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LIFE SPAN OF NONNEGATIVE SOLUTIONS TO CERTAIN
QUASILINEAR PARABOLIC CAUCHY PROBLEMS

HENDRIK J. KUIPER

Abstract. We consider the problem

ρ(x)ut −∆um = h(x, t)u1+p, x ∈ RN , t > 0,

with nonnegative, nontrivial, continuous initial condition,

u(x, 0) = u0(x) 6≡ 0, u0(x) ≥ 0, x ∈ RN .

An integral inequality is obtained that can be used to find an exponent pc such

that this problem has no nontrivial global solution when p ≤ pc. This integral
inequality may also be used to estimate the maximal T > 0 such that there is
a solution for 0 ≤ t < T . This is illustrated for the case ρ ≡ 1 and h ≡ 1 with
initial condition u(x, 0) = σu0(x), σ > 0, by obtaining a bound of the form
T ≤ C0σ−ϑ.

1. Introduction

In this article, we investigate the maximal interval of existence of solutions for
the problem

ρ(x)ut −∆um = h(x, t)u1+p, x ∈ RN , t > 0, (1.1)
with nonnegative, nontrivial, continuous initial condition,

u(x, 0) = u0(x) 6≡ 0, u0(x) ≥ 0, x ∈ RN . (1.2)

Fujita [3] studied this problem for the case where m = 1, ρ(x) ≡ 1 and h(x, t) ≡ 1
In 1966. He obtained the following, by now famous, results. When 0 < p < 2/N the
problem fails to have a nontrivial global solution. That is to say that the maximal
interval of existence of any solution is finite. When p > 2/N there exists a global
solution if u0(x) ≤ Ae−k|x|2 for some constant k > 0 provided that A is sufficiently
small. The critical case, p = pc := 2/N , was studied by Hayakawa [5], Kobayashi
et al. [6] and Weissler [11]. They showed that there does not exist a nontrivial,
nonnegative global solution in case p = pc. Fujita’s work has been extended and
generalized by many others. In particular, we should mention that Qi [10] studied
the problem

ut −∆um = |x|ςtru1+p.

He found that the critical exponent for this problem is pc = (m− 1)(r + 1) + (2 +
2r + ς)/N > 0. More references can be found, for example, in the two papers, [4]
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and [7] that motivated the present work. In the first of these, Guedda and Kirane
reconfigured the test function method of Pohozaev et al. [8, 9] and were able to
find the critical exponent for equations of the form (1.1) as well as others. The
basic idea of the test function methods can be found as far back as in articles of
Baras and Pierre [2] and Baras and Kersner [1]. In this article we will take the test
function method, but reconfigured once again, in order to study the relationship
between the size of the initial condition and the length of the maximal interval of
existence. In doing this we will extend some of the results of Tzong-Yow Lee and
Wei-Ming Ni [7], who obtained such information for Fujita’s problem, i.e. for the
case m = 1, h ≡ 1 and ρ ≡ 1. For example, we will show that if u is a global
solution with initial condition u(x, 0) = u0(x), then an inequality of the form

lim sup
R→∞

R−S

∫
BR

ρ(x)u0(x)Φ(x/R) dx ≤ Cλκ

must be satisfied. Here Φ is a positive eigenfunction corresponding to the principal
eigenvalue of the Dirichlet problem on the unit ball, B1, and normalized such that∫

B1
Φ(ξ) dξ = 1. The numbers C and κ depend on N , m, p, h, and ρ. When m = 1,

h ≡ 1, and ρ ≡ 1, then C = 1 and κ = 1/p, a result obtained in [7]. We also obtain a
bound for the maximal interval of existence. Suppose uσ is a solution corresponding
to a nontrivial, nonnegative initial condition u(x, 0) = σu0(x). Let [0, Tσ) be its
maximal interval of existence. We obtain a bound of the form Tσ ≤ Cσ−ϑ. When
m ≥ 1, h ≡ 1, and ρ ≡ 1 then ϑ = p+ 1−m.

2. The test function method

Suppose that u is a solution of (1.1)-(1.2) on RN × [0, t∗). Let BR := {x ∈ RN :
|x| < R}. We assume that

0 < m < p+ 1,

and that there exists a continuous function h0 defined on B1 × [0,∞), and real
constants β and µ ≥ 0 such that for each T > 0 and R > R0 we have

h(Rξ,Rβτ) ≥ Rµh0(ξ, τ) ∀ξ ∈ B1 ∀τ ∈ [0, T ], (2.1)

where ∫ T

0

∫
B1

h0(ξ, τ)−α dξ dτ <∞

for α = 1/p and for α = m/(p + 1 − m). The simplest examples of functions
satisfying these hypotheses are those of the form h(x, t) = A|x|ςtr where A is a
positive constant and ς and r are sufficiently small: ς < Np, ς < N(p+ 1−m)/m,
r < p, and r < (p+ 1−m)/m.

We assume that there exists a continuous function ρ0 defined on B1 × [0,∞),
and a positive constant ω such that for each R > R0 we have

ρ(Rξ) ≤ Rωρ0(ξ) ∀ξ ∈ B1, (2.2)

where ∫
B1

ρ0(ξ)(p+1)/p dξ <∞.
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Let λR be the principal eigenvalue for the Dirichlet problem on the ball of radius
R:

−∆w(x) = λw(x), x ∈ BR,

w(x) = 0 x ∈ ∂BR.

We note that λR = λ1/R
2. Let Φ denote the unique nonnegative eigenfunction

corresponding to the principal eigenvalue λ1 such that∫
B1

Φ(x) dx = 1.

Of course Φ is radially symmetric: Φ(x) = Φ0(|x|). For 0 ≤ S < T we define

ψ(t) :=


1 if t < S

(1− (t− S)/(T − S))θ if S ≤ t ≤ T

0 if t > T.

We also define

ζ(x, t) := ψ(t/Rβ)Φ(x/R),

and, for TRβ < t∗,

JR(S, T ) :=
∫ TRβ

SRβ

∫
BR

h(x, t)u(1+p)ζ(x, t) dx dt.

Using (1.1) and (1.2) and integration by parts we have

JR(0, T ) =
∫ TRβ

0

∫
BR

[ρ(x)ut −∆um]ψ(t/Rβ)Φ(x/R) dx dt

= −
∫

BR

ρ(x)u0(x)Φ(x/R) dx−
∫ TRβ

0

∫
BR

R−βuρψ′(t/Rβ)Φ(x/R) dx dt

+
∫ TRβ

0

∫
∂BR

[−∂u
m

∂ν
ψ(t/Rβ)Φ(x/R) + umψ(t/Rβ)R−1Φ′0(|x|/R)] dS dt

+
∫ TRβ

0

∫
BR

umψ(t/Rβ)R−2λ1Φ(x/R) dx dt .

Note that by the Maximum Principle, u cannot attain the value zero in RN×(0,∞)
and consequently the surface integral must be negative. Using the notation

VR :=
∫

BR

ρ(x)u0(x)Φ(x/R) dx,
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since ψ′(t) = 0 except on (S, T ), we have

JR(0, T ) + VR

< +
∫ TRβ

SRβ

∫
BR

u[hψ(t/Rβ)Φ(x/R)]
1

p+1 ρR−β

× [−ψ′(t/Rβ)ψ(x/Rβ)−
1

p+1 ]h−
1

p+1 Φ(x/R)
p

p+1 dx dt

+
∫ TRβ

0

∫
BR

um[hψ(t/Rβ)Φ(x/R)]
m

p+1R−2λ1

× h−
m

p+1ψ(t/Rβ)
p+1−m

p+1 Φ(x/R)
p+1−m

p+1 dx dt

≤ +JR(S, T )
1

p+1R−β
[ ∫ TRβ

SRβ

∫
BR

ρ
p+1

p

×
[
[−ψ′(t/Rβ)]

p+1
p ψ(x/Rβ)−1/p

]
h−

1
p Φ(x/R) dx dt

]p/(p+1)

+ JR(0, T )
m

p+1λR−2
[ ∫ TRβ

0

∫
BR

h−
m

p+1−mψ(t/Rβ)Φ(x/R) dx dt
] p+1−m

p+1
.

Making the change of variables ξ = x/R and τ = t/Rβ , and using (2.1) and (2.2),
we have

JR(0, T ) + VR

< JR(S, T )
1

p+1Rs1

×
[ ∫ T

S

∫
B1

ρ0(ξ)
p+1

p (−ψ′(τ))
p+1

p ψ(τ)−1/ph0(ξ, τ)−1/pΦ(ξ) dξ dτ
]p/(p+1)

+ JR(0, T )
m

p+1λRs2

[ ∫ T

0

∫
B1

h0(ξ, τ)−
m

p+1−mψ(τ)Φ(ξ) dξ dτ
] p+1−m

p+1
,

where

s1 := ω +
Np− µ− β

p+ 1
, s2 := −2 +N + β − (N + β + µ)m

p+ 1
.

Defining

A(S, T ) :=
∫ T

S

∫
B1

ρ0(ξ)
p+1

p (−ψ′(τ))
p+1

p ψ(τ)−1/ph0(ξ, τ)−1/pΦ(ξ) dξ dτ,

B(T ) := λ

∫ T

0

∫
B1

h0(ξ, τ)−
m

p+1−mψ(τ)Φ(ξ) dξ dτ,

for R > R0 we have

JR(0, T ) + VR < JR(S, T )
1

p+1Rs1A(S, T )
p

p+1 + JR(0, T )
m

p+1λRs2B(T )
p+1−m

p+1 . (2.3)

Next we choose β such that s1 = s2:

β :=
(p+ 1)(ω + 2) + (m− 1)(µ+N)

p+ 2−m
, (2.4)

so that s1 = s2 = s where

s :=
(N + ω)(p+ 1−m)− µ− 2

p+ 2−m
. (2.5)
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It is our objective to use (2.3) to obtain information on the relationship between
the initial condition and the length of the maximum interval of existence. However,
it does also provide a proof to the following result of Guedda and Kirane:

Theorem 2.1. If s ≤ 0, that is to say

p ≤ pc := m− 1 +
2 + µ

N + ω
,

then problem (1.1)–(1.2) has no global solution except for u ≡ 0.

Proof. When s < 0 we take the limit as R tends to infinity on both sides of (2.3)
and obtain∫ ∞

0

∫
RN

h(x, t)u(1+p)ζ(x, t) dx dt+
∫

RN

ρ(x)u0(x)Φ(0) dx = 0, (2.6)

so that u ≡ 0 is the only global solution. If s = 0 we first note that JR(0, T ) is
uniformly bounded for all R. This means that we can make JR(S, T ) arbitrarily
small by choosing S large enough and hence we can make the first term on the
right hand side of (2.3) arbitrarily small, provided we keep T − S bounded. Next
we can make the second term arbitrarily small by making |T −S| sufficiently small.
Once again we have (2.4). �

It should be noted that the choice of β depends on the value of µ and that these
quantities are already related by hypothesis (2.1). This means, that in order to
apply this result one needs to compute µ and β simultaneously. We illustrate this
with the following example.

Example. Suppose that h(x, t) = |x|ςtr, where we assume that p 6= p∗ := (r +
1) ∗ (m − 1) − 1. Then µ = ς + rβ. Solving this equation and equation (2.4)
simultaneously for β and µ we obtain

µ =
(p+ 1)(ωr + 2r + ς) + (m− 1)(Nr − ς)

p+ 1 + (r + 1)(1−m)
,

β =
(ω + 2)(p+ 1) + (m− 1)(N + ς)

p+ 1 + (r + 1)(1−m)
.

We also compute

s =
(N + ω)(p− rm+ 1−m) + rN − 2r − 2− ς

p+ 1 + (r + 1)(1−m)
.

We may solve the above equation for p when s = 0 in order to see that the critical
exponent is

pc = (m+ rm− 1) +
−rN + 2 + ς + 2r

N + ω
,

which agrees with the result in [10] when ω = 0. Since pc > p∗, the restriction
p 6= p∗ does not affect the determination of the critical exponent.

3. Life span of a solution

For the rest of this article, we assume that S = 0 and that the value of β is given
by (2.4). Suppressing arguments and subscripts (2.3) becomes

J + V < J
1

p+1RsA
p

p+1 + J
m

p+1λRsB
p+1−m

p+1 . (3.1)
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We will use this to obtain an estimate for V . First we state some facts whose
elementary proofs we leave to the reader.

Lemma 3.1. Suppose that a, b, r, and q are positive constants. Define the func-
tions F (x) := axq − bxr, G(x) := ax−q + bxr on 0 < x <∞. Then

max
x>0

F (x) = (1− q/r)a
r

r−q
( q
br

) q
r−q ,

min
x>0

G(x) = (1 + q/r)a
r

r+q
(br
q

) q
r+q ,

Lemma 3.2. Let 0 < ω1, ω2 < 1, ω1 6= ω2. On [0,∞) define

Υ(x) := max(xω1 , xω2).

Let η be an arbitrary positive number, then

Ψ(ω1, ω2; η) := max
x

(ηΥ(x)− x) = max
i

(
(1− ωi)ω

ωi
1−ωi
i η

1
1−ωi

)
.

For η sufficiently large

Ψ(ω1, ω2; η) = (1− ω)ω
ω

1−ω η
1

1−ω , (3.2)

where ω = max(ω1, ω2).

Proof. The function ηΥ(x)− x has at most three critical points: the cusp at x = 1
and the points where the functions ηxω1 − x and ηxω2 − x attain their maxima. It
is easy to see that ηΥ(x)−x cannot attain its maximum at the cusp. Applying the
previous lemma, we see that the maximum value of ηΥ(x) − x must be the larger
of the two values

(1− ωi)ω
ωi

1−ωi
i η

1
1−ωi .

The last assertion is obvious. �

We will use the notation m := max(1,m) and

Jm := (1−m/(p+ 1))
( m

p+ 1
) m

p+1−m .

Then, for η sufficiently large

Ψ(
1

p+ 1
,
m

p+ 1
, η) = Jm η

p+1
p+1−m .

Theorem 3.3. If u is a nonnegative solution of (1.1)-(1.2) on BR∗ × [0, t∗), s is
given by (2.5). Let

A(T ) :=
∫ T

0

∫
B1

ρ0(ξ)
p+1

p (−ψ′(τ))
p+1

p ψ(τ)−1/ph0(ξ, τ)−1/pΦ(ξ) dξ dτ,

B(T ) :=
∫ T

0

∫
B1

h0(ξ, τ)−
m

p+1−mψ(τ)Φ(ξ) dξ dτ.

Then for all (R, T ) ∈ {(ρ, τ) : R0 ≤ ρ ≤ R∗, 0 ≤ τ ≤ t∗ρ
−β}, we have∫

BR

ρ(x)u0(x)Φ(x/R) dx < Ψ(
1

p+ 1
,
m

p+ 1
; ([A(T )

p
p+1 + λB(T )

p+1−m
p+1 ]Rs). (3.3)
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In particular, if u is a global nonnegative solution then

lim sup
R→∞

R−S

∫
BR

ρ(x)u0(x)Φ(x/R) dx ≤ Jm inf
T

[
A(T )

p
p+1 + λB(T )

p+1−m
p+1

] p+1
p+1−m

,

(3.4)
where

S :=
s(p+ 1)
p+ 1−m

=
(p+ 1)[(N + ω)(p+ 1−m)− µ− 2]

(p+ 1−m)(p+ 2−m)
.

Proof. For the sake of convenience we define

Θ(T ) = A(T )
p

p+1 + λB(T )
p+1−m

p+1 .

From (3.1) we see that V ≤ Υ(J)Θ(T )Rs − J , where

Υ(σ) := max{σ
1

p+1 , σ
m

p+1 }.
Then by Lemma 2, we have (3.3). For R sufficiently large we can use equation (3.2)
to conclude the validity of (3.4). �

Corollary 3.4. Suppose that there exist positive constants ρc and hc such that for
R > R0,

h(Rξ,Rβτ) ≥ hcR
µ, and ρ(Rξ) ≤ ρcR

ω,

where β is given by (2.4). Suppose that u is a nonnegative global solution. Then

lim sup
R→∞

R−S

∫
BR

ρ(x)u0(x)Φ(x/R) dx ≤ JmK
p+1

p+1−m
m λ

p+1
(p+2−m)(p+1−m)

where

Km := (p+ 2−m)
( ρ

(p+1−m)
c

(p+ 1−m)(p+1−m)hc

)1/(p+2−m)

. (3.5)

Proof. We easily obtain

A(T ) ≤ A0 ≡
ρ

p+1
p

c h
− 1

p
c θ

p+1
p

(θ − 1/p)T
1
p

, and B(T ) ≤ B0 ≡
h
− m

p+1−m
c T

θ + 1
.

Then

V < Rs
(
J

1
p+1A

p
p+1
0 + J

m
p+1λB

p+1−m
p+1

0

)
− J ≤ RsΘ0(T )Υ(J)− J,

where
Θ(T ) ≤ Θ0(T ) := α0T

− 1
p+1 + β0T

p+1−m
p+1

with

α0 :=
ρch

−1/(p+1)
c θ

(θ − 1/p)p/(p+1)
, β0 =

λh
−m/(p+1)
c

(θ + 1)(p+1−m)/(p+1)
.

By Lemma 1

Θ00 := min(Θ0(T ))

=
[
(p+ 1−m)−1α0

](p+1−m)/(p+2−m)
β

1/(p+2−m)
0 [p+ 2−m]

=
(p+ 2−m)(p+ 1−m)−

p+1−m
p+2−m ρ

p+1−m
p+2−m
c h

− 1
(p+2−m)

c λ
1

p+2−m θ
p+1−m
p+2−m

(θ − 1/p)p(p+1−m)/[(p+1)(p+2−m)] [θ + 1](p+1−m)/[(p+1)(p+2−m)]
.

Taking the limit as θ → ∞ we have limθ→∞ Θ00 = Kmλ
1/(p+2−m). Then after

substituting this into equation (3.4), the proof is complete. �
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When we are dealing with the problem originally considered by Fujita (ρ ≡
ρ0 ≡ ρc ≡ 1, h ≡ h0 ≡ hc ≡ 1, and m = 1), then Jm = p(p + 1)−(p+1)/p and
Km = p−1(p+ 1)(p+1)/p and we see that the above inequality reduces to

lim sup
R→∞

R−N+2/p

∫
BR

ρ(x)u0(x)Φ(x/R) dx ≤ λ1/p. (3.6)

This is precisely the result found in [7]. As done in that article we can deduce the
following result.

Corollary 3.5. When N ≥ S, Theorem 2.1 and Corollary 3.4 remain valid if we
replace

lim sup
R→∞

R−S

∫
BR

ρ(x)u0(x)Φ(x/R) dx

by lim inf |x|→∞ |x|N−Sρ(x)u0(x).

Proof. The statement of this corollary follows from the inequalities:

lim
R→∞

R−S

∫
BR

ρ(x)u0(x)Φ(x/R) dx

≥ lim
R→∞

R−S

∫
BR\Bk

inf
R≥|x|≥k

(
|x|N−Sρ(x)u0(x)

)
RS−NΦ(x/R) dx

≥ lim
R→∞

inf
R≥|x|≥k

(
|x|N−Sρ(x)u0(x)

) ∫
BR\Bk

R−NΦ(x/R) dx

= lim
R→∞

inf
R≥|x|≥k

(
|x|N−Sρ(x)u0(x)

) ∫
B1\Bk/R

Φ(ξ) dξ

= inf
|x|≥k

(
|x|N−Sρ(x)u0(x)

)
.

The proof is complete by letting k tend to infinity. �

Inequality (3.3) can also be used to obtain an upper bound for the length of
the maximal interval of existence. Consider problem (1.1)–(1.2). By the life span
for initial condition u0, we mean the least upper bound of all values T such that
[0, T ) is a maximal interval of existence of a solution to (1.1)-(1.2). Let us fix u0,
u0 6≡ 0 and u0(x) ≥ 0 for all x ∈ RN . We denote by L(σ), σ > 0, the life span
corresponding to initial condition σu0. Assume the hypotheses of Theorem 1 are
satisfied, then there exists a value Λ such that

ΛVR = Ψ(RsΘ(TM )),

where TM is the value of T at which Θ(T ) attains its minimum value. Let ΘL denote
the restriction of Θ to the interval [0, TM ). If we take σ > Λ, then L(σ) < ∞ and
we see from (3.4) that

L(σ) ≤ RβΘ−1
L

(
R−sΨ−1(σVR)

)
. (3.7)

In the next result we use this inequality to obtain an explicit upper bound for
the life span of a solution.

Theorem 3.6. Assume the hypotheses of Corollary 3.4 Let u0 be a nonnegative
nontrivial continuous function on RN . There exist positive numbers Λm, C1 and
σ1 so that the life span L(σ) corresponding to the initial condition σu0 with σ > Λm

satisfies
L(σ) ≤ C1σ

−(p+1−m). (3.8)
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Proof. Decreasing the value of TM to a value Tm if needed, we may assume that the
function Θ0, introduced above, is decreasing on (0, Tm). We can choose Λm such
that ΛmVR ≥ Ψ(RsΘ(Tm)) and also so that ΛmVR ≥ C3 where C3 is a sufficiently
large constant so that whenever σ > Λm then

Ψ−1(σVR) =
[
(1− ω)−1ω−

ω
1−ω

]1−ω(σVR)
p+1−m

p+1

with ω = m/(p+ 1). We write

Ψ−1(σVR) = γ0V
p+1−m

p+1
R σ

p+1−m
p+1 ,

where γ0 := (p+ 1)(p+ 1−m)−
p+1−m

p+1 m− m
p+1 . Since

Θ(T ) ≤ Θ0(T ) ≤ α0T
− 1

p+1 + β0T
p+1−m

p+1
m

on [0, Tm), it follows that

Θ−1
L (η) ≤

[η − β0T
p+1−m

p+1
m

α0

]−(p+1)

, for η > β0T
p+1−m

p+1
m .

Let [0, T∞) be the maximal interval of existence of u and let T = τR−β where
0 < τ < T∞). We define

G(R, σ) := Rβαp+1
0

[
γ0R

−sV
p+1−m

p+1
R σ

p+1−m
p+1 − δ0

]−(p+1)

,

where δ0 := β0T
p+1−m

p+1
m . Whenever τ < L(σ) we have τ ≤ G(R, σ). Therefore

L(σ) ≤ G(R, σ). (3.9)

It is easily seen that this implies equation (16). �

Inequality (17) must be satisfied for all R > R0, However, because the domains
depend on R we cannot improve our bound by merely taking the infimum over all
R ≥ R0. Nevertheless, it is sometimes possible to do so by finding the envelope of
the curves τ = G(R, σ). We illustrate this in the next section.

4. Application of results to the problem ut = ∆um + up+1

Suppose that m ≥ 1, ρ ≡ 1, h ≡ 1, and for some nonnegative constant δ, |x|−δu0

is bounded from below by a positive constant. Let uσ be a solution of (1.1) with
initial condition uσ(x, 0) = σu0(x). In this case

β =
2(p+ 1) +N(m− 1)

p+ 2−m
, s =

N(p+ 1−m)− 2
p+ 2−m

.

We could substitute these values into (17), obtain G(R, σ), and then find an enve-
lope for the R-parameterized curves y = G(R, σ). However, the R-dependence of
the domains and the fact that Ψ is piecewise defined complicate matters. So it is
easier to use inequality (3.3) directly. The left side of this inequality is greater than

σ

∫
BR

K|x|δΦ(x/R) dx = σKRN+δ

∫
B1

|ξ|δΦ(ξ) dξ = K1σR
N+δ.

Let [0, Tσ) be the maximal interval of existence of uσ. We assume that σ is suffi-
ciently large to ensure that Tσ <∞. We may replace Θ in right hand side of (3.3)
by Θ0 and obtain

K1σR
N+δ ≤ Ψ(Θ0(τR−β)Rs)
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whenever 0 < τ < Tσ. Therefore, σ ≤ max(F1(R; τ), F2(R; τ)), where

Fi(R; τ) := CiR
−δ−N

[
α0τ

− 1
p+1R

β
p+1+s + β0τ

p+1−m
p+1 R−β( p+1−m

p+1 )+s
]qi

,

where C1 and C2 are certain positive constants and q1 := (p + 1)/p and q2 :=
(p+ 1)/(p+ 1−m). Now, we define

Ω(i)
1 := β/(p+ 1) + s− (N + δ)/qi, Ω(i)

2 := β(p+ 1−m)/(p+ 1)− s+ (N + δ)/qi,

ω1 := 1/(p+ 1), and ω2 := (p+ 1−m)/(p+ 1). Then we may write simply

Fi(R; τ) = Ci

[
α0τ

−ω1RΩ
(i)
1 + β0τ

ω2R−Ω
(i)
2

]qi
.

If we can find functions y = Fi(τ) such that

Fi(R, τ) ≥ Fi(τ) ∀τ > 0,

and such that for each value of τ there exists a value R(i)
τ where

Fi(R(i)
τ , τ) = Fi(τ)

then σ ≤ Fi(R, τ) for all R if and only if σ ≤ Fi(τ). We make our mission somewhat
easier by making a change of variables: let zi := RΩ

(i)
1 +Ω

(i)
2 and η := τω1+ω2 , so

that Fi(R; τ) = Ciτ
−ω1qihi(zi; η)qi , where

hi(zi; η) = α0z
1−γi

i + β0z
−γi

i η,

and γi := Ω(i)
2 /(Ω(i)

1 + Ω(i)
2 ). For the rest of this article, we suppress the index i.

We easily find the envelope

y = h(η) := αγ
0β

1−γ
0

[( γ

1− γ

)1−γ +
(1− γ

γ

)γ
]
η1−γ ,

which leads us to define F (τ) := Cτ−ω1qh(η)q. If we define ηz := α0β
−1
0 (1−γ)γ−1z,

then we may write

h(η) =
[
α0z

1−γiηγ−1
z + β0z

−γηγ
z

]
η1−γ ,

which immediately shows that the parameterized family of lines y = h(z, η) are
tangent to the concave curve y = h(η) at the respective points (ηz, h(ηz)). Conse-
quently h(z, η) ≥ h(η) for all z > 0 and η > 0, which implies that F (R; τ) ≥ F (τ).
Tracing back through the change of variables we find that F (Rτ , τ) = F (τ) pro-
vided we pick Rτ = z1/(Ω1+Ω2) where z is the solution of ηz = τω1+ω2 . Going back
to the use of the index i, we see that σ ≤ max(F1(τ), F2(τ)) where

Fi(τ) := Ciτ
−ω1qi

[
hi(τω1+ω2)

]qi = Miτ
θi ,

for some positive constants M1 and M2 and with

θi = [(1− γi)ω2 − γiω1] qi. (4.1)

Therefore, σ ≤ max(M1τ
θ1 ,M2τ

θ2). Suppose that the exponents θi are negative
and let ϑi := −1/θi. Then it is clear that τ ≤ C0σ

−ϑ for some constant C0,
provided we take ϑ := min(ϑ1, ϑ2) and provided σ is restricted to sufficiently large
values. Using equation (18) we can compute the values of ϑi, and then obtain the
following result.



EJDE–2003/66 LIFE SPAN OF NONNEGATIVE SOLUTIONS 11

Corollary 4.1. For each σ > 0, let uσ be a solution of the problem

ut = ∆um + up+1,

u(x, 0) = σu0(x)

on RN × [0, Tσ) where [0, Tσ) is its maximum interval of existence. Assume that
0 < m < p + 1 and u0(x) ≥ K |x|δ for some constants δ and K > 0, and that the
numbers ϑ1 and ϑ2 given below are positive:

ϑ1 =
[2(p+ 1) +N(m− 1)]p

2(p+ 1) +N(m− 1) + δp(p+ 2−m)

ϑ2 =
(2p+ 2 +Nm−N)(p+ 1−m)

2(p+ 1)−N(m− 1)(p+ 1−m) + δ(p+ 1−m)(p+ 2−m)
.

Then there exist positive constants C0 and σ0 such that

Tσ ≤ C0σ
−ϑ

for all σ > σ0, where ϑ = min(ϑ1, ϑ2).

Note that in case m = 1 and δ = 0, ϑ is simply equal to p, agreeing with the
asymptotic result in [7].
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