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WEAK SOLUTIONS FOR A VISCOUS p-LAPLACIAN EQUATION

CHANGCHUN LIU

ABSTRACT. In this paper, we consider the pseudo-parabolic equation u; —
kAu; = div(|Vu[P72Vu). By using the time-discrete method, we establish
the existence of weak solutions, and also discuss the uniqueness.

1. INTRODUCTION

This paper concerns the study of the viscous p-Laplacian equation

% - k‘% = div(|Vu[P72Vu), z€Q, p>2, (1.1)
with boundary condition
uf,, =0, (1.2)
and initial condition
u(z,0) = up(x), =z €. (1.3)

Here  is a bounded domain in R and k > 0 is the viscosity coefficient. The
term k% in (1.1) is interpreted as due to viscous relaxation effects, or viscosity;
hence, the equation (1.1) is called “viscous p-Laplacian equations”. The well-known
p-Laplacian equation is obtained by setting k£ = 0.

Equation (1.1) arises as a regularization of the pseudo-parabolic equation

Ju 0Au

5 k T Au, (1.4)
which arises in various physical phenomena. (1.4) can be assumed as a model
for diffusion of fluids in fractured porous media [1, 5, 4], or as a model for heat
conduction involving a thermodynamic temperature § = u — kAwu and a conductive
temperature u [10, 3]. Equation (1.4) has been extensively studied, and there are
many outstanding results concerning existence, uniqueness, regularity, and special
properties of solutions, see for example [4, 5, 6, 7, 8, 9, 11].

To derive (1.4), B. D. Coleman, R. J. Duffin and V. J. Mizel considered a special
kinematical situation, of nonsteady simple shearing flow [4]. In fact, when the
influence of many factors, such as the molecular and ion effects, are considered,
one has the nonlinear relation div(|Vu|[P~2Vu) in stead of Au in right-hand side of
(1.4). Hence, we obtain (1.1).
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Equation (1.1) is something like the p-Laplacian equation, but many methods
which are useful for the p-Laplacian equation are no longer valid for this equation.
Because of the degeneracy, problem (1.1)-(1.3) does not admit classical solutions in
general. So, we study weak solutions in the sense of following
Definition A function u is said to be a weak solution of (1.1)-(1.3), if the following
conditions are satisfied:

(1) we L=(0,T; Wy "(2)) N C(0, T; H'(R))
p’ is conjugate exponent of p.
) For ¢ € C§°(Qr) and Qr = Q x (0,7,

// dacdt+ k/ Vuaavjd dt — // |VulP~2VuVedr dt = 0.
T Qr T

(3) u(z,0) = up(x).

In this paper, we discuss first the existence of weak solutions. Most proofs of
existence for (1.4) are based on the Yoshida approximations [6], but these methods
do not apply to (1.1). Our method for proving the existence of weak solutions is
based on a time discrete method that constructs approximate solutions. Later on,
we discuss the uniqueness of a solution. For simplicity we set k = 1 in this paper.

, %1; e L>(0,T; W' (Q)), where

2. EXISTENCE OF WEAK SOLUTIONS

Theorem 2.1. If ug € Wy P(Q) with p > 2, then problem (1.1)-(1.3) has at least
one solution.

We use the a discrete method for constructing an approximate solution. First,

divide the interval (0,7") in N equal segments and set h = % Then consider the

problem

1 1 . _
E(ulﬁ_l —ug) — E(AU}CJ,_l — Auy) = div(|Vug1 [P 2Vugs ), (2.1)
uk+1|8Q:03 k:0717"'7N_1a (22)

where ug is the initial value.

Lemma 2.2. For a fized k, if ux, € HL(Q), problem (2.1)-(2.2) admits a weak
solution w1 € Wy P(Q), such that for any ¢ € C3°(Q), have

1 1
7 /Q(uk_H —uk)godx—l—ﬁ /Q(Vuk_H —Vuk)Vgodx—l—/Q | Vg 1P 2Vugy1 Vodz = 0.

(2.3)

Proof. On the space W, (), we consider the functionals

1
= f/ |Vu|Pde,
P Ja
1
—5 | luPaa.
2 Ja
1 2
=— [ |Vu|°dx,
2 Ja

¥lo] = Pafu] + 10afu] + 10afu] - | fud.
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where f € H~1(Q) is a known function. Using Young’s inequality, there exist
constants C1, Ce > 0, such that

1 1 1
\I/uzf/ Vu’ﬂx—&——/ u2dm—|——/ Vuzdx—/fudx
[u] ’ QI | o7 QI | o Q| | A

> 01/ VulPdz — Ca fll—1:
Q

hence W[u] — oo, as |ul|1, — +00. Here |lu|;, denotes the norm of u in W, ().
Since the norm is lower semi-continuous and fQ fudz is a continuous functional,

Ulu] is weakly lower semi-continuous on WO1 P(Q) and satisfying the coercive con-
dition. From [2] we conclude that there exists u, € Wy?(Q), such that

Ulu,] = inf U[u],

and wu, is the weak solutions of the Euler equation corresponding to ¥[u],

1 1

FU~ EAU — div(|VulP~2Vu) = f.
Taking f = (ur — Auyg)/h, we obtain a weak solutions wug41 of (2.1)—(2.2). The
proof is complete. O

Now, we need to establish a priori estimates, for the weak solutions w41 of
(2.1)—(2.2). First, we define the weak solutions of (1.1)-(1.3) as follows:

ul(z,t) = up(z), kh<t<(k+1h, k=0,1,...,N —1,
ul(x,0) = ug(z).

Lemma 2.3. The weak solutions uy of (2.1)—(2.2) satisfy

N
hZ/ |Vug|Pde < C, (2.4)
k=174
sup / |Vl (x,t)|Pdx < C, (2.5)
0<t<T Ja

where C' is a constant independent of h and k.

Proof. 1) We take ¢ = ug1 in the integral equality (2.3) (we can easily prove that
for ¢ € Wy*(2), (2.3) also holds).

1 1
7 /Q(ukH — U )Ug+1dT + 7 /Q(Vukﬂ — Vug)Vugqide
+/ |Vuk+1|p_2Vuk+1Vuk+1da: = O,
Q

i.e.,

1 1 1
E/Q\uk+1|2dx+E/Q|Vuk+1\2d1:—E/Qukukﬂdz

1
ff/Vuk_HVukdqu/ |Vug11|Pdz = 0.
h Q Q
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Thus

1 1
f/ \uk+1|2dx—|—f/ |Vuk+1|2dz+/ |Vugy1|Pde
h Jo h Jo Q

1 1
= 7/ UpUE4+1dT + */ Vug1Vugde.
h Ja h Ja

By Young’s inequality,
1 2 1 2
— | Jugsa1|"de + — | |[Vuppi|“de+ | |Vuggr|Pdx
h Jo h o Q
1

1 1 1
<L 20 4 L 24 7/ 24 7/ 24
_2h/ﬂ|uk| x—|—2h/ﬂ\uk+1| vt g [ IVulde g [ (Vg e

that is,
1 1
f/ \uk+1|2dx+f/ |Vuk+1|2dx+h/ [Vugy1|Pde
2 Jo 2 Ja Q

1 1
< 7/ |uk\2dz+7/ |V |2da.
2 Jo 2 Ja

Adding these inequalities for k from 0 to N — 1, we have

N
1 1
hg /|Vuk|pdx§f/ |u0|2dm+7/|Vuo|2dx.
i—Ja 2 Jo 2 Ja

Therefore, (2.4) holds.
ii) We take ¢ = ugy1 — ug in the integral equality (2.3) and have

1 1
- / (k41 — ug) (k1 — ug)de + — / (Vugs1 — Vug)V(ugyr — ug)de
h Jo h Ja

(2.6)

+/ |Vuk+1|p_2Vuk+1V(uk+1 —up)dr =0.
Q

Since the first term and the second term of the left hand side of the above equality
is nonnegative, it follows that

/|Vuk+1|pdx§/ |V 1P 2Vuy 1 Vug de
Q Q

-1 1
< L/ |Vuk+1|pdx—|—f/ [Vug|Pdx;
P Ja b Ja

thus,

/|Vuk+1|pdx§/ \Vuk|pdm
Q Q

For any m, with 1 <m < N —1, adding the above inequality for k£ from 0 to m — 1,

we have
/|Vum|pdm§/|Vuo|pdx.
Q Q

Therefore, (2.5) holds. O

Lemma 2.4. For a weak solutions ug+1 of (2.1)-(2.2), we have

—Chg/ \uk+1|2dx+/ |Vuk+1\2dx—/ \uk|2dx—/ |Vug[2de <0, (2.7)
Q Q Q Q

where C' is a constant independently of h.
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Proof. The second inequality in (2.7) is an immediate consequence of (2.6). To
prove the first inequality, we choose ¢ = uy in (2.3) and obtain

1 1
— / (41 — ug)upde + — / (Vugs1 — Vug)Vug dx
h Jo h Ja

+/ | V1P 2 Vg1 Vup de = 0.
Q

Therefore,

/\uk|2daj+/ |Vuk\2da:—/uk+1ukdx—/Vuk_HVukdx
Q o Q Q

= h/ |Vuk+1|p*2Vuk+1Vukda:
Q

< h(/Q|Vuk+1|pdx)(p_1)/p(/ﬂ|Vuk|pd:r>1/p.

Here we have used Holder inequality. By (2.5) again, we obtain

/|uk|2dx—|—/ |Vuk|2da:—/uk+1ukdx—/VukHVukdngh.
Q Q Q Q

Therefore,

/\uk.|2dx—|—/|Vuk\2dz
Q o

§C’h+/ uk+1ukdz+/ Vugs1Vugde
Q Q

1 1 1 1
< Ch+ 7/ |up41|2de + 7/ lug |2dx + f/ Vg1 |2dz + f/ Vg [*da.
2 Ja 2 Ja 2 Ja 2 Ja

i.e.,

/|uk|2d$+/ |Vuk|2dm—/ |uk+1|2dm—/ Vg1 |>de < Ch
Q Q Q Q

which completes the proof. ([

Lemma 2.5.

sup </ |uh|2dx+/ |Vuh|2dx> S/ \uo\Qda:+/ |V |2de. (2.8)
o<t<T \Ja Q Q Q

The proof follows by adding (2.4), for m with 1 < m < N — 1, for k from 0 to
m — 1.

Proof of Theorem 2.1. First, we define the operator A?, AY(Vu") = |Vuy|[P~2Vuyg,
AP =y —uy, where kh <t < (k+1)h,k=0,1,..., N — 1. By the dispersion
equation (2.1) and the (2.4) in Lemma 2.2, we know that

]. /
E(ukﬂ —ug) in L0, T; W17 (Q)) is bounded. (2.9)



6 CHANGCHUN LIU EJDE-2003/63

By (2.5), (2.7), (2.9) and (2.4) we known that exists a subsequence of {u/} (which
we denote as the original sequence) such that

u" —u in L0, T; WHP(Q))  weak-x,
Vu" — Vu in L®(0,T; L*(Q)) weak-x,
1 0 /
E(U}g.}rl —ug) — 8—1; in L0, T; W17 (Q)  weak-x,
IVu"P2Vul — w  in L®(0,T; L7 ()  weak-*,

where p’ is conjugate exponent of p. From (2.3), we known, for any ¢ € C§°(Qr),
1 1
// (EAhuhgo + EAhVutho + | VUl P2V UV p)da dt = 0,
T
i.e.,
N N hip—2v, h
(EA up — EA uAp + |Vu'|P~*Vu"V)dx dt = 0.
T

Letting h — 0, we obtain, in the sense of distributions,

ou  0Au .

Next, we prove that w = |Vu|[P~2Vu a.e. in Q. Define

t —kh
(/ |uk+1\2dx+/ \Vuk+1|2dx—/ |uk\2dx—/ Vuk|2d:r)
2h Q Q Q Q
1 2 1 2
+ - | |ulde + 5 | |Vug|dz,
2 Ja 2 Ja

where kh < t < (k+ 1)h. by (2.7) we have

fult) =

1 1 1 1
f/ |V |2dz + 7/ lug|*dx — Ch < fi(t) < f/ lug|?dx + 7/ |Vug [2da,
2 Ja 2 Ja 2 Ja 2 Ja
—C < fi(t) <0.
By Ascoli-Arzela theorem, there exists a function f(t) € C([0,T]), such that

}llirr}) (@)= f(@) fort € [0,7] uniformly.

Using (2.7), we have

1 1
lim (f/ |V 2dx + f/ |uh|2dx) = f(t) for ¢t € [0,T] uniformly. (2.11)
h—0\2 Jq 2 Ja

By (2.6) again, we obtain

1 1 1 1
7/ |uN|2dx+f/ |qu\2dz+// \VulPde dt < 7/ |u0|2dx+f/ Vg |*de.
2 Jo 2 Ja - 2 Ja 2 Ja
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In the above inequality letting h — 0, and using (2.10) we have

lim //QT |V [Pdz dt < £(0) — £(T)

h—0
1 T—e
= lim - (f(t) — f(t+¢))dt
e—=0¢ Jo
— Jim Jim [~ o P, t))? — | (2t ) dx dt
=t [ [ [ (@ -l e o)

1 T—e
+ — /(|Vuh(nc7t)|2 — |Vl (z,t + €)|?)dx dt|.
2e 0 Q

Since ®afu] = % [, |u|*dz and ®3[u] = § [, [Vu|?dx are convex functionals, and

5‘1’2[71] o (5@3[“} -
su ou —Au,

we have
1 h 2 1 h 2
— [ |u"(x,t)|*de — = | |u"(z,t+¢e)|*dx
2 Ja 2 Jo
+}/ |Vuh(:c,t)|2dxfl/ |Vul(x,t + ¢)|?dx
2 Ja 2 Jo
< / ul(x, ) (ul (2, 1) — ul (2, t + €))da
Q
+ / V' (z,t)(Vul (z,t) — Vu' (2, t + €))dz.
Q

Therefore,

1 T—¢
}L%%[/O / (2, D)2 — o (@, + 2)[2)da dt
T—¢

+/ /(\Vuh(x,t)\Q - |Vuh(x,t+€)|2)dxdt}
0 Q
1 T—¢

< f/ /(u(x,t) —u(x,t+¢))udedt
€Jo Q

1 T—e
+ g/ /(W(z,t) — Vu(z,t +¢))Vudrdt.
0 Q

Hence, we obtain

T ou T ou
1 hip < — - —
}llm%)//TWu |Pdx dt < /0 (at,u)dt—i—/o <6t7Au>dt’

where (,) denotes the inner product. Form (2.10), we obtain

lim // |Vuh|pdmdt§// wVudz dt . (2.12)
h—0 T Qr
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Again by 6(1) [u] = —div(|Vu[P72Vu) and the convexity of ®;[u], for any g €
L*>=(0,T; W (Q)) we have

1 1
- f// |Vg|Pdx dt + f// |Vl |Pdz dt
p T p T

< // — div(|Vu" P2Vl (u — g)dz dt,

T

that is
1 1
- // |Vg|Pdx dt — f// |Vu"|Pdx dt > / div(|Vul P2 Vu) (u — g)dx dt
p T p T Qr
= // (|IVuP=2Vu)V (g — u")dz dt.

By (2.11) and F(u) is weakly lower semicontinuous, in above equality letting h — 0,
we obtain

1 1
];// |Vg\pdxdt—];// \Vu|pdxdt§// wV (g — u)dz dt. (2.13)

In (2.13), we take g = g + u to obtain

1r1 1
- {f // [V(eg + u)|Pdx dt — — // |VulPdx dt} > // wVgdzdt.
3 p T p T T

Letting € — 0,

(0]
// 561u[u]gdmdt=// \Vu|p_2Vqudxdt2// wVgdxdt.

Since g is arbitrary, taking g = —g, we get the opposite inequality above; hence

w = |VulP"2Vu.

The strong convergence of u”* in C(0,T; H'(Q2)) and the fact that u"(z,0) = ug(x)
completes the proof. O

3. UNIQUENESS OF SOLUTIONS

In this section, we prove that the weak solution is unique. To this end we need
the following lemma.

Lemma 3.1. For ¢ € L>®(t1,ta; Wy P(Q)) with o € L2(t1,ta; HY(RQ)), the weak
solutions u of the problem (1.1)-(1.3) on Qr satisfies

/ u(z, t1)p(z, t dx—i—/ Vu(z,t1)Ve(z, tr)de

ta
/ /( 8;‘/’ VP~ 2VuV<p>dxdt

:/u(:z:,t2)g0(x,t2)dzl:+/Vu(:c,tg)Vga(o:,tg)dz.
Q

Q
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In particular, for ¢ € Wol’p(Q), we have

/(u(az,tl)—u(:z:,tz))gpdz+/ V(ulz, 1) — ulz, b)) Vds
Q Q
., (3.1)
—/ /|Vu\P—2vuV<pdxdt=0.
tq1 Q

Proof. From ¢ € L™(t1,to; Wy P(Q)) and ¢, € L2(t1,to; HY(Q)), it follows that
there exists a sequence of functions {¢y}, for fixed ¢ € (t1,t2), ox(-,t) € C§°(Q),
and as k — oo

okt = pell L2ty tastrr @) = 05 108 = ll Loty aswi () — 0

Choose a function j(s) € C§°(R) such that j(s) > 0, for s € R; j(s) = 0, for
V|s| > 1; [7(s)ds = 1. For h > 0, define jx(s) = +;($) and

t—t,—2h

() = /t in(s)ds.

—to+2h

Clearly np,(t) € C§°(t1,t2), limy o+ nu(t) = 1, for all ¢t € (¢1,t2). In the definition
of weak solutions, choose ¢ = g (z,t)n,(t). We have

t2 t2
/ / uprjn(t —t1 — 2h)dx dt — / / uprjn(t — ta + 2h)dx dt
t1 Q t1 Q

to ta
—|—/ VuVrin(t —t1 — 2h)dz dt — / VuVorin(t —ta + 2h) dz dt
t1 JQ Q

t1

tz t2
+/ /ucpkmhdxdtnL/ /Vquakmh dz dt
tl Q t1 Q

ta
—/ / |VulP~2VuV gpny, dz dt = 0.
t Jo

Observe that

to
‘ / / wppjn(t — t1 — 2h)dz dt — / (ugok)|t:t1da:’
t1 Q Q

t1+3h t1+3h
—| / wprin(t — by — 2h)da dt —/ /(ugok)\t:tzjh(t by — 2h)dedi]
t1+h Q t1+h Q
< sw - (ol
t1+h<t<t1+3h JQ

and u € C(0,T;L?(Q)). We see that the right hand side tends to zero as h — 0.
Similarly,

ta
‘ / / uppjn(t — ta + 2h)dx dt — / (uwk)h:tzdx‘ —0, ash—0,
t Ja Q
ta
‘ / / VuVijp(t —t1 — 2h)dx dt — / (Vqupk)h:tldm‘ — 0, ash —0,
t1 Q Q

to
‘ / / VuVrin(t —ta + 2h)dz dt — / (Vquak)|t:t2dx’ —0, ash—0.
1 Jo Q
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Letting h — 0 and & — oo, we obtain

/ u(z, t1)e(x, ty dx—l—/ Vu(z,t1)Ve(x, tr)de
/ / Ve + Vu 3@%@ - |Vu|p72VuV<p)dx dt

= / u(z, ta)p(x, ta)dx —|—/ Vu(z,ta)V(z,ts)de.
Q Q
In particular for ¢ € W, (), we have

/(u(m,tl) — u(z, t2))pdx + / (Vu(z,t1) — Vu(z, ta2))Vodz
Q Q

to
—/ / |VulP"2VuVdr dt = 0
t1 Q
which completes the proof. O

For a fixed 7 € (0,T), set h satisfying 0 < 7 < 7+ h < T. Letting t; = T,
ty = T + h, then multiply (3.1) by +, for ¢ € W, P (£2), we obtain

/ (un (2, 7)) (@) + / (V) (@, 7)) wp(x)da + / (IVulP~2Vu) (2, 7)Vipda = 0,
Q Q Q

(3.2)

where
t+h

1 wT)dr, te(0,T—h
un(a,t) = { 1T e (O R,
0, t>T—h.

Theorem 3.2. Problem (1.1)-(1.3) admits only one weak solution.

Proof. Suppose ui,us are two solutions of (1.1)-(1.3), then
[ wle.m) = e rrplada + [ (Vi = Vu (o) (oo
+/Q(|Vu1|p*2Vu1 — |Vua|P~2Vug)y (z, 7)Vedz = 0.
For a fixed 7, we take @(z) = [u1 — ug], € Wy P(Q), and hence
/Q(ul(ac, 7) — ug(x, 7)) pr (U1 — ug)pdx
+ /Q V(ui(z, 7) — ua(x, 7))nr V(ur — ug)pde
=— /Q[(|Vu1|p_2Vu1 — [Vua|P 2 Vug) ] (x, 7)V (uy — uz)pde,
ie.,
/Q(Ul(l“ﬂ') — u2(x,7))pr (U1 — u2)pde
+ /Q V(un (0, 7) — (@, 7))pr V(w1 — ug)ndae

= - / [(|Vu1|p72Vu1 - |Vu2\p72Vu2)h](x,T)V(u1 — ug)pdx.
Q
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Integrating the above equality with respect to 7 over (0, t),

/ [(ug — ug)p|*(, t)d —|—/ |V (uy — ug)n|?(z,t)dx <0,
Q Q
we have fQ |(u1 — uz2)n|?dx = 0; therefore, u; = us. O
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