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WEAK SOLUTIONS FOR A VISCOUS p-LAPLACIAN EQUATION

CHANGCHUN LIU

Abstract. In this paper, we consider the pseudo-parabolic equation ut −
k∆ut = div(|∇u|p−2∇u). By using the time-discrete method, we establish
the existence of weak solutions, and also discuss the uniqueness.

1. Introduction

This paper concerns the study of the viscous p-Laplacian equation
∂u

∂t
− k

∂∆u

∂t
= div(|∇u|p−2∇u), x ∈ Ω, p > 2, (1.1)

with boundary condition
u
∣∣
∂Ω

= 0, (1.2)
and initial condition

u(x, 0) = u0(x), x ∈ Ω. (1.3)
Here Ω is a bounded domain in RN and k > 0 is the viscosity coefficient. The
term k ∂∆u

∂t in (1.1) is interpreted as due to viscous relaxation effects, or viscosity;
hence, the equation (1.1) is called “viscous p-Laplacian equations”. The well-known
p-Laplacian equation is obtained by setting k = 0.

Equation (1.1) arises as a regularization of the pseudo-parabolic equation

∂u

∂t
− k

∂∆u

∂t
= ∆u, (1.4)

which arises in various physical phenomena. (1.4) can be assumed as a model
for diffusion of fluids in fractured porous media [1, 5, 4], or as a model for heat
conduction involving a thermodynamic temperature θ = u−k∆u and a conductive
temperature u [10, 3]. Equation (1.4) has been extensively studied, and there are
many outstanding results concerning existence, uniqueness, regularity, and special
properties of solutions, see for example [4, 5, 6, 7, 8, 9, 11].

To derive (1.4), B. D. Coleman, R. J. Duffin and V. J. Mizel considered a special
kinematical situation, of nonsteady simple shearing flow [4]. In fact, when the
influence of many factors, such as the molecular and ion effects, are considered,
one has the nonlinear relation div(|∇u|p−2∇u) in stead of ∆u in right-hand side of
(1.4). Hence, we obtain (1.1).
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Equation (1.1) is something like the p-Laplacian equation, but many methods
which are useful for the p-Laplacian equation are no longer valid for this equation.
Because of the degeneracy, problem (1.1)-(1.3) does not admit classical solutions in
general. So, we study weak solutions in the sense of following
Definition A function u is said to be a weak solution of (1.1)-(1.3), if the following
conditions are satisfied:

(1) u ∈ L∞(0, T ;W 1,p
0 (Ω))∩C(0, T ;H1(Ω)), ∂u

∂t ∈ L∞(0, T ;W−1,p′(Ω)), where
p′ is conjugate exponent of p.

(2) For ϕ ∈ C∞0 (QT ) and QT = Ω× (0, T ),∫∫
QT

u
∂ϕ

∂t
dx dt + k

∫∫
QT

∇u
∂∇ϕ

∂t
dx dt−

∫∫
QT

|∇u|p−2∇u∇ϕdx dt = 0 .

(3) u(x, 0) = u0(x).
In this paper, we discuss first the existence of weak solutions. Most proofs of

existence for (1.4) are based on the Yoshida approximations [6], but these methods
do not apply to (1.1). Our method for proving the existence of weak solutions is
based on a time discrete method that constructs approximate solutions. Later on,
we discuss the uniqueness of a solution. For simplicity we set k = 1 in this paper.

2. Existence of weak solutions

Theorem 2.1. If u0 ∈ W 1,p
0 (Ω) with p > 2, then problem (1.1)-(1.3) has at least

one solution.

We use the a discrete method for constructing an approximate solution. First,
divide the interval (0, T ) in N equal segments and set h = T

N . Then consider the
problem

1
h

(uk+1 − uk)− 1
h

(∆uk+1 −∆uk) = div(|∇uk+1|p−2∇uk+1), (2.1)

uk+1|∂Ω = 0, k = 0, 1, . . . , N − 1, (2.2)

where u0 is the initial value.

Lemma 2.2. For a fixed k, if uk ∈ H1
0 (Ω), problem (2.1)-(2.2) admits a weak

solution uk+1 ∈ W 1,p
0 (Ω), such that for any ϕ ∈ C∞0 (Ω), have

1
h

∫
Ω

(uk+1−uk)ϕdx+
1
h

∫
Ω

(∇uk+1−∇uk)∇ϕdx+
∫

Ω

|∇uk+1|p−2∇uk+1∇ϕdx = 0.

(2.3)

Proof. On the space W 1,p
0 (Ω), we consider the functionals

Φ1[u] =
1
p

∫
Ω

|∇u|pdx,

Φ2[u] =
1
2

∫
Ω

|u|2dx,

Φ3[u] =
1
2

∫
Ω

|∇u|2dx,

Ψ[u] = Φ1[u] +
1
h

Φ2[u] +
1
h

Φ3[u]−
∫

Ω

fudx,
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where f ∈ H−1(Ω) is a known function. Using Young’s inequality, there exist
constants C1, C2 > 0, such that

Ψ[u] =
1
p

∫
Ω

|∇u|pdx +
1
2h

∫
Ω

|u|2dx +
1
2h

∫
Ω

|∇u|2dx−
∫

Ω

fu dx

≥ C1

∫
Ω

|∇u|pdx− C2‖f‖−1;

hence Ψ[u] →∞, as ‖u‖1,p → +∞. Here ‖u‖1,p denotes the norm of u in W 1,p
0 (Ω).

Since the norm is lower semi-continuous and
∫
Ω

fudx is a continuous functional,
Ψ[u] is weakly lower semi-continuous on W 1,p

0 (Ω) and satisfying the coercive con-
dition. From [2] we conclude that there exists u∗ ∈ W 1,p

0 (Ω), such that

Ψ[u∗] = inf Ψ[u],

and u∗ is the weak solutions of the Euler equation corresponding to Ψ[u],

1
h

u− 1
h

∆u− div(|∇u|p−2∇u) = f.

Taking f = (uk − ∆uk)/h, we obtain a weak solutions uk+1 of (2.1)–(2.2). The
proof is complete. �

Now, we need to establish a priori estimates, for the weak solutions uk+1 of
(2.1)–(2.2). First, we define the weak solutions of (1.1)–(1.3) as follows:

uh(x, t) = uk(x), kh < t ≤ (k + 1)h, k = 0, 1, . . . , N − 1,

uh(x, 0) = u0(x).

Lemma 2.3. The weak solutions uk of (2.1)–(2.2) satisfy

h
N∑

k=1

∫
Ω

|∇uk|pdx ≤ C, (2.4)

sup
0<t<T

∫
Ω

|∇uh(x, t)|pdx ≤ C, (2.5)

where C is a constant independent of h and k.

Proof. i) We take ϕ = uk+1 in the integral equality (2.3) (we can easily prove that
for ϕ ∈ W 1,p

0 (Ω), (2.3) also holds).

1
h

∫
Ω

(uk+1 − uk)uk+1dx +
1
h

∫
Ω

(∇uk+1 −∇uk)∇uk+1dx

+
∫

Ω

|∇uk+1|p−2∇uk+1∇uk+1dx = 0,

i.e.,

1
h

∫
Ω

|uk+1|2dx +
1
h

∫
Ω

|∇uk+1|2dx− 1
h

∫
Ω

ukuk+1dx

− 1
h

∫
Ω

∇uk+1∇ukdx +
∫

Ω

|∇uk+1|pdx = 0.
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Thus
1
h

∫
Ω

|uk+1|2dx +
1
h

∫
Ω

|∇uk+1|2dx +
∫

Ω

|∇uk+1|pdx

=
1
h

∫
Ω

ukuk+1dx +
1
h

∫
Ω

∇uk+1∇ukdx.

By Young’s inequality,
1
h

∫
Ω

|uk+1|2dx +
1
h

∫
Ω

|∇uk+1|2dx +
∫

Ω

|∇uk+1|pdx

≤ 1
2h

∫
Ω

|uk|2dx +
1
2h

∫
Ω

|uk+1|2dx +
1
2h

∫
Ω

|∇uk|2dx +
1
2h

∫
Ω

|∇uk+1|2dx;

that is,
1
2

∫
Ω

|uk+1|2dx +
1
2

∫
Ω

|∇uk+1|2dx + h

∫
Ω

|∇uk+1|pdx

≤ 1
2

∫
Ω

|uk|2dx +
1
2

∫
Ω

|∇uk|2dx.

(2.6)

Adding these inequalities for k from 0 to N − 1, we have

h
N∑

k=1

∫
Ω

|∇uk|pdx ≤ 1
2

∫
Ω

|u0|2dx +
1
2

∫
Ω

|∇u0|2dx.

Therefore, (2.4) holds.
ii) We take ϕ = uk+1 − uk in the integral equality (2.3) and have

1
h

∫
Ω

(uk+1 − uk)(uk+1 − uk)dx +
1
h

∫
Ω

(∇uk+1 −∇uk)∇(uk+1 − uk)dx

+
∫

Ω

|∇uk+1|p−2∇uk+1∇(uk+1 − uk)dx = 0 .

Since the first term and the second term of the left hand side of the above equality
is nonnegative, it follows that∫

Ω

|∇uk+1|pdx ≤
∫

Ω

|∇uk+1|p−2∇uk+1∇uk dx

≤ p− 1
p

∫
Ω

|∇uk+1|pdx +
1
p

∫
Ω

|∇uk|pdx;

thus, ∫
Ω

|∇uk+1|pdx ≤
∫

Ω

|∇uk|pdx.

For any m, with 1 ≤ m ≤ N −1, adding the above inequality for k from 0 to m−1,
we have ∫

Ω

|∇um|pdx ≤
∫

Ω

|∇u0|pdx.

Therefore, (2.5) holds. �

Lemma 2.4. For a weak solutions uk+1 of (2.1)–(2.2), we have

−Ch ≤
∫

Ω

|uk+1|2dx +
∫

Ω

|∇uk+1|2dx−
∫

Ω

|uk|2dx−
∫

Ω

|∇uk|2dx ≤ 0, (2.7)

where C is a constant independently of h.
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Proof. The second inequality in (2.7) is an immediate consequence of (2.6). To
prove the first inequality, we choose ϕ = uk in (2.3) and obtain

1
h

∫
Ω

(uk+1 − uk)ukdx +
1
h

∫
Ω

(∇uk+1 −∇uk)∇uk dx

+
∫

Ω

|∇uk+1|p−2∇uk+1∇uk dx = 0 .

Therefore, ∫
Ω

|uk|2dx +
∫

Ω

|∇uk|2dx−
∫

Ω

uk+1ukdx−
∫

Ω

∇uk+1∇ukdx

= h

∫
Ω

|∇uk+1|p−2∇uk+1∇ukdx

≤ h
( ∫

Ω

|∇uk+1|pdx
)(p−1)/p( ∫

Ω

|∇uk|pdx
)1/p

.

Here we have used Hölder inequality. By (2.5) again, we obtain∫
Ω

|uk|2dx +
∫

Ω

|∇uk|2dx−
∫

Ω

uk+1ukdx−
∫

Ω

∇uk+1∇ukdx ≤ Ch.

Therefore,∫
Ω

|uk|2dx +
∫

Ω

|∇uk|2dx

≤ Ch +
∫

Ω

uk+1ukdx +
∫

Ω

∇uk+1∇ukdx

≤ Ch +
1
2

∫
Ω

|uk+1|2dx +
1
2

∫
Ω

|uk|2dx +
1
2

∫
Ω

|∇uk+1|2dx +
1
2

∫
Ω

|∇uk|2dx.

i.e., ∫
Ω

|uk|2dx +
∫

Ω

|∇uk|2dx−
∫

Ω

|uk+1|2dx−
∫

Ω

|∇uk+1|2dx ≤ Ch

which completes the proof. �

Lemma 2.5.

sup
0<t<T

( ∫
Ω

|uh|2dx +
∫

Ω

|∇uh|2dx
)
≤

∫
Ω

|u0|2dx +
∫

Ω

|∇u0|2dx. (2.8)

The proof follows by adding (2.4), for m with 1 ≤ m ≤ N − 1, for k from 0 to
m− 1.

Proof of Theorem 2.1. First, we define the operator At, At(∇uh) = |∇uk|p−2∇uk,
∆huh = uk+1−uk, where kh < t ≤ (k + 1)h, k = 0, 1, . . . , N − 1. By the dispersion
equation (2.1) and the (2.4) in Lemma 2.2, we know that

1
h

(uk+1 − uk) in L∞(0, T ;W−1,p′(Ω)) is bounded. (2.9)
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By (2.5), (2.7), (2.9) and (2.4) we known that exists a subsequence of {uh} (which
we denote as the original sequence) such that

uh → u in L∞(0, T ;W 1,p(Ω)) weak-?,

∇uh → ∇u in L∞(0, T ;L2(Ω)) weak-?,

1
h

(uk+1 − uk) → ∂u

∂t
in L∞(0, T ;W−1,p′(Ω) weak-?,

|∇uh|p−2∇uh → w in L∞(0, T ;Lp′(Ω)) weak-?,

where p′ is conjugate exponent of p. From (2.3), we known, for any ϕ ∈ C∞0 (QT ),∫∫
QT

(
1
h

∆huhϕ +
1
h

∆h∇uh∇ϕ + |∇uh|p−2∇uh∇ϕ)dx dt = 0,

i.e., ∫∫
QT

(
1
h

∆huhϕ− 1
h

∆huh∆ϕ + |∇uh|p−2∇uh∇ϕ)dx dt = 0.

Letting h → 0, we obtain, in the sense of distributions,

∂u

∂t
− ∂∆u

∂t
− div(w) = 0. (2.10)

Next, we prove that w = |∇u|p−2∇u a.e. in QT . Define

fh(t) =
t− kh

2h

(∫
Ω

|uk+1|2dx +
∫

Ω

|∇uk+1|2dx−
∫

Ω

|uk|2dx−
∫

Ω

|∇uk|2dx

)
+

1
2

∫
Ω

|uk|2dx +
1
2

∫
Ω

|∇uk|2dx,

where kh < t ≤ (k + 1)h. by (2.7) we have

1
2

∫
Ω

|∇uk|2dx +
1
2

∫
Ω

|uk|2dx− Ch ≤ fh(t) ≤ 1
2

∫
Ω

|uk|2dx +
1
2

∫
Ω

|∇uk|2dx,

−C ≤ f ′h(t) ≤ 0.

By Ascoli–Arzela theorem, there exists a function f(t) ∈ C([0, T ]), such that

lim
h→0

fh(t) = f(t) for t ∈ [0, T ] uniformly.

Using (2.7), we have

lim
h→0

(1
2

∫
Ω

|∇uh|2dx +
1
2

∫
Ω

|uh|2dx
)

= f(t) for t ∈ [0, T ] uniformly. (2.11)

By (2.6) again, we obtain

1
2

∫
Ω

|uN |2dx+
1
2

∫
Ω

|∇uN |2dx+
∫∫

QT

|∇uh|pdx dt ≤ 1
2

∫
Ω

|u0|2dx+
1
2

∫
Ω

|∇u0|2dx.
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In the above inequality letting h → 0, and using (2.10) we have

lim
h→0

∫∫
QT

|∇uh|pdx dt ≤ f(0)− f(T )

= lim
ε→0

1
ε

∫ T−ε

0

(f(t)− f(t + ε))dt

= lim
ε→0

lim
h→0

[ 1
2ε

∫ T−ε

0

∫
Ω

(|uh(x, t)|2 − |uh(x, t + ε)|2)dx dt

+
1
2ε

∫ T−ε

0

∫
Ω

(|∇uh(x, t)|2 − |∇uh(x, t + ε)|2)dx dt
]
.

Since Φ2[u] = 1
2

∫
Ω
|u|2dx and Φ3[u] = 1

2

∫
Ω
|∇u|2dx are convex functionals, and

δΦ2[u]
δu

= u,
δΦ3[u]

δu
= −∆u,

we have

1
2

∫
Ω

|uh(x, t)|2dx− 1
2

∫
Ω

|uh(x, t + ε)|2dx

+
1
2

∫
Ω

|∇uh(x, t)|2dx− 1
2

∫
Ω

|∇uh(x, t + ε)|2dx

≤
∫

Ω

uh(x, t)(uh(x, t)− uh(x, t + ε))dx

+
∫

Ω

∇uh(x, t)(∇uh(x, t)−∇uh(x, t + ε))dx.

Therefore,

lim
h→0

1
2ε

[ ∫ T−ε

0

∫
Ω

|uh(x, t)|2 − |uh(x, t + ε)|2)dx dt

+
∫ T−ε

0

∫
Ω

(|∇uh(x, t)|2 − |∇uh(x, t + ε)|2)dx dt
]

≤ 1
ε

∫ T−ε

0

∫
Ω

(u(x, t)− u(x, t + ε))u dx dt

+
1
ε

∫ T−ε

0

∫
Ω

(∇u(x, t)−∇u(x, t + ε))∇u dx dt .

Hence, we obtain

lim
h→0

∫∫
QT

|∇uh|pdx dt ≤ −
∫ T

0

〈∂u

∂t
, u〉dt +

∫ T

0

〈∂u

∂t
,∆u〉dt,

where 〈, 〉 denotes the inner product. Form (2.10), we obtain

lim
h→0

∫∫
QT

|∇uh|pdx dt ≤
∫∫

QT

w∇udx dt . (2.12)
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Again by δΦ1[u]
δu = −div(|∇u|p−2∇u) and the convexity of Φ1[u], for any g ∈

L∞(0, T ;W 1,p
0 (Ω)) we have

− 1
p

∫∫
QT

|∇g|pdx dt +
1
p

∫∫
QT

|∇uh|pdx dt

≤
∫∫

QT

−div(|∇uh|p−2∇uh)(uh − g)dx dt,

that is

1
p

∫∫
QT

|∇g|pdx dt− 1
p

∫∫
QT

|∇uh|pdx dt ≥
∫∫

QT

div(|∇uh|p−2∇uh)(uh − g)dx dt

=
∫∫

QT

(|∇uh|p−2∇uh)∇(g − uh)dx dt.

By (2.11) and F (u) is weakly lower semicontinuous, in above equality letting h → 0,
we obtain

1
p

∫∫
QT

|∇g|pdx dt− 1
p

∫∫
QT

|∇u|pdx dt ≤
∫∫

QT

w∇(g − u)dx dt. (2.13)

In (2.13), we take g = εg + u to obtain

1
ε

[1
p

∫∫
QT

|∇(εg + u)|pdx dt− 1
p

∫∫
QT

|∇u|pdx dt
]
≥

∫∫
QT

w∇g dx dt.

Letting ε → 0,∫∫
QT

δΦ1[u]
δu

g dx dt =
∫∫

QT

|∇u|p−2∇u∇g dx dt ≥
∫∫

QT

w∇g dx dt .

Since g is arbitrary, taking g = −g, we get the opposite inequality above; hence

w = |∇u|p−2∇u.

The strong convergence of uh in C(0, T ;H1(Ω)) and the fact that uh(x, 0) = u0(x)
completes the proof. �

3. Uniqueness of solutions

In this section, we prove that the weak solution is unique. To this end we need
the following lemma.

Lemma 3.1. For ϕ ∈ L∞(t1, t2;W
1,p
0 (Ω)) with ϕt ∈ L2(t1, t2;H1(Ω)), the weak

solutions u of the problem (1.1)-(1.3) on QT satisfies∫
Ω

u(x, t1)ϕ(x, t1)dx +
∫

Ω

∇u(x, t1)∇ϕ(x, t1)dx

+
∫ t2

t1

∫
Ω

(
u

∂ϕ

∂t
+∇u

∂∇ϕ

∂t
− |∇u|p−2∇u∇ϕ

)
dx dt

=
∫

Ω

u(x, t2)ϕ(x, t2)dx +
∫

Ω

∇u(x, t2)∇ϕ(x, t2)dx.
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In particular, for ϕ ∈ W 1,p
0 (Ω), we have∫

Ω

(u(x, t1)− u(x, t2))ϕdx +
∫

Ω

∇(u(x, t1)− u(x, t2))∇ϕdx

−
∫ t2

t1

∫
Ω

|∇u|p−2∇u∇ϕdx dt = 0 .

(3.1)

Proof. From ϕ ∈ L∞(t1, t2;W
1,p
0 (Ω)) and ϕt ∈ L2(t1, t2;H1(Ω)), it follows that

there exists a sequence of functions {ϕk}, for fixed t ∈ (t1, t2), ϕk(·, t) ∈ C∞0 (Ω),
and as k →∞

‖ϕkt − ϕt‖L2(t1,t2;H1(Ω)) → 0, ‖ϕk − ϕ‖L∞(t1,t2;W
1,p
0 (Ω)) → 0.

Choose a function j(s) ∈ C∞0 (R) such that j(s) ≥ 0, for s ∈ R; j(s) = 0, for
∀|s| > 1;

∫
R

j(s)ds = 1. For h > 0, define jh(s) = 1
hj( s

h ) and

ηh(t) =
∫ t−t1−2h

t−t2+2h

jh(s)ds.

Clearly ηh(t) ∈ C∞0 (t1, t2), limh→0+ ηh(t) = 1, for all t ∈ (t1, t2). In the definition
of weak solutions, choose ϕ = ϕk(x, t)ηh(t). We have∫ t2

t1

∫
Ω

uϕkjh(t− t1 − 2h)dx dt−
∫ t2

t1

∫
Ω

uϕkjh(t− t2 + 2h)dx dt

+
∫ t2

t1

∫
Ω

∇u∇ϕkjh(t− t1 − 2h)dx dt−
∫ t2

t1

∫
Ω

∇u∇ϕkjh(t− t2 + 2h) dx dt

+
∫ t2

t1

∫
Ω

uϕktηhdx dt +
∫ t2

t1

∫
Ω

∇u∇ϕktηh dx dt

−
∫ t2

t1

∫
Ω

|∇u|p−2∇u∇ϕkηh dx dt = 0.

Observe that∣∣ ∫ t2

t1

∫
Ω

uϕkjh(t− t1 − 2h)dx dt−
∫

Ω

(uϕk)|t=t1dx
∣∣

=
∣∣ ∫ t1+3h

t1+h

∫
Ω

uϕkjh(t− t1 − 2h)dx dt−
∫ t1+3h

t1+h

∫
Ω

(uϕk)|t=t2jh(t− t1 − 2h)dx dt
∣∣

≤ sup
t1+h<t<t1+3h

∫
Ω

∣∣(uϕk)|t − (uϕk)|t1
∣∣dx,

and u ∈ C(0, T ;L2(Ω)). We see that the right hand side tends to zero as h → 0.
Similarly,∣∣∣ ∫ t2

t1

∫
Ω

uϕkjh(t− t2 + 2h)dx dt−
∫

Ω

(uϕk)|t=t2dx
∣∣∣ → 0, as h → 0,∣∣∣ ∫ t2

t1

∫
Ω

∇u∇ϕkjh(t− t1 − 2h)dx dt−
∫

Ω

(∇u∇ϕk)|t=t1dx
∣∣∣ → 0, as h → 0,∣∣∣ ∫ t2

t1

∫
Ω

∇u∇ϕkjh(t− t2 + 2h)dx dt−
∫

Ω

(∇u∇ϕk)|t=t2dx
∣∣∣ → 0, as h → 0.
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Letting h → 0 and k →∞, we obtain∫
Ω

u(x, t1)ϕ(x, t1)dx +
∫

Ω

∇u(x, t1)∇ϕ(x, t1)dx

+
∫ t2

t1

∫
Ω

(
u

∂ϕ

∂t
+∇u

∂∇ϕ

∂t
− |∇u|p−2∇u∇ϕ

)
dx dt

=
∫

Ω

u(x, t2)ϕ(x, t2)dx +
∫

Ω

∇u(x, t2)∇ϕ(x, t2)dx.

In particular for ϕ ∈ W 1,p
0 (Ω), we have∫

Ω

(u(x, t1)− u(x, t2))ϕdx +
∫

Ω

(∇u(x, t1)−∇u(x, t2))∇ϕdx

−
∫ t2

t1

∫
Ω

|∇u|p−2∇u∇ϕ dx dt = 0

which completes the proof. �

For a fixed τ ∈ (0, T ), set h satisfying 0 < τ < τ + h < T . Letting t1 = τ ,
t2 = τ + h, then multiply (3.1) by 1

h , for ϕ ∈ W 1,p
0 (Ω), we obtain∫

Ω

(uh(x, τ))τϕ(x)dx+
∫

Ω

((∇u)h(x, τ))τϕ(x)dx+
∫

Ω

(|∇u|p−2∇u)h(x, τ)∇ϕdx = 0,

(3.2)
where

uh(x, t) =

{
1
h

∫ t+h

t
u(·, τ)dτ, t ∈ (0, T − h),

0, t > T − h.

Theorem 3.2. Problem (1.1)-(1.3) admits only one weak solution.

Proof. Suppose u1, u2 are two solutions of (1.1)-(1.3), then∫
Ω

(u1(x, τ)− u2(x, τ))hτϕ(x)dx +
∫

Ω

((∇u1 −∇u2)h(x, τ))τϕ(x)dx

+
∫

Ω

(|∇u1|p−2∇u1 − |∇u2|p−2∇u2)h(x, τ)∇ϕdx = 0.

For a fixed τ , we take ϕ(x) = [u1 − u2]h ∈ W 1,p
0 (Ω), and hence∫

Ω

(u1(x, τ)− u2(x, τ))hτ (u1 − u2)hdx

+
∫

Ω

∇(u1(x, τ)− u2(x, τ))hτ∇(u1 − u2)hdx

= −
∫

Ω

[(|∇u1|p−2∇u1 − |∇u2|p−2∇u2)h](x, τ)∇(u1 − u2)hdx,

i.e., ∫
Ω

(u1(x, τ)− u2(x, τ))hτ (u1 − u2)hdx

+
∫

Ω

∇(u1(x, τ)− u2(x, τ))hτ∇(u1 − u2)hdx

= −
∫

Ω

[(|∇u1|p−2∇u1 − |∇u2|p−2∇u2)h](x, τ)∇(u1 − u2)hdx.
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Integrating the above equality with respect to τ over (0, t),∫
Ω

|(u1 − u2)h|2(x, t)dx +
∫

Ω

|∇(u1 − u2)h|2(x, t)dx ≤ 0,

we have
∫
Ω
|(u1 − u2)h|2dx = 0; therefore, u1 = u2. �
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