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SELF-ADJOINTNESS OF SCHRÖDINGER-TYPE OPERATORS
WITH SINGULAR POTENTIALS ON MANIFOLDS OF

BOUNDED GEOMETRY

OGNJEN MILATOVIC

Abstract. We consider the Schrödinger type differential expression

HV = ∇∗∇+ V,

where ∇ is a C∞-bounded Hermitian connection on a Hermitian vector bundle

E of bounded geometry over a manifold of bounded geometry (M, g) with
metric g and positive C∞-bounded measure dµ, and V = V1 + V2, where

0 ≤ V1 ∈ L1
loc(End E) and 0 ≥ V2 ∈ L1

loc(End E) are linear self-adjoint

bundle endomorphisms. We give a sufficient condition for self-adjointness of
the operator S in L2(E) defined by Su = HV u for all u ∈ Dom(S) = {u ∈
W 1,2(E) :

∫
〈V1u, u〉 dµ < +∞ and HV u ∈ L2(E)}. The proof follows the

scheme of T. Kato, but it requires the use of more general version of Kato’s

inequality for Bochner Laplacian operator as well as a result on the positivity

of u ∈ L2(M) satisfying the equation (∆M + b)u = ν, where ∆M is the scalar
Laplacian on M , b > 0 is a constant and ν ≥ 0 is a positive distribution on M .

1. Introduction and main result

Let (M, g) be a C∞ Riemannian manifold without boundary, with metric g,
dim M = n. We will assume that M is connected. We will also assume that M
has bounded geometry. Moreover, we will assume that we are given a positive
C∞-bounded measure dµ, i.e. in any local coordinates x1, x2, . . . , xn there exists a
strictly positive C∞-bounded density ρ(x) such that dµ = ρ(x)dx1dx2 . . . dxn.

Let E be a Hermitian vector bundle over M . We will assume that E is a bundle
of bounded geometry (i.e. it is supplied by an additional structure: trivializations
of E on every canonical coordinate neighborhood U such that the corresponding
matrix transition functions hU,U ′ on all intersections U ∩U ′ of such neighborhoods
are C∞-bounded, i.e. all derivatives ∂α

y hU,U ′(y), where α is a multiindex, with
respect to canonical coordinates are bounded with bounds Cα which do not depend
on the chosen pair U , U ′).
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We denote by L2(E) the Hilbert space of square integrable sections of E with
respect to the scalar product

(u, v) =
∫

M

〈u(x), v(x)〉 dµ(x). (1.1)

Here 〈·, ·〉 denotes the fiberwise inner product in Ex.
In what follows, C∞(E) denotes smooth sections of E, and C∞

c (E) denotes
smooth compactly supported sections of E. Let

∇ : C∞(E) → C∞(T ∗M ⊗ E)

be a Hermitian connection on E which is C∞-bounded as a linear differential op-
erator, i.e. in any canonical coordinate system U (with the chosen trivializations of
E|U and (T ∗M ⊗ E)|U ), ∇ is written in the form

∇ =
∑
|α|≤1

aα(y)∂α
y ,

where α is a multiindex, and the coefficients aα(y) are matrix functions whose
derivatives ∂β

y aα(y) for any multiindex β are bounded by a constant Cβ which does
not depend on the chosen canonical neighborhood.

We will consider a Schrödinger type differential expression of the form

HV = ∇∗∇+ V,

where V is a linear self-adjoint bundle map V ∈ L1
loc(EndE). Here

∇∗ : C∞(T ∗M ⊗ E) → C∞(E)

is a differential operator which is formally adjoint to ∇ with respect to the scalar
product (1.1).

If we take ∇ = d, where d : C∞(M) → Ω1(M) is the standard differential, then
d∗d : C∞(M) → C∞(M) is called the scalar Laplacian and will be denoted by ∆M .

We make the following assumption on V .
(A1) V = V1 + V2, where 0 ≤ V1 ∈ L1

loc(EndE) and 0 ≥ V2 ∈ L1
loc(EndE) are

linear self-adjoint bundle maps (here the inequalities are understood in the
sense of operators Ex → Ex).

By W 1,2(E) we denote the completion of the space C∞
c (E) with respect to the

norm ‖ · ‖1 defined by the scalar product

(u, v)1 := (u, v) + (∇u,∇v) u, v ∈ C∞
c (E).

By W−1,2(E) we will denote the dual of W 1,2(E).

2. Quadratic forms

In what follows, all quadratic forms are considered in the Hilbert space L2(E).
By h0 we denote the quadratic form

h0(u) =
∫
|∇u|2 dµ (2.1)

with the domain D(h0) = W 1,2(E) ⊂ L2(E). Clearly, h0 is a non-negative, densely
defined and closed form.

By h1 we denote the quadratic form

h1(u) =
∫
〈V1u, u〉 dµ (2.2)
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with the domain

D(h1) =
{
u ∈ L2(E) :

∫
〈V1u, u〉 dµ < +∞

}
. (2.3)

Clearly, h1 is a non-negative, densely defined, and closed form.
By h2 we denote the quadratic form

h2(u) =
∫
〈V2u, u〉 dµ (2.4)

with the domain

D(h2) =
{
u ∈ L2(E) :

∫
|〈V2u, u〉| dµ < +∞

}
. (2.5)

Clearly, h2 is a densely defined form. Moreover, h2 is symmetric (but not semi-
bounded below).

We make the following assumption on h2.

(A2) Assume that h2 is h0-bounded with relative bound b < 1, i.e.
(i) D(h2) ⊃ D(h0)
(ii) There exist constants a ≥ 0 and 0 ≤ b < 1 such that

|h2(u)| ≤ a‖u‖2 + b|h0(u)|, for all u ∈ D(h0), (2.6)

where ‖ · ‖ denotes the norm in L2(E).

Remark 2.1. With the above assumptions on (M, g), bundle E and connection
∇, Assumption (A2) holds if V2 ∈ Lp(EndE), where p = n/2 for n ≥ 3, p > 1 for
n = 2, and p = 1 for n = 1. The proof is given in the last section of this article.

As a realization of HV in L2(E), we define the operator S in L2(E) by the
formula Su = HV u on the domain

Dom(S) =
{
u ∈ W 1,2(E) :

∫
〈V1u, u〉 dµ < +∞ and HV u ∈ L2(E)

}
. (2.7)

Remark 2.2. For all u ∈ D(h0) = W 1,2(E) we have ∇∗∇u ∈ W−1,2(E), and
from Corollary 3.7 below it follows that for all u ∈ W 1,2(E)

⋂
D(h1), we have

V u ∈ L1
loc(E). Thus HV u in (2.7) is a distributional section of E, and the condition

HV u ∈ L2(E) makes sense.

We now state the main result.

Theorem 2.3. Assume that (M, g) is a manifold of bounded geometry with positive
C∞-bounded measure dµ, E is a Hermitian vector bundle of bounded geometry over
M , and ∇ is a C∞-bounded Hermitian connection on E. Suppose that Assumptions
(A1) and (A2) hold. Then S is a semi-bounded below self-adjoint operator.

Remark 2.4. Theorem 2.3 extends a result of T. Kato, cf. Theorem VI.4.6(a)
in [8] (see also remark 5(b) in [7]) which was proven for the operator −∆ + V ,
where ∆ is the standard Laplacian on Rn with the standard metric and measure,
and V = V1 + V2, where 0 ≤ V1 ∈ L1

loc(Rn) and 0 ≥ V2 ∈ L1
loc(Rn) are as in

Assumption (A1) above, and the quadratic form h2 corresponding to V2 is as in
Assumption (A2) above.
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3. Proof of Theorem 2.3

We adopt the arguments from Sec. VI.4 in [8] to our setting with the help of
more general version of Kato’s inequality (3.1).

We begin with the following variant of Kato’s inequality for Bochner Laplacian
(for the proof see Theorem 5.7 in [2]). The original version of Kato’s inequality was
proven in Kato [5].

Lemma 3.1. Assume that (M, g) is a Riemannian manifold. Assume that E is a
Hermitian vector bundle over M and ∇ is a Hermitian connection on E. Assume
that w ∈ L1

loc(E) and ∇∗∇w ∈ L1
loc(E). Then

∆M |w| ≤ Re〈∇∗∇w, signw〉, (3.1)

where

signw(x) =

{
w(x)
|w(x)| if w(x) 6= 0,

0 otherwise.

In what follows, we will use the following Lemma whose proof is given in Ap-
pendix B of [2].

Lemma 3.2. Assume that (M, g) is a manifold of bounded geometry with a smooth
positive measure dµ. Assume that(

b + ∆M

)
u = ν ≥ 0, u ∈ L2(M),

where b > 0, ∆M = d∗d is the scalar Laplacian on M , and the inequality ν ≥ 0
means that ν is a positive distribution on M , i.e. (ν, φ) ≥ 0 for any 0 ≤ φ ∈
C∞

c (M). Then u ≥ 0 (almost everywhere or, equivalently, as a distribution).

Remark 3.3. It is not known whether Lemma 3.2 holds if M is an arbitrary
complete Riemannian manifold. For more details about difficulties in the case of
arbitrary complete Riemannian manifolds, see Appendix B of [2].

Lemma 3.4. The quadratic form h := (h0 + h1) + h2 is densely-defined, semi-
bounded below and closed.

Proof. Since h0 and h1 are non-negative and closed, it follows by Theorem VI.1.31
from [8] that h0 +h1 is non-negative and closed. Since h1 is non-negative, it follows
immediately from Assumption (A2) that h2 is (h0 + h1)-bounded with relative
bound b < 1. Since h0 + h1 is a closed, non-negative form, by Theorem VI.1.33
from [8], it follows that h = (h0 + h1) + h2 is a closed semi-bounded below form.
Since C∞

c (E) ⊂ D(h0)
⋂

D(h1) ⊂ D(h2), it follows that h is densely defined. �

In what follows, h(·, ·) will denote the corresponding sesquilinear form obtained
from h via polarization identity.

Self-adjoint operator H associated to h. Since h is densely defined, closed
and semi-bounded below form in L2(E), by Theorem VI.2.1 from [8] there exists a
semi-bounded below self-adjoint operator H in L2(E) such that

(i) Dom(H) ⊂ D(h) and

h(u, v) = (Hu, v) for all u ∈ Dom(H), and v ∈ D(h).

(ii) Dom(H) is a core of h.
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(iii) If u ∈ D(h), w ∈ L2(E) and h(u, v) = (w, v) holds for every v belonging
to a core of h, then u ∈ Dom(H) and Hu = w. The semi-bounded below
self-adjoint operator H is uniquely determined by the condition (i).

In what follows we will use the following well-known Lemma.

Lemma 3.5. Assume that 0 ≤ T ∈ L1
loc(EndE) is a linear self-adjoint bundle

map. Assume also that u ∈ Q(T ), where Q(T ) = {u ∈ L2(E) : 〈Tu, u〉 ∈ L1(M)}.
Then Tu ∈ L1

loc(E).

Proof. By adding a constant we can assume that T ≥ 1 (in the operator sense).
Assume that u ∈ Q(T ). We choose (in a measurable way) an orthogonal basis in
each fiber Ex and diagonalize 1 ≤ T (x) ∈ End(Ex) to get

T (x) = diag(c1(x), c2(x), . . . , cm(x)),

where 0 < cj ∈ L1
loc(M), j = 1, 2, . . . ,m and m = dim Ex.

Let uj(x) (j = 1, 2, . . . ,m) be the components of u(x) ∈ Ex with respect to the
chosen orthogonal basis of Ex. Then for all x ∈ M

〈Tu, u〉 =
m∑

j=1

cj(x)|uj(x)|2.

Since u ∈ Q(T ), we know that 0 <
∫
〈Tu, u〉 dµ < +∞. Since cj > 0, it follows that

cj |uj |2 ∈ L1(M), for all j = 1, 2, . . . ,m.
Now, for all x ∈ M and j = 1, 2, · · · ,m

2|cjuj | = 2|cj ||uj | ≤ |cj |+ |cj ||uj |2, (3.2)

The right hand side of (3.2) is clearly in L1
loc(M). Therefore cjuj ∈ L1

loc(M). But
(Tu)(x) has components cj(x)uj(x) (j = 1, 2, . . . ,m) with respect to chosen bases
of Ex. Therefore Tu ∈ L1

loc(E), and the Lemma is proven. �

The following corollary follows immediately from Lemma 3.5.

Corollary 3.6. If u ∈ D(h1), then V1u ∈ L1
loc(E).

Corollary 3.7. If u ∈ D(h), then V u ∈ L1
loc(E).

Proof. Let u ∈ D(h) = D(h0)
⋂

D(h1). By Assumption (A1) we have V = V1 + V2,
where 0 ≤ V1 ∈ L1

loc(EndE) and 0 ≥ V2 ∈ L1
loc(EndE). By Corollary 3.6 it follows

that V1u ∈ L1
loc(E) and since D(h) ⊂ D(h2), by Lemma 3.5 we have −V2u ∈

L1
loc(E). Thus V u ∈ L1

loc(E), and the corollary is proven. �

Lemma 3.8. The following operator relation holds: H ⊂ S.

Proof. We will show that for all u ∈ Dom(H), we have Hu = HV u. Let u ∈
Dom(H). By property (i) of operator H we have u ∈ D(h), hence by Corollary 3.7
we get V u ∈ L1

loc(E). Then, for any v ∈ C∞
c (E), we have

(Hu, v) = h(u, v) = (∇u,∇v) +
∫
〈V u, v〉 dµ, (3.3)

where (·, ·) denotes the L2-inner product.
The first equality in (3.3) holds by property (i) of operator H, and the second

equality holds by definition of h.
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Hence, using integration by parts in the first term on the right hand side of the
second equality in (3.3) (see, for example, Lemma 8.8 from [2]), we get

(u,∇∗∇v) =
∫
〈Hu− V u, v〉 dµ, for all v ∈ C∞

c (E). (3.4)

Since V u ∈ L1
loc(E) and Hu ∈ L2(E), it follows that (Hu−V u) ∈ L1

loc(E), and (3.4)
implies ∇∗∇u = Hu− V u (as distributional sections of E). Therefore,

∇∗∇u + V u = Hu,

and this shows that Hu = HV u for all u ∈ Dom(H).
Now by definition of S it follows that Dom(H) ⊂ Dom(S) and Hu = Su for all

u ∈ Dom(H). Therefore H ⊂ S, and the Lemma is proven. �

Lemma 3.9. C∞
c (E) is a core of the quadratic form h0 + h1.

Proof. We need to show that C∞
c (E) is dense in the Hilbert space D(h0 + h1) =

D(h0)
⋂

D(h1) with the inner product

(u, v)h0+h1 := h0(u, v) + h1(u, v) + (u, v),

where (·, ·) is the inner product in L2(E).
Let u ∈ D(h0 + h1) and (u, v)h0+h1 = 0 for all v ∈ C∞

c (E). We will show that
u = 0. We have

0 = h0(u, v) + h1(u, v) + (u, v) = (u,∇∗∇v) +
∫
〈V1u, v〉 dµ + (u, v). (3.5)

Here we used integration by parts in the first term on the right hand side of the
second equality.

By Corollary 3.6 it follows that V1u ∈ L1
loc(E), and from (3.5) we get the follow-

ing equality of distributional sections of E:

∇∗∇u = (−V1 − 1)u. (3.6)

From (3.6) we have ∇∗∇u ∈ L1
loc(E). By Lemma 3.1 and by (3.6), we obtain

∆M |u| ≤ Re〈∇∗∇u, signu〉 = 〈−(V1 + 1)u, signu〉 ≤ −|u|. (3.7)

The last inequality in (3.7) follows since V1 ≥ 0 (as an operator Ex → Ex). There-
fore,

(∆M + 1)|u| ≤ 0. (3.8)
By Lemma 3.2, it follows that |u| ≤ 0. So u = 0, and the proof is complete. �

Lemma 3.10. C∞
c (E) is a core of the quadratic form h = (h0 + h1) + h2.

Since the quadratic form h2 is (h0+h1)-bounded, the lemma follows immediately
from Lemma 3.9.

Proof of Theorem 2.3. We will show that S = H. By Lemma 3.8 we have H ⊂ S,
so it is enough to show that Dom(S) ⊂ Dom(H).

Let u ∈ Dom(S). By definition of Dom(S), we have u ∈ D(h0) ⊂ D(h2) and
u ∈ D(h1). Hence u ∈ D(h). For all v ∈ C∞

c (E) we have

h(u, v) = h0(u, v) + h1(u, v) + h2(u, v) = (u,∇∗∇v) +
∫
〈V u, v〉 dµ = (HV u, v).

The last equality holds since HV u = Su ∈ L2(E). By Lemma 3.10 it follows
that C∞

c (E) is a form core of h. Now from property (iii) of operator H we have
u ∈ Dom(H) with Hu = HV u. This concludes the proof of the Theorem. �
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Proof of Remark 2.1. Let p be as in Remark 2.1. We may assume that ‖V2‖Lp(End E)

is arbitrarily small because there exists a sequence V
(k)
2 ∈ L∞(EndE)

⋂
Lp(EndE),

k ∈ Z+, such that

‖V (k)
2 − V2‖Lp(End E) → 0, as k →∞,

and V
(k)
2 , k ∈ Z+, contributes to h2 only a bounded form.

For the rest of this article, we will assume that ‖V2‖Lp(End E) is arbitrarily small.
By Cauchy-Schwartz inequality and Hölder’s inequality we have∣∣∣∣∫ 〈V2u, u〉 dµ

∣∣∣∣ ≤ ∫
|〈V2u, u〉| dµ ≤

∫
|V2||u|2 dµ ≤ ‖V2‖Lp(End E)‖u‖2

Lt(E), (3.9)

where |V2| denotes the norm of the operator V2(x) : Ex → Ex and
1
p

+
2
t

= 1. (3.10)

With our assumptions on (M, g), E and ∇, the usual Sobolev embedding theo-
rems for W 1,2(Rn) also hold for W 1,2(E) (see Sec. A1.1 in [10]).

For n ≥ 3, we know by hypothesis that p = n/2, so from (3.10) we get 1/t =
1/2− 1/n. By the Sobolev embedding theorem (see, for example, the first part of
Theorem 2.10 in [1]) we have

‖u‖Lt(E) ≤ C(‖∇u‖L2(T∗M⊗E) + ‖u‖L2(E)), for all u ∈ W 1,2(E),

where C > 0 is a positive constant.
For n = 2, we know by hypothesis that p > 1, so from (3.10) we get 2 < t < ∞.

In this case, it is well-known (see, e.g., the first part of Theorem 2.10 in [1]) that

‖u‖Lt(E) ≤ C(‖∇u‖L2(T∗M⊗E) + ‖u‖L2(E)), for all u ∈ W 1,2(E),

where C > 0 is a positive constant.
For n = 1, we know by hypothesis that p = 1, so from (3.10) we get t = ∞. In

this case, it is well-known (see e.g. the second part of Theorem 2.10 in [1]) that

‖u‖L∞(E) ≤ C(‖∇u‖L2(T∗M⊗E) + ‖u‖L2(E)), for all u ∈ W 1,2(E),

where C > 0 is a positive constant.
Combining each of the last three inequalities with (3.9), we get (2.6) (with con-

stant b < 1 because ‖V2‖Lp(End E) is arbitrarily small). �
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