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GLOBAL SOLUTION FOR THE KADOMTSEV-PETVIASHVILI
EQUATION (KPII) IN ANISOTROPIC SOBOLEV SPACES OF

NEGATIVE INDICES

PEDRO ISAZA J. & JORGE MEJÍA L.

Abstract. It is proved that the Cauchy problem for the Kadomtsev-Petviashvili

equation (KPII) is globally well-posed for initial data in anisotropic Sobolev

spaces Hs0(R2) with s > −1/14. The extension of a local solution to a solu-
tion in an arbitrary interval is carried out by means of an almost conservation

property of the Hs0 norm of the solution.

1. Introduction

In this article, we consider the initial-value (IVP) problem for the Kadomtsev-
Petviashvili Equation (KP-II):

∂tu + ∂3
xu + ∂−1

x ∂2
yu + u∂xu = 0

u(x, y, 0) = u0(x, y) ,
(1.1)

with initial data u0 in anisotropic Sobolev spaces with negative indices. It is known
that problem (1.1) is locally well-posed for initial data in the anisotropic Sobolev
spaces Hs1s2(R2) with s1 > − 1

3 and s2 ≥ 0 (see [4] and [9]).
For s1 ≥ 0, the local result and the conservation law for the L2 norm show that

(1.1) is globally well-posed. Using the high-low frequency technique, introduced by
Bourgain [1], the global result for (1.1) was proved in [4] when u0 ∈ Hs0(R2) with
s > − 1

64 .
In this paper, we apply a modification of this technique, proposed in [2] for

the Korteweg-de Vries Equation, KdV, to extend the global result for the KP-II
equation mentioned above to indices s with s ∈ (− 1

14 , 0). The solution in any time
interval [0, T ] is obtained from the local solutions by means of an iterative process
in a finite number of steps. Such process is possible because we have in hand a norm
which allows us to control the size of the solution at any instant t in an adequate
way. This norm, equivalent to the usual norm of Hs0, is essentially the L2 norm
for frequencies below a chosen parameter N . Thus, when N is sufficiently large, we
can take the advantages of the L2 conservation norm.
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To establish our results in a precise manner, we present several definitions and
introduce some notation. Our initial data will be in the anisotropic Sobolev space

Hs0 = Hs0(R2) := {u ∈ S′(R2) : ‖u‖2
s :=

∫
R2
〈ξ〉2s|û(ζ)|2 dζ < ∞} ,

where s < 0, S′(R2) is the space of tempered distributions in R2, û is the Fourier
transform of u in the space variables, ζ = (ξ, η) is the variable in the frequency
space, with ξ and η corresponding to the space variables x and y, respectively, and
the symbol 〈·〉 stands for 1 + | · |.

For N ∈ N we define in Hs0 an equivalent norm ‖ · ‖sN by ‖u‖sN := ‖INu‖L2 ,
where (INu)̂ (ζ) := M(ξ)û(ζ) and

M(ξ) := MN (ξ) :=

{
1, if |ξ| ≤ N,
|ξ|s
Ns , if |ξ| > N .

It is easily seen that
‖u‖s ≤ ‖u‖sN ≤ CN |s|‖u‖s .

The solutions of the problem will be in the space

Xsγε := {u ∈ S′(R3) | ‖u‖2
sγε :=

∫
R3
〈ξ〉2s〈σ〉2γ〈θ〉2ε|û(λ)|2 dλ < ∞} ,

where γ ∈ R, ε > 0, û is the Fourier transform of u in the space-time variables,
λ = (ζ, τ) = (ξ, η, τ) is the variable in the frequency space with ξ and η as before,
and τ corresponding to the time variable t; σ := τ − m(ζ) ≡ τ − ξ3 + η2

ξ , and

θ := σ
1+|ξ|3 . We observe that m(ζ) = ξ3 − η2

ξ is the symbol associated to the linear
part of the KP-II equation.

For N ∈ N we consider in Xsγε the equivalent norm ‖ · ‖sγεN defined by

‖u‖sγεN := ‖INu‖0γε ,

where (INu)̂(λ) = M(ξ)û(λ). If γ > 1
2 , then Xsγε is continuously embedded in

Cb(Rt;Hs0), the space of continuous bounded functions from the variable t to Hs0.
When we use the norms ‖ · ‖sN and ‖ · ‖sγεN in Hs0 and Xsγε, we will refer to

these spaces as Hs0
N and XsγεN , respectively.

For T > 0 and γ > 1
2 we define XsγεN [0, T ] as the set of all restrictions to [0, T ]

of the elements of Xsγε with norm defined by

‖u‖XsγεN [0,T ] := inf{‖v‖sγεN : v|[0,T ] = u} .

In our exposition we will make use of the space H∞(R2) := ∩s∈RHs(R2), where
Hs(R2) is the classical Sobolev space of L2 type defined by

Hs(R2) := {u ∈ S′(R2) :
∫

R2
〈ζ〉2s|û(ζ)|2 dζ < ∞} .

Our concept of solution comes from Duhamel’s formula for problem (1.1). For-
mally, u is a solution of (1.1) in [0, T ] if for t ∈ [0, T ]

u(t) = W (t)u0 −
1
2

∫ t

0

W (t− t′)∂x(u(t′))2dt′ , (1.2)

where {W (t)} is the group associated to the linear part of KP-II equation. This is:

[W (t)u0]̂(ζ) := eitm(ζ)û0(ζ) .
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In order to stay in the context of the spaces Xsγε, we multiply the right side of
(1.2) by Ψ(T−1t), where Ψ ∈ C∞

0 (Rt), Ψ ≥ 0, Ψ ≡ 1 in [0, 1] and supp Ψ ⊂ [−1, 2].
In this way, we consider the integral equation

u(t) = Ψ(T−1t)W (t)u0 −
1
2
Ψ(T−1t)

∫ t

0

W (t− t′)∂x(u(t′)2) dt′ , t ∈ R . (1.3)

We can see that, formally, for t ∈ [0, T ] expressions (1.3) and (1.2) coincide. By a
direct calculation, it can be easily established that

‖Ψ(T−1·t)W (·t)u0‖sγεN ≤ CT ‖u0‖sN , (1.4)

where CT depends on T but not on N .
For γ > 1

2 and f ∈ S(R3) ∩ Xs(γ−1)ε, where S(R3) is the space of Schwartz
functions in R3, we define:

GT (f)(t) :=
1
2
Ψ(T−1t)

∫ t

0

W (t− t′)f(t′)dt′ ,

where f(t) := f(·x, ·y, t). Following a procedure similar to that in the proof in [6,
Lemma 3.3], it can be seen that

‖GT (f)‖sγεN ≤ CT ‖f‖s(γ−1)εN . (1.5)

Therefore, since S(R3)∩Xs(γ−1)ε is dense in Xs(γ−1)ε, GT has a unique continuous
extension, which we denote again by GT , to the space Xs(γ−1)ε.

In the study of the nonlinear part of the equation, an important role is played by
the bilinear form ∂x(uv); more precisely, we have the following result whose proof
will be given in section 2.

Lemma 1.1. Let s ∈ (− 1
3 , 0). For γ > 1

2 and ε > 1
6 such that ( 1

3 + s)− (γ − 1
2 )−

(ε− 1
6 ) ≥ 0, ( 1

2 + s)− 3(ε− 1
6 ) ≥ 0, and 1

3 ( 1
2 + s)− (γ − 1

2 ) ≥ 0, it follows that

‖∂x(uv)‖s(γ−1)εN ≤ C‖u‖sγεN‖v‖sγεN ∀u, v ∈ Xsγε , (1.6)

with C independent of N .

Estimates (1.4), (1.5), and (1.6) allow us to define the concept of solution for
(1.1):

Definition. For u0 ∈ Hs0, T > 0, s, γ, and ε as in Lemma 1.1, we say that
u ∈ XsγεN [0, T ] is a solution of the IVP (1.1) in the interval [0, T ] if there is an
extension v ∈ XsγεN of u, such that

u(t) = W (t)u0 −GT (∂xv2)(t) ∀ t ∈ [0, T ] .

It was proved in [4] that (1.1) is locally well-posed for initial data u0 in Hs0 with
s > − 1

3 . More precisely, the theorems of existence and uniqueness of local solutions
were proved there. The proofs of continuous dependence on the initial data and of
regularity follow the same procedure applied in [5] for the corresponding proofs in
the case s > 0.

In this paper we will obtain global solution for initial data in Hs0 with s > − 1
14 .

In this case, the extension from a local solution u to a solution in an arbitrary
interval [0, T ] is carried out by keeping control of the norm ‖u(T )‖sN with the
use of the homogeneity properties of the KP equation and the aid of an almost
conservation law which uses a cancellation effect expressed by the following estimate
of a new bilinear form.
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Lemma 1.2. For s ∈ (− 1
4 , 0), let γ > 1

2 , and ε > 1
6 be chosen to satisfy the

hypotheses of Lemma 1.1 and the condition ( 1
2−γ)+ 2

3 ( 1
4+s) > 0 (i.e., 2|s| < 2−3γ),

then, for α ∈ (2|s|, 2− 3γ) it follows that

‖∂x[(INu)(INv)− IN (uv)]‖0,γ−1,0 ≤ CN−α‖INu‖0γε‖INv‖0γε . (1.7)

The proof of this lemma will be given in section 3. Finally, in section 4 we will
prove our main result, whose precise formulation is:

Theorem 1.3. For s ∈ (− 1
14 , 0), T > 0, and u0 ∈ Hs0 with ∂−1

x u0 ∈ S′(R2)
(i.e., û0

iξ ∈ S′(R2)), there exists N > 0 such that problem (1.1) has a solution in
XsγεN [0, T ].

Note that the role played by N is merely technical and also that the obtained
solution is in

Xsγε[0, T ] := {v|[0,T ] | v ∈ Xsγε} .

Through this article, the letter C will denote diverse constants and the notation
x ∼ y, for two variables x and y, will mean the existence of positive constants C1

and C2 such that C1|x| ≤ |y| ≤ C2|x|.

2. Proof of Lemma 1.1

It was proved in [4] that, under the hypotheses of Lemma 1.1, the following
estimate takes place:

‖∂x(uv)‖s(γ−1)ε ≤ C‖u‖sγε‖v‖sγε . (2.1)

If λ1 = (ζ1, τ1), λ2 = (ζ2, τ2) = (ζ − ζ1, τ − τ1) = λ − λ1; σ1 = σ(ζ1, τ1), σ2 =
σ(ζ2, τ2); θ1 = θ(ζ1, τ1), θ2 = θ(ζ2, τ2), estimate (2.1) is equivalent to the estimate∫

R6
K̃(λ, λ1)f(λ1)g(λ2)h(λ) dλ1 dλ

:=
∫

R6

|ξ|〈θ〉ε

〈σ〉1−γ〈σ1〉γ〈σ2〉γ〈θ1〉ε〈θ2〉ε
〈ξ〉s

〈ξ1〉s〈ξ2〉s
f(λ1)g(λ2)h(λ) dλ1 dλ

≤ C‖h‖ ‖f‖ ‖g‖ ,

(2.2)

where f, g, h ≥ 0 and ‖ · ‖ := ‖ · ‖L2
λ
. Using duality, estimate (1.6) is equivalent to:∫

R6

|ξ|〈θ〉ε

〈σ〉1−γ〈σ1〉γ〈σ2〉γ〈θ1〉ε〈θ2〉ε
M(ξ)

M(ξ1)M(ξ2)
f(λ1)g(λ2)h(λ) dλ1 dλ

≤ C‖h‖ ‖f‖ ‖g‖ . (2.3)

In this way, to establish (2.3) it suffices to prove that

M(ξ)
M(ξ1)M(ξ2)

≤ C
〈ξ〉s

〈ξ1〉s〈ξ2〉s
, (2.4)

with C independent of N . In the proof of (2.4) we will take into account that

1 ≤ 2|s|
〈ξ〉s

〈ξ1〉s〈ξ2〉s
,

and besides that, for s < 0, M(ξ) ≤ 1.
By a symmetry argument it is sufficient to analyze the following cases:
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(i) |ξ1| ≤ N
2 ∧ |ξ2| ≤ N

2 . Therefore,

M(ξ)
M(ξ1)M(ξ2)

= M(ξ) ≤ 1 ≤ 2|s|
〈ξ〉s

〈ξ1〉s〈ξ2〉s
.

(ii) |ξ1| ≥ N
2 ∧ |ξ2| ≤ 1. Then, |ξ| ∼ |ξ1| ∼ 〈ξ〉 ∼ 〈ξ1〉 and 〈ξ2〉 ∼ 1. Hence,

M(ξ)
M(ξ1)M(ξ2)

≤ C
|ξ|s
Ns

|ξ1|s
Ns 1

≤ C
〈ξ〉s

〈ξ1〉s〈ξ2〉s
.

(iii) N
2 ≤ |ξ1| ≤ N ∧ 1 ≤ |ξ2| ≤ N

2 . Thus,

M(ξ)
M(ξ1)M(ξ2)

= M(ξ) ≤ 1 ≤ 2|s|
〈ξ〉s

〈ξ1〉s〈ξ2〉s
.

(iv) N ≤ |ξ1| ∧ 1 ≤ |ξ2| ≤ N
2 . Then, |ξ| ≥ N

2 , |ξ| ∼ 〈ξ〉, and |ξ1| ∼ 〈ξ1〉. Therefore,

M(ξ)
M(ξ1)M(ξ2)

≤ C
|ξ|s
Ns

|ξ1|s
Ns 1

≤ C
〈ξ〉s

〈ξ1〉s
≤ C

〈ξ〉s〈ξ2〉|s|

〈ξ1〉s
= C

〈ξ〉s

〈ξ1〉s〈ξ2〉s
.

(v) |ξ1| ≥ N
2 ∧ |ξ2| ≥ N

2 . Thus, |ξ1| ∼ 〈ξ1〉 and |ξ2| ∼ 〈ξ2〉.
If |ξ| ≤ 1, then 〈ξ〉 ∼ 1 and

M(ξ)
M(ξ1)M(ξ2)

≤ C
1

N2|s||ξ1|s|ξ2|s
≤ C

〈ξ〉s

N2|s|〈ξ1〉s〈ξ2〉s
≤ C

〈ξ〉s

〈ξ1〉s〈ξ2〉s
.

If 1 ≤ |ξ| ≤ N , then |ξ|
N ≤ 1, |ξ|s

Ns ≥ 1, and |ξ| ∼ 〈ξ〉. Therefore,

M(ξ)
M(ξ1)M(ξ2)

≤ C
1

N2|s||ξ1|s|ξ2|s
≤ C

|ξ|s
Ns

N2|s||ξ1|s|ξ2|s

≤ C
〈ξ〉s

N |s|〈ξ1〉s〈ξ2〉s
≤ C

〈ξ〉s

〈ξ1〉s〈ξ2〉s
.

If N ≤ |ξ|, then

M(ξ)
M(ξ1)M(ξ2)

≤ C
|ξ|s
Ns

N2|s||ξ1|s|ξ2|s
≤ C

〈ξ〉s

N |s|〈ξ1〉s〈ξ2〉s
≤ C

〈ξ〉s

〈ξ1〉s〈ξ2〉s
.

Which completes the proof.

3. Proof of Lemma 1.2

We begin this section by describing the procedure that leads to an almost con-
servation law, according to which, for a solution v of problem (1.1) in the interval
[0, 1], the size of ‖v(1)‖sN is controlled by the size of ‖v(0)‖sN . In the description
of this procedure, the necessity of estimate (1.7) comes out in a natural way.

Let v0 ∈ H∞(R2) with ∂−1
x v0 ∈ H∞(R2). If w ∈ XsγεN is such that v := w|[0,1] is

a solution of the IVP (1.1) with initial datum v0, then, from a regularity theorem for
problem (1.1) (see [5, Theorem IV]) and from the application of standard techniques
of the theory of semigroups, we can conclude that v(t) and ∂−1

x v(t) are in H∞(R2),
and

v′(t) + ∂3
xv(t) + ∂−1

x ∂2
yv(t) + v(t)∂xv(t) = 0 in H∞(R2), ∀t ∈ [0, 1] . (3.1)
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When we apply the operator IN to the equation above and take the inner product
in L2(R2) with INv(t), we obtain

1
2

d

dt
‖INv(t)‖2

L2 +
1
2

∫
R2

(∂xIN (v(t)2))INv(t)dxdy = 0 .

Taking into account that 1
2

∫
R2(∂x(INv(t))2)INv(t)dxdy = 0, and denoting by χ the

characteristic function of the interval [0, 1], an integration with respect to t in [0, 1]
yields

‖INv(1)‖2
L2 = ‖INv0‖2

L2 −
∫ 1

0

〈∂x[IN (v(t)2)− (INv(t))2], INv(t)〉dt

≤ ‖INv0‖2
L2 + |

∫ +∞

−∞
〈χ(t)∂x[IN (w(t)2)− (INw(t))2], χ(t)INw(t)〉dt|

≤ |INv0‖2
L2 + C‖χ(·t)∂x[IN (w2)− (INw)2]‖0,γ−−1,0‖χ(·t)INw‖0,1−γ−,0

≤ |INv0‖2
L2 + C‖∂x[IN (w2)− (INw)2]‖0,γ−1,0‖INw‖0,(1−γ−)+,0 ,

(3.2)

where 〈·, ·〉 is the inner product in L2(R2), 1
2 < γ− < γ, and, in the last inequality

we have used the following lemma of technical character.

Lemma 3.1. If γ ∈ (0, 1
2 ) and γ < γ+ < 1

2 , then

‖χ(·t)u‖0γ0 ≤ C‖u‖0γ+0, (3.3)

‖χ(·t)u‖0,(−γ+),0 ≤ C‖u‖0,−γ,0 . (3.4)

Proof. We prove (3.3) only, since (3.4) follows from (3.3) by duality. For u ∈
S(R3) ∩X0γ+0,

‖χ(·)u‖2
0γ0 =

∫∫
〈σ〉2γ |[χ̂ ∗τ û(ζ, ·τ )](τ)|2dτdζ

≤ C

∫∫
|[χ(·t)û(·t)(ζ)]̂t(τ)|2dτdζ

+ C

∫∫
|τ |2γ |[χ̂ ∗τ û(ζ, ·τ )](τ + m(ζ))|2dτdζ =: I + II . (3.5)

Using Plancherel identity in the variable t we obtain

I ≤ C

∫∫
|χ(t)û(t)(ζ)|2dtdζ ≤ C

∫∫
|û(t)(ζ)|2dtdζ

= C

∫∫
|û(ζ, τ)|2dζdτ = ‖u‖2

000 ≤ ‖u‖0γ+0 .

(3.6)

To estimate II we use the following Leibniz formula for fractional derivatives proved
in [7]: If β ∈ (0, 1) and 1 < q < ∞, then

‖Dβ(fg)− fDβg‖Lq(R) ≤ C‖g‖L∞(R)‖Dβf‖Lq(R) . (3.7)
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Therefore, an application of Plancherel identity and of estimate (3.7) with q = 2
gives us

II = C

∫
‖Dγ

t [e−i(·t)m(ζ)χ(·t)û(·t)(ζ)]‖2
L2

t
dζ

≤ C

∫
‖Dγ

t [e−i(·t)m(ζ)û(·t)(ζ)]‖2
L2

t
‖χ(·t)‖2

L∞t
dζ

+ C

∫
‖e−i(·t)m(ζ)û(·t)(ζ)Dγ

t χ(·t)‖2
L2

t
dζ

≤ C‖u‖2
0γ0 + C

∫
‖e−i(·t)m(ζ)û(·t)(ζ)‖2

L2p‖Dγ
t χ(·t)‖2

L2p′ dζ ,

(3.8)

where p and p′ are conjugate exponents. If we choose p in such a way that 1
2 −

1
2p =

γ+, then Hγ+
(Rt) ↪→ L2p(Rt). Bearing in mind that the inverse Fourier transform

operator is bounded from L
2p′

2p′−1 (R) to L2p′(R); it follows from (3.8) that

II ≤ C‖u‖2
0γ0 + C

∫
‖e−i(·t)m(ζ)û(·t)(ζ)‖2

Hγ+
t

dζ · ‖(Dγ
t χ)̂ t‖2

L
2p′

2p′−1 (Rτ )

.

Since 2p′

2p′−1 = 1
1−γ+ and |χ̂(τ)| ≤ C

〈τ〉 , we have

‖(Dγ
t χ)̂ t‖

L
2p′

2p′−1
≤ C

(∫ +∞

−∞

dτ

〈τ〉
1−γ

1−γ+

)1−γ+

< ∞ .

Therefore,

II ≤ C‖u‖2
0γ0 + C‖u‖2

0γ+0 . (3.9)

From (3.5), (3.6), and (3.9) we obtain (3.3) for u ∈ S(R3) ∩ X0γ+0. The result of
the lemma follows from a density argument. �

Proof of Lemma 1.2. We use the notation introduced in the proof of Lemma 1.1.
Reasoning by duality, estimate (1.7) is equivalent to the estimate∫∫

K(λ, λ1)f(λ1)g(λ2)h(λ) dλ1 dλ

:=
∫

R3
λ

∫
R3

λ1

|ξ| (M(ξ1)M(ξ2)−M(ξ))
〈σ〉1−γ〈σ1〉γ〈θ1〉ε〈σ2〉γ〈θ2〉εM(ξ1)M(ξ2)

f(λ1)g(λ2)h(λ) dλ1 dλ

≤ CN−α‖h‖ ‖f‖ ‖g‖ . (3.10)

For A ⊆ R6, we will denote by JA the integral over the set A of the former integrand.
By a symmetry argument, it suffices to show that

J :=
4∑

i=1

JAi
≤ CN−α‖h‖ ‖f‖ ‖g‖ , (3.11)
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where

A1 := {(λ, λ1) | |ξ1| ≤
N

2
∧ |ξ2| ≤

N

2
} ,

A2 := {(λ, λ1) | |ξ1| ≥
N

2
∧ |ξ2| ≤ 1} ,

A3 := {(λ, λ1) | |ξ1| ≥
N

2
∧ 1 < |ξ2| < N} , and

A4 := {(λ, λ1) | |ξ1| ≥
N

2
∧ |ξ2| ≥ N} .

For the rest of this article, we will use the notation

L(ξ1, ξ2) :=
M(ξ1)M(ξ2)−M(ξ)

M(ξ1)M(ξ2)
. (3.12)

Estimate of JA1 : For (λ, λ1) ∈ A1 we have that L(ξ1, ξ2) = 0. Thus

JA1 = 0. (3.13)

Estimate of JA2 : For (λ, λ1) ∈ A2, an application of the mean value theorem leads
to

|L(ξ1, ξ2)| =
∣∣∣M(ξ1)−M(ξ1 + ξ2)

M(ξ1)

∣∣∣ ≤ N |s|

M(ξ1)

∣∣∣ 1
|ξ1||s|

− 1
|ξ1 + ξ2||s|

∣∣∣
≤ C

N |s||ξ2|
M(ξ1)|ξ1||s|+1

≤ C
N |s||ξ2|

N |s|

|ξ1||s|
|ξ1||s|+1

≤ C

|ξ1|
≤ C

N
≤ C

N

〈ξ1〉|s|〈ξ2〉|s|

〈ξ〉|s|
.

In this way, taking into account the definition of the kernel K̃ in (2.2), it follows
that K(λ, λ1) ≤ C

N K̃(λ, λ1) and therefore, according to estimate (2.2),

JA2 ≤
C

N
‖h‖ ‖f‖ ‖g‖ ≤ CN−α‖h‖ ‖f‖ ‖g‖ . (3.14)

Estimate of JA3 : For (λ, λ1) ∈ A3,

|L(ξ1, ξ2)| =
∣∣∣M(ξ1)−M(ξ1 + ξ2)

M(ξ1)

∣∣∣ .

When (N
2 ≤ |ξ1| ≤ N ∧ |ξ| ≥ N) or (N ≤ |ξ1| ≤ 3N

2 ∧ 1 ≤ |ξ2| ≤ N
2 ) or |ξ1| ≥ 3N

2 ,
from an application of the mean value theorem we have

|L(ξ1, ξ2)| ≤ C
N |s|

M(ξ1)
|ξ2|

|ξ1||s|+1
≤ C

|ξ2|
|ξ1|

.

If N
2 ≤ |ξ1| ≤ N and |ξ| ≤ N , then L(ξ1, ξ2) = 0. If N ≤ |ξ1| ≤ 3N

2 and
N
2 ≤ |ξ2| ≤ N , then

|L(ξ1, ξ2)| ≤ 1 +
M(ξ)
M(ξ1)

≤ C ≤ C
|ξ2|
|ξ1|

,

since |ξ2| ∼ |ξ1|.
Thus, for (λ, λ1) ∈ A3:

|K(λ, λ1)| ≤ C
|ξ|

〈σ〉1−γ

|ξ2|
|ξ1|

1
〈σ1〉γ〈σ2〉γ

. (3.15)
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According to our definitions we have

σ1 + σ2 − σ = 3ξξ1ξ2 +
(ηξ1 − η1ξ)2

ξξ1ξ2
.

Therefore, |ξξ1ξ2| ≤ max{|σ|, |σ1|, |σ2|}. If |σ| = max{|σ|, |σ1|, |σ2|}, then

|ξ|
〈σ〉1−γ

|ξ2|
|ξ1|

≤ |ξ|γ |ξ2|γ |ξξ1ξ2|1−γ

〈σ〉1−γ |ξ1|2−γ

≤ C
|ξ|γ |ξ2|γ

|ξ1|2−γ ≤ C
|ξ1|γ |ξ2|γ

|ξ1|2−γ + C
|ξ2|γ |ξ2|γ

|ξ1|2−γ

≤ C
Nγ

N2−2γ
+ C

N2γ

N2−γ
≤ CN−(2−3γ) ,

and from (3.15),

|K(λ, λ1)| ≤ CN−(2−3γ) 1
〈σ1〉γ〈σ2〉γ

. (3.16)

If |σ1| = max{|σ|, |σ1|, |σ2|}, then

|ξ|
〈σ1〉γ

|ξ2|
|ξ1|

1
〈σ〉1−γ

≤ |ξ||ξ2|
〈σ1〉1−γ |ξ1|〈σ〉γ

≤ |ξ|γ |ξ2|γ |ξξ1ξ2|1−γ

〈σ1〉1−γ |ξ1|2−γ〈σ〉γ

≤ C
|ξ|γ |ξ2|γ

|ξ1|2−γ〈σ〉γ
≤ C

N−(2−3γ)

〈σ〉γ
,

and from (3.15)

|K(λ, λ1)| ≤ CN−(2−3γ) 1
〈σ〉γ〈σ2〉γ

. (3.17)

If |σ2| = max{|σ|, |σ1|, |σ2|}, then, as in the former case,

|ξ|
〈σ2〉γ

|ξ2|
|ξ1|

1
〈σ〉1−γ

≤ C
N−(2−3γ)

〈σ〉γ

and from (3.15),

|K(λ, λ1)| ≤ CN−(2−3γ) 1
〈σ〉γ〈σ1〉γ

. (3.18)

Let us denote by A30, A31, and A32 the subsets of A3 corresponding to each one
of the former cases respectively. Then, from (3.16) we have

JA30 ≤ CN−(2−3γ)

∫
R3

h(λ)
∫

R3

f(λ1)
〈σ1〉γ

g(λ2)
〈σ2〉γ

dλ1 dλ

≤ CN−(2−3γ)‖h‖‖FG‖

≤ CN−(2−3γ)‖h‖‖F‖L4
xyt
‖G‖L4

xyt
,

where F̂ (λ) := f(λ)
〈σ〉γ and Ĝ(λ) := g(λ)

〈σ〉γ .
Using the Strichartz inequality (see [8], Proposition 2.1 and [3, Lemma 3.3])

‖F‖L4
xyt

≤ C‖f‖ if γ >
1
2

, (3.19)

it follows that
JA30 ≤ CN−(2−3γ)‖h‖ ‖f‖ ‖g‖ .

In a similar way, from (3.17) and (3.18),

JA31 + JA32 ≤ CN−(2−3γ)‖h‖ ‖f‖ ‖g‖ .
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In this manner,
JA3 ≤ CN−α‖h‖ ‖f‖ ‖g‖ . (3.20)

Estimate of JA4 : To estimate JA4 we require the following lemma.

Lemma 3.2. If s ∈ (− 1
4 , 0), γ > 1

2 satisfy ( 1
2 −γ)+ 2

3 ( 1
4 +s) > 0, and ε > 1

6 , then,
for u and v such that supp û, supp v̂ ⊆ {λ | |ξ| ≥ 1}, the following inequality holds

‖∂x(uv)‖0(γ−1)0 ≤ C‖u‖sγε‖v‖sγε. (3.21)

The proof of this lemma is a direct adaptation of [4, lemma 3.1], with the ex-
ception that in this case it is not necessary to consider the set Ω6 used there for
the study of low frequencies and that demands the condition ε > 1

6 + 2|s|
3 , which

we have weakened here.
Inequality (3.21) is equivalent to the estimate∫∫

{(λ,λ1)||ξ1|,|ξ2|≥1}
|ξ|〈σ〉γ−1〈ξ1〉|s|〈ξ2〉|s|h(λ)

f(λ1)
〈σ1〉γ〈θ1〉ε

g(λ2)
〈σ2〉γ〈θ2〉ε

dλ1 dλ

≤ C‖h‖‖f‖‖g‖,
(3.22)

which we will use now to estimate JA4 . For (λ, λ1) ∈ A4,

|L(ξ1, ξ2)| ≤ 1 +
M(ξ)

M(ξ1)M(ξ2)
≤ C

〈ξ1〉
α
2 〈ξ2〉

α
2

N
α
2 N

α
2

+
C

N |s|

|ξ1||s|
N |s|

|ξ2||s|

≤ C
〈ξ1〉

α
2 〈ξ2〉

α
2

Nα
+ C

〈ξ1〉|s|〈ξ2〉|s|

N |s|N |s| · 〈ξ1〉
α
2 −|s|〈ξ2〉

α
2 −|s|

N
α
2 −|s|N

α
2 −|s|

≤ C
〈ξ1〉

α
2 〈ξ2〉

α
2

Nα
,

since α
2 − |s| ≥ 0.

Therefore, using (3.22) with s = −α
2 (which is possible since if 2|s| < α < 2−3γ,

then |s| < α
2 < 1 − 3

2γ and thus, −α
2 ∈ (− 1

4 , 0) and ( 1
2 − γ) + 2

3 ( 1
4 −

α
2 ) =

1
3 (2− 3γ − α) > 0), it follows that

JA4 ≤ CN−α‖h‖ ‖f‖ ‖g‖. (3.23)

The statement of Lemma 1.2 follows now from (3.11), (3.13), (3.14), (3.20), and
(3.23). �

4. Proof of Theorem 1.3

In our proof we will make use of the homogeneity properties of the KPII equation
which we now describe as: For δ > 0 we define

u0δ(x, y) := δ
2
3 u0(δ

1
3 x, δ

2
3 y) ,

uδ(x, y, t) := δ
2
3 u(δ

1
3 x, δ

2
3 y, δt).

Then u ∈ XsγεN [0, T ] is a solution of the IVP (1.1) in [0, T ] with initial datum u0

if and only if uδ ∈ XsγεN [0, T/δ] is a solution of (1.1) in [0, T/δ] with initial datum
u0δ. We also observe that,

‖u0δ‖sN ≤ CN |s|δ( 1
6−

|s|
3 )‖u0‖s. (4.1)
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Let C := max{C1, C}, where C1 is the constant in estimates (1.4) and (1.5)
corresponding to T = 1, and C is the constant in (1.6). Let R := 1

8C2 . If v0 ∈ Hs0

with ‖v0‖sN ≤ R, then from (1.4), (1.5), and (1.6) we can conclude that the operator
Φv0 defined by

Φv0(w) := Ψ(·t)W (·t)v0 −G1(∂xw2)
maps the closed ball B(0, 2CR) of XsγεN into itself and is a contraction. Therefore,
Φv0 has a unique fixed point w in this ball. Thus, w|[0,1] ∈ XsγεN [0, 1] is a solution
in [0, 1] of (1.1) with initial datum v0.

Let u0 ∈ Hs0 with ∂−1
x u0 ∈ S′(R2) and suppose that N and δ > 0 are such that

‖u0δ‖sN ≤ CN |s|δ( 1
6−

|s|
3 )‖u0‖s =

R

4
. (4.2)

(We are supposing without loss of generality that ‖u0‖s 6= 0). Since ‖u0δ‖sN ≤ R,
the operator Φu0δ

has a fixed point w ∈ XsγεN in B(0, 2CR). Let v := w|[0,1] . We
can take a sequence {v0n} in H∞(R2) with ∂−1

x v0n ∈ H∞(R2), such that v0n → u0δ

in Hs0 and such that ‖v0n‖sN ≤ R
2 .

For each n, let wn ∈ XsγεN be the fixed point in B(0, 2CR) of Φv0n
and set

vn := wn|[0,1] .
Since the local problem is locally well-posed in Xsγε for initial data in Hs0 and

the norms ‖ ‖s and ‖ ‖sγε are equivalent to ‖ ‖sN and ‖ ‖sγεN , respectively, we have
that

vn → v in XsγεN [0, 1]. (4.3)
Since v0n ∈ H∞(R2) and ∂−1

x v0n ∈ H∞(R2), from (3.1) and (3.2) it follows that

‖INvn(1)‖2
L2 ≤ ‖INv0n‖2

L2 + C‖∂x[IN (w2
n)− (INwn)2]‖0(γ−1)0‖INwn‖0γ0 ,

and from Lemma 1.2 we obtain that

‖INvn(1)‖2
L2 ≤

R2

4
+ CN−α‖INwn‖2

0γε‖INwn‖0γε

≤ R2

4
+ CN−α‖wn‖3

sγεN

≤ R2

4
+ CN−α8C3R3 .

From (4.3) and the immersion of XsγεN [0, 1] in C([0, 1];Hs0
N ), we conclude that

‖INv(1)‖2
L2 ≤

R2

4
+ CN−α , (4.4)

where C is independent of N and δ.
In virtue of (4.4), for k ∈ N, we can obtain a solution of problem (1.1) with

initial datum u0δ in the interval [0, k] whenever (k − 1)CN−α ≤ 3
4R2.

The largest k with this property is the integer k for which (k−1)CN−α ≤ 3
4R2 <

kCN−α. If we wish to have a solution with initial datum u0 in the interval [0, T ], it
suffices to have k > T

δ . We know from (4.2) that δ
1
6−

|s|
3 = CN−|s|; or, which is the

same, δ = CN
−6|s|
1−2|s| and T/δ = CTN

6|s|
1−2|s| . Now, since k > CNα, if we choose N

in such a way that CNα > CTN
6|s|

1−2|s| , then we will have a solution of the problem
with initial datum u0δ in the interval [0, T

δ ]. This is possible if

α >
6|s|

1− 2|s|
. (4.5)
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If s is such that 6|s|
1−2|s| < 2− 3γ, then we can find α which satisfies (4.5) and the

hypotheses of Lemma 1.2. This last inequality is satisfied by an allowed value of
γ > 1

2 if 6|s|
1−2|s| < 1

2 ; i.e. for s ∈ (− 1
14 , 0).
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E-mail address: pisaza@perseus.unalmed.edu.co

Jorge Mej́ıa L.
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