) be a solution to problem (1.2).
Then D ⊂ G. Moreover, there are positive numbers t ≤ τ and positive functions
uD(x) ≤ uG(x) such that D = {x ∈ Ω : uG(x) > τ} and G = {x ∈ Ω : uD(x) > t}
up to sets of measure zero.

Proof. Let (D,G) be a solution to problem (1.2) and let uD and uG satisfy

−∆uD(x) = χD(x) in Ω,

uD(x) = 0 on ∂Ω,
(2.1)

−∆uG(x) = χG(x) in Ω,

uG(x) = 0 on ∂Ω.
(2.2)

By [8] we know that

{uD(x) > t} ⊂ G ⊂ {uD(x) ≥ t}, (2.3)

{uG(x) > τ} ⊂ D ⊂ {uG(x) ≥ τ} (2.4)
for some non negative t, τ . Here and in the sequel, we denote by {u(x) > t} the
set {x ∈ Ω : u(x) > t}.
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Since |D| > 0 (and Ω is connected) we have uD(x) > 0 in Ω. If we had t = 0
then, by (2.3), we would have G = Ω. But this contradicts the hypothesis α < |Ω|.
Similarly, one shows that τ > 0.

Let us prove that ∫
Ω

|∇(uG − uD)|2dx ≤ (τ − t)(α− β). (2.5)

Indeed, subtracting equation (2.1) from equation (2.2), multiplying by (uG − uD)
and integrating we find∫

Ω

|∇(uG − uD)|2dx =
∫

Ω

(uG − uD)(χG − χD)dx

=
∫

G\D
(uG − uD)dx+

∫
D\G

(uD − uG)dx.

Using (2.3) and (2.4) we find∫
G\D

(uG − uD)dx ≤
∫

G\D
(τ − t)dx = (τ − t)|G \D|

and ∫
D\G

(uD − uG)dx ≤
∫

D\G
(t− τ)dx = (t− τ)|D \G|.

Since |G \D| = |G| − |D ∩G| and |D \G| = |D| − |D ∩G|, inequality (2.5) follows.
Recalling that α ≥ β, (2.5) implies that t ≤ τ .

Introduce the subsets of Ω

Ω1 = {uG(x)− uD(x) > τ − t},
Ω2 = {uG(x)− uD(x) = τ − t},
Ω3 = {uG(x)− uD(x) < τ − t}.

Of course, Ω1∪Ω2∪Ω3 = Ω. By (2.4), uG(x) ≤ τ outsideD, and by (2.3), uD(x) ≥ t
in G. Hence, uG(x)− uD(x) ≤ τ − t in G \D. Therefore,

G \D ⊂ Ω2 ∪ Ω3 = Ω \ Ω1.

The last inclusion yields
Ω1 ⊂ D ∪ (Ω \G). (2.6)

On the other side, using equations (2.1)-(2.2) we find

−∆(uG − uD) = χG − χD ≤ 0 in D ∪ (Ω \G). (2.7)

By (2.6), inequality (2.7) holds in Ω1. Since uG(x)−uD(x) = τ−t on the boundary
of Ω1, by the maximum principle, we get uG(x) − uD(x) ≤ τ − t in Ω1. Recalling
the definition of Ω1, we conclude that this set must be empty.

By (2.4), uG(x) ≥ τ in D, and by (2.3), uD(x) ≤ t outside G. Hence, uG(x) −
uD(x) ≥ τ − t in D \G. Therefore, since Ω1 is empty,

D \G ⊂ Ω1 ∪ Ω2 = Ω2.

On Ω2, uG(x)−uD(x) = τ−t, therefore ∆(uG−uD) = 0 almost everywhere inD\G.
On the other side, by using equations (2.1)-(2.2) once more, we get ∆(uG−uD) = 1
on D \G. We conclude that the measure of D \G must be zero, hence, D ⊂ G up
to a set of measure zero. The first assertion of the theorem is proved.
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We have ∆uG = 0 almost everywhere on the set {uG(x) = τ}∩D. On the other
side, ∆uG = −1 in G. Since D ⊂ G, the set {uG(x) = τ} ∩D must have measure
zero. Therefore, by (2.4), D = {uG(x) > τ} up to a set of measure zero.

Decompose the set {uD(x) = t} ∩ G into E1 = {uD(x) = t} ∩ G ∩ D, E2 =
{uD(x) = t} ∩ G ∩ (∂D), E3 = {uD(x) = t} ∩ G ∩ (Ω \ D). E1 has measure zero
because ∆uD = −1 in D, therefore uD cannot be constant on a set of positive
measure. E2 has measure zero because uG(x) = τ on ∂D and ∆uG = −1 on G. E3

has measure zero because the function uD(x) is harmonic (and positive) in the open
set Ω \D and u = 0 on ∂Ω. Therefore, by (2.3), we must have G = {uD(x) > t}
up to a set of measure zero. The theorem is proved. �

Remarks. By (2.1), (2.2) and Theorem 2.1, the functions u = uD and v = uG

satisfy the equations
−∆u = H(v − τ), u|∂Ω = 0, (2.8)

−∆v = H(u− t), v|∂Ω = 0, (2.9)

where H(s) = 0 for s ≤ 0 and H(s) = 1 for s > 0. The system (2.8)-(2.9) may
have solutions different from uD, uG even when α = β. Indeed, if α = β then
uD = uG = u, and u satisfies

−∆u = H(u− t), u|∂Ω = 0. (2.10)

If Ω is a thin annulus and β is small enough then problem (1.3) has a non radial
solution u = uD which satisfies (2.10) [9,11]. Let w(x) be the (radial) solution to the
Saint-Venant problem associated with Ω. Using the method of monotone operators
(starting from w) we find a radial solution v = v(x) to (2.10) with uD(x) ≤ v(x) ≤
w(x). Of course, uD(x) 6= v(x) because uD(x) is non radial.

3. Symmetry breaking

In [6,9,11] it was shown the symmetry breaking of the solution to problem (1.2)
in case α = β. Now, we examine an example to discuss the case α 6= β. Recall
that if Ω is a ball then the maximum of (1.2) is reached when D and G are balls
concentric with Ω [8]. Let B1 and B2 be open unit balls in R2 centered at (−2, 0)
and (2, 0) respectively, and let Ω = B1 ∪ B2. Let D = D1 ∪ D2 with D1 a ball
concentric with B1 and radius R, and D2 a ball concentric with B2 and radius S.
Similarly, let G = G1 ∪G2 with G1 a ball concentric with B1 and radius T , and G2

a ball concentric with B2 and radius Q. We have |Ω| = 2π, |D| = π(R2 + S2) and
|G| = π(T 2 +Q2). Assume

R2 + S2 = b, T 2 +Q2 = a, b ≤ a ≤ 2.

We study the problem

max
|D|=πb, |G|=πa

∫
G

uDdx (3.1)

with b/2 ≤ R2 ≤ min[1, b] and a/2 ≤ T 2 ≤ min[1, a]. Since b ≤ a, by Theorem 2.1,
the maximum in (3.1) is attained when D ⊂ G. Therefore, we may suppose R ≤ T .
If u = uD is the corresponding solution to problem (1.1) we find

u(r) =

{
R2

4 − r2

4 − R2

2 logR 0 ≤ r < R

−R2

2 log r R ≤ r < 1
in B1
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and

u(s) =

{
S2

4 − s2

4 − S2

2 logS 0 ≤ s < S

−S2

2 log s S ≤ s < 1
in B2,

with r2 = (x1 + 2)2 + x2
2 and s2 = (x1 − 2)2 + x2

2. Hence,∫
G

uD dx = 2π
[∫ R

0

(R2

4
− r2

4
− R2

2
logR

)
r dr − R2

2

∫ T

R

r log r dr

+
∫ S

0

(S2

4
− s2

4
− S2

2
logS

)
s ds− S2

2

∫ Q

S

s log s ds
]
.

If we put J(T 2, R2) = 4
π

∫
G
uDdx, we find

J(T 2, R2) = R2
[
−R

2

2
− T 2 log T 2 + T 2

]
+ (b−R2)

[
−b−R2

2
− (a− T 2) log(a− T 2) + (a− T 2)

]
.

We look for solutions to (3.1) which are symmetric with respect to the line x1 =
0. The symmetric configuration corresponds to T 2 = a/2 and R2 = b/2. Easy
computation yields

J(a/2, b/2) = b
[a
2
− a

2
log

a

2
− b

4

]
.

For b ≤ a ≤ 1, T 2 = a and R2 = b (non symmetric configuration) we have

J(a, b) = b
[
a− a log a− b

2

]
.

For b ≤ 1 < a (non symmetric configuration) we find

J(1, b) = b
[
1− b

2

]
.

Define

z(a) =


a 0 < a ≤

√
e/2

2a log e
2a

√
e/2 < a ≤ 1

2
[
2− a log 2e

a

]
1 < a < 2.

For 0 < a ≤ 1 and 0 < b < z(a) we have J(a/2, b/2) < J(a, b), and for 1 < a < 2
and 0 < b < z(a) we have J(a/2, b/2) < J(1, b). Hence, for 0 < b < z(a) the
symmetric configuration is not optimal.

Now, connect B1 with B2 by a straight channel of width h. Arguing as in [9] and
using our previous result one can prove that for h small enough and 0 < b < z(a)
the optimal configuration cannot be symmetric.

4. Symmetry preservation

Let Ω be bounded, connected and Steiner symmetric with respect to a hyperplane
Π. In [8] we have proved that problem (1.2) has a solution (D,G) such that D and
G are Steiner symmetric with respect to the same hyperplane. We now describe a
new method for proving that all solutions to problem (1.2) are Steiner symmetric.

Theorem 4.1. Let Ω be a bounded domain, Steiner symmetric with respect to a
hyperplane Π and let u and v be positive solutions to the problems

−∆u = f(v), u|∂Ω = 0, (4.1)



6 F. CUCCU, K. JHA & G. PORRU EJDE–2003/71

−∆v = g(u), v|∂Ω = 0, (4.2)
where f and g are increasing in [0,∞) and vanish in some interval [0, κ]. Then,
both u and v are symmetric with respect to the hyperplane Π.

Proof. Since f and g may have discontinuities, equations (4.1) and (4.2) are satisfied
in a weak sense. However, by standard results on elliptic equations, u and v must
belong to C1(Ω) ∩ C0(Ω).

The method of moving planes for C2(Ω) solutions of scalar equations is described
in [13,3]. The method has been extended to C1(Ω) solutions in the book [12].
We follow very closely the approach described in [12] to get symmetry results for
solutions to the system of equations (4.1)-(4.2).

For x ∈ Ω, we put x = (x1, y), with y = (x2, · · · , xN ). We may assume that the
hyperplane Π has equation x1 = 0. Let

M = sup
x∈Ω

x1, d(x) = dist(x, ∂Ω).

Our assumptions on u and v imply that

∃h > 0 : d(x) < h⇒ u(x) < κ and v(x) < κ. (4.3)

For such h and for µ ∈ [0,M) we define

Σ(µ) = {x ∈ Ω : x1 > µ}, Σh(µ) = Σ(µ) ∩ {x ∈ Ω : d(x) < h}. (4.4)

Let xµ = (2µ − x1, y). If x ∈ Σ(µ) then xµ ∈ Ω because Ω is Steiner symmetric.
For x ∈ Σ(µ) define

w(x) = u(x)− u(xµ), z(x) = v(x)− v(xµ).

We claim that these two functions satisfy, in a weak sense, the inequalities

∆w ≥ 0 and ∆z ≥ 0 ∀x ∈ Σh(µ). (4.5)

For the proof of (4.5), take φ ∈ C∞0 (Σh(µ)), φ(x) ≥ 0. Using equation (4.1) we find∫
Σh(µ)

∇u(x) · ∇φdx =
∫

Σh(µ)

f(v(x))φdx. (4.6)

Denote by Σ−h (µ) the symmetric image of Σh(µ) with respect to the line x1 = µ.
Of course, Σ−h (µ) ⊂ Ω. For x ∈ Σ−h (µ), define ψ(x) = φ(xµ). By equation (4.1) we
also have ∫

Σ−h (µ)

∇u(x) · ∇ψ dx =
∫

Σ−h (µ)

f(v(x))ψ dx.

Using the change of variables (x1, y) → (2µ− x1, y), the last equation becomes∫
Σh(µ)

∇u(xµ) · ∇φdx =
∫

Σh(µ)

f(v(xµ))φdx. (4.7)

Subtracting (4.7) from (4.6) we find∫
Σh(µ)

∇w · ∇φdx =
∫

Σh(µ)

[
f(v(x))− f(v(xµ))

]
φdx. (4.8)

Recalling that 0 < v(x) < κ in Σh(µ), that f(t) vanishes on [0, κ] and that f(t) ≥ 0
in (0,∞), (4.8) yields∫

Σh(µ)

∇w · ∇φdx ≤ 0 ∀φ ∈ C∞0 (Σh(µ)), φ(x) ≥ 0.

Hence, ∆w ≥ 0 in Σh(µ). The same proof holds for z, therefore (4.5) is proved.
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Observe that equation (4.8) also holds for φ ∈ C∞0 (Σ(µ)). Hence, if we know
that v(x) ≤ v(xµ) on Σ(µ) then, using the monotonicity of f , we get ∆w ≥ 0 in
Σ(µ). A similar remark holds for z. We summarize this fact as

∆w ≥ 0 and ∆z ≥ 0 whenever z(x) ≤ 0 and w(x) ≤ 0 ∀x ∈ Σ(µ). (4.9)

Apply now the method of moving planes. Assume h small enough so that (4.3)
holds. For µ such that M−µ ≤ h, we apply the maximum principles ([12], Theorem
2.19 and Theorem 2.13) to the inequality ∆w ≥ 0 in Σ(µ). Since u(x) = 0 on ∂Ω
and u(x) > 0 in Ω, we have w(x) ≤ 0 on ∂Σ(µ) with w(x) < 0 at some point of the
boundary of each connected component. We conclude that w(x) < 0 on Σ(µ) for
such values of µ. The same conclusion holds for z(x). Recall that w(x) and z(x)
depend on µ.

Let (m,M) be the largest interval of µ such that both

w(x) < 0 and z(x) < 0

hold on Σ(µ). By contradiction, assume m > 0. Since w and z are continuous with
respect to µ, we have

w(x) ≤ 0 and z(x) ≤ 0 ∀x ∈ Σ(m).

Then, ∆w ≥ 0 and ∆z ≥ 0 on Σ(m) by (4.9). The strong maximum principle ([12]
Theorem 2.13) and the assumption m > 0 yield

w(x) < 0 and z(x) < 0 ∀x ∈ Σ(m).

The boundary point Lemma ([12] Lemma 2.12) applied to the flat boundary x1 = µ
of Σ(µ), m ≤ µ ≤M yields

∂w

∂x1
< 0 and

∂z

∂x1
< 0 ∀x ∈ Σ(m) \ ∂Ω.

Recalling the definition of w and z we must have
∂u

∂x1
< 0 and

∂v

∂x1
< 0 ∀x ∈ Σ(m) \ ∂Ω. (4.10)

Following again the argument described in [12] (pag. 97), for ε > 0 and τ > 0
small, choose a set

Eε = (m− ε,m+ τ ]× S, S ⊂ RN−1, Eε ⊂ Σ(m− ε)

as well as a compact subset F ⊂ Σ(m). Using (4.10) one proves that w(x) and z(x)
are strictly negative on Eε provided {m}×S is a compact subset of {x1 = m}∩Ω.
Let Gε = Σ(m− ε)\ (Eε∪F ). S and F can be chosen so that, for ε small, w(x) < 0
on F and Gε ⊂ Σh(m − ε). Using the strong maximum principle again one gets
w(x) < 0 and z(x) < 0 on Σ(m − ε). This contradicts the maximality of (m,M)
for the negativity of w(x) or z(x).

We conclude that m = 0. Hence, u(x1, y) ≤ u(−x1, y) and v(x1, y) ≤ v(−x1, y)
on Σ(0). Repetition of the same proof starting from the left side of Ω leads to the
inequalities u(x1, y) ≥ u(−x1, y) and v(x1, y) ≥ v(x1, y) on Σ(0), and the theorem
follows. �

Remark. The result of Theorem 4.1 can be extended the the more general system

−∆u = h(u) + f(v), u|∂Ω = 0,

−∆v = k(v) + g(u), v|∂Ω = 0,



8 F. CUCCU, K. JHA & G. PORRU EJDE–2003/71

where f and g are as before, whereas h and k are locally Lipschitz continuous in
(0,∞). Indeed, in this case, instead of (4.5) one finds

∆w + c1(x, µ)w ≥ 0 and ∆z + c2(x, µ)z ≥ 0 ∀x ∈ Σh(µ),

where c1(x, µ) and c2(x, µ) are bounded uniformly with respect to µ. The maximum
principles for thin sets apply in this situation [12].

Symmetry results for systems in case of smooth functions are discussed in [18].
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