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NON-AUTONOMOUS RETARDED DIFFERENTIAL EQUATIONS:
THE VARIATION OF CONSTANTS FORMULAS AND THE

ASYMPTOTIC BEHAVIOUR

SAID BOULITE, LAHCEN MANIAR, & MOHAMMED MOUSSI

Abstract. This paper is devoted to show a variation of constants formula for

the operator solution to the non-autonomous retarded differential equation

x′(t) = A(t)x(t) + L(t)xt + f(t), xs = ϕ, t ≥ s ≥ 0,

in terms of the inhomogeneous term f , which will allow us to study the asymp-
totic behaviour of this solution. We treat also the existence of fundamental

solutions and the stability of semi-linear retarded differential equations.

1. Introduction

In this paper we study the retarded non-autonomous differential equation

x′(t) = A(t)x(t) + L(t)xt + f(t), t ≥ s ≥ 0,

xs = ϕ ∈ Cr := C([−r, 0], E),
(1.1)

where (A(t), D(A(t)))t≥0 generates the strongly continuous evolution family
(V (t, s))t≥s≥0 on a Banach space E, and (L(t))t≥0 is a family of bounded linear
operators from Cr into E.

In the autonomous case (A(t) = A, L(t) = L, t ≥ 0), the retarded differential
equation (1.1) has been studied by many authors using various techniques; see for
example [4, 9, 14, 17, 27, 28, 29].

The case A(t) = A, t ≥ 0, has been treated recently in [12], [19] and [22]
using extrapolation theory. In [22], A. Rhandi showed recently that the solution
of the homogeneous retarded differential equation (f ≡ 0) is given by a Dyson-
Phillips series. Also in the same case, in [10, 12], the authors proved that the
solution of the inhomogeneous retarded equation (1.1) is given in terms of the
inhomogeneous term f by a variation of constants formula, which was used to study
the asymptotic behaviour of the solutions of (1.1). Recently, in [13] the authors
studied the asymptotic behaviour to (1.1) on R using the evolution semigroups
and the characteristic equation. Also, R. Schnaubelt [26] showed the first (to our
knowledge) variation of constants formula for the inhomogeneous retarded equation
(1.1) by using the ideas of evolution semigroups.
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Our aim in this paper is to extend the results of [10, 12, 19, 22] to the fully
non-autonomous equation (1.1). More precisely, after the preliminary section, we
establish in Section 3 the existence of mild solutions of the homogeneous retarded
differential equations, and that solutions are provided by some evolution families.
Moreover, we show that these evolution families are given by Dyson-Phillips series
and that the term retard do not affect the asymptotic behaviour, as boundedness
and asymptotic almost periodicity, of the solutions to the non retarded Cauchy
problem

x′(t) = A(t)x(t), t ≥ s,

x(s) = x ∈ E.
. (1.2)

Namely, we give conditions under which the evolution families solutions of the
homogeneous retarded equations and the Cauchy problem (1.2) have the same
asymptotic behaviour (see Theorem 3.3).

In section 4, we show that the solution xt of (1.1) satisfies a variation of constants
formula, different from the one of [26]. Using our variation of constant formula, we
show that these solutions inherit the same asymptotic behaviour of the inhomoge-
neous term f . In the last section, we show the existence of fundamental solutions
for the homogeneous retarded equations, which has been assumed in [10], and ob-
tain the asymptotic behaviour of semi-linear retarded differential equations. Before
ending this introduction, we shall mention that we can consider also the above dif-
ferential retarded equations on R and we can obtain, using the same technics, the
same results and all results of [12].

2. Preliminaries

In this section we recall some definitions and fix notations which will be used in
the sequel.

Let X be a Banach space and denote by L(X) the Banach algebra of all bounded
linear operators on X.

A family of operators U := (U(t, s))t≥s≥0 ⊂ L(X) is called a strongly continuous
evolution family if

(1) U(t, s) = U(t, r)U(r, s) and U(s, s) = Id for all t ≥ r ≥ s ≥ 0,
(2) the mapping {(t, s) : t ≥ s ≥ 0} 3 (t, s) 7→ U(t, s) is strongly continuous.

An evolution family (U(t, s))t≥s≥0 is said to have an exponential dichotomy if
there exists a projection-valued function P : R+ → L(X) such that the function
P (·)x is continuous and bounded for each x ∈ X, and constants δ > 0, N = N(δ) ≥
1 such that

(i) P (t)U(t, s) = U(t, s)P (s);
(ii) UQ(t, s), the restriction of U(t, s) on ImQ(s), is invertible as an operator

from ImQ(s) to ImQ(t), with Q(·) := I − P (·);
(iii) ‖U(t, s)P (s)‖ ≤ Ne−δ(t−s), and ‖UQ(s, t)Q(t)‖ ≤ Ne−δ(t−s)

for t ≥ s and t, s ∈ R+. The family of operators (Γ(t, s))t≥s≥0 ⊆ L(X) given by

Γ(t, s) :=

{
U(t, s)P (s), t ≥ s,

−UQ(t, s)Q(s), t < s,

is called the corresponding Green’s operator function.
For evolution families and well-posedness of the non-autonomous Cauchy prob-

lems we refer to [11, 21, 24, 25].
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Let BC(R+, X) be the Banach space of all bounded continuous functions from
R+ to X, endowed with the uniform norm. The closed subspace of bounded uni-
formly continuous functions will be denoted by BUC(R+, X).

If f : R+ → X, the set of all translates, called the hull of f , is H(f) := {f(·+ t) :
t ∈ R+}.

A function f ∈ BC(R+, X) is said to be asymptotically almost periodic if H(f)
is relatively compact in BC(R+, X).

If H(f) is weakly relatively compact in BC(R+, X), the bounded continuous
function f : R+ → X is called Eberlein weakly asymptotically almost periodic.

We recall also that a closed subspace E of BUC(R+, X) is said to be translation
bi-invariant if for all t ≥ 0

f ∈ E ⇐⇒ f(·+ t) ∈ E ,

and operator invariant if M ◦ f ∈ E for every f ∈ E and M ∈ L(X), where M ◦ f
is defined by (M ◦ f)(t) = M(f(t)), t ≥ 0. A closed subspace E of BUC(R+, X) is
said to be homogeneous if it is translation bi-invariant and operator invariant.

From [5] the following classes of X-valued functions are homogeneous closed
subspaces of BUC(R+, X):

• The space C0(R+, X) of all continuous functions vanishing at infinity;
• The space AAP (R+, X) of asymptotically almost periodic functions;
• The space W (R+, X) of Eberlein weakly asymptotically almost periodic

functions.

For more details on almost periodic functions, we refer to [1, 15]. For the almost
periodicity of solutions of Cauchy problems, see, e.g., [2, 3, 6, 16, 23].

For the sequel, we need also the following fundamental lemma, see [18] for more
details and [5] for an autonomous version.

Lemma 2.1. Let (U(t, s))t≥s≥0 be a bounded evolution family on X. Let E be a
homogeneous closed subspace of BUC(R+, X). Assume that R+ 3 t 7→ U(t + s, s)x
belongs to E for every x ∈ X and s ≥ 0. If h ∈ L1(R+, X), then R+ 3 t 7→∫ t

0
U(t + s, s + σ)h(σ)dσ belongs to E for all s ≥ 0.

3. The homogeneous case: Dyson-Phillips series and asymptotic
behaviour

Let (A(t), D(A(t))t≥0 be a stable family and generate an evolution family
(V (t, s))t≥s≥0, on a Banach space E, such that ‖V (t, s)‖ ≤ Meω(t−s), for some
constants ω ∈ R and M ≥ 1. Consider also the family (L(t))t≥0 of bounded lin-
ear operators from Cr into E, with L(·) ∈ BC(R+,Ls(Cr, E)), i.e., t 7→ L(t) is a
bounded and strongly continuous function.

The well-posedness of the homogeneous non-autonomous retarded differential
equation

x′(t) = A(t)x(t) + L(t)xt, t ≥ s,

xs = ϕ ∈ Cr,
(3.1)

was treated recently, e.g., in [10, 13, 20, 26]. In these papers, the authors showed
the existence of a unique mild solution to (3.1), i.e., a continuous function x :
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[s− r,∞) → E satisfying

x(t) =

{
V (t, s)ϕ(0) +

∫ t

s
V (t, σ)L(σ)xσdσ, t ≥ s,

ϕ(t− s), s− r ≤ t ≤ s,
(3.2)

and the operator solutions (xt) are evolution families on Cr. In this section, we
show, by a different way, the existence of mild solutions to (3.1). Our aim exactly
here is to show that the evolution family solution of the equation (3.1) is given by a
Dyson-Phillips series, and satisfies a variation of constants formula. These formulas
are used to show that the mild solutions of the retarded equations have the same
asymptotic behaviour of the trajectories R+ 3 t 7→ V (t + s, s)x, s ≥ 0, x ∈ E.

It is known that the evolution family solution to the non-retarded equation
(L(t) ≡ 0) is given by

U(t, s)ϕ(τ) =

{
V (t + τ, s)ϕ(0), t + τ ≥ s,

ϕ(t + τ − s), s− r ≤ t + τ ≤ s ;

see for example [12, 26]. To obtain our aim, we need the following fundamental
result.

Lemma 3.1. Let g ∈ C(R+, E). Then

lim
λ→+∞

∫ t

s

U(t, σ)λeλ·R(λ, A(0))g(σ)dσ

exists in Cr uniformly in compact sets of {(t, s) : t ≥ s ≥ 0}.

Proof. Set, for λ ≥ λ0 > max(ω, 0) and 0 ≤ s ≤ t ≤ T (for some T > 0),

Wλ(t, s) :=
∫ t

s

U(t, σ)λeλ·R(λ, A(0))g(σ)dσ.

For τ ∈ [−r, 0] and t + τ ≥ s, we have

Wλ(t, s)(τ)

=
∫ t+τ

s

U(t, σ)λeλ·R(λ, A(0))g(σ)(τ)dσ +
∫ t

t+τ

U(t, σ)λeλ·R(λ, A(0))g(σ)(τ)dσ

=
∫ t+τ

s

V (t + θ, σ)λR(λ, A(0))g(σ)dσ +
∫ t

t+τ

λeλ(t+τ−σ)R(λ, A(0))g(σ)dσ.

Let λ, µ ≥ λ0. We have then,

Wλ(t, s)(τ)−Wµ(t, s)(τ)

=
∫ t+τ

s

V (t + θ, σ) [λR(λ, A(0))− µR(µ,A(0))] g(σ)dσ

+
∫ t

t+τ

[
λeλ(t+τ−σ)R(λ, A(0))− µeµ(t+τ−σ)R(µ,A(0))

]
g(σ)dσ,

and

Wλ(t, s)(τ)−Wµ(t, s)(τ)

=
∫ t

s

[
λeλ(t+τ−σ)R(λ, A(0))− µeµ(t+τ−σ)R(µ,A(0))

]
g(σ)dσ
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for t + τ ≤ s. Thus,

‖Wλ(t, s)(τ)−Wµ(t, s)(τ)‖

≤ M̃(T )
∫ T

0

‖ [λR(λ, A(0))− µR(µ,A(0))] g(σ)‖dσ + M̃(
1
λ

+
1
µ

) sup
0≤σ≤T

‖g(σ)‖.

Hence, as

lim
λ,µ→+∞

‖ [λR(λ, A(0))− µR(µ, A(0))] g(σ)‖ = 0 for all σ ∈ [0, T ],

by Lebesgue dominated convergence theorem, we have

lim
λ,µ→+∞

∫ T

0

‖ [λR(λ, A(0))− µR(µ, A(0))] g(σ)‖dσ = 0.

Consequently,

sup
τ∈[−r,0]

‖Wλ(t, s)(τ)−Wµ(t, s)(τ)‖ → 0 as λ, µ → +∞

uniformly for 0 ≤ s ≤ t ≤ T . This completes the proof. �

From this lemma, we can define the operators Un(t, s) as

U0(t, s)ϕ = U(t, s)ϕ,

Un(t, s)ϕ = lim
λ→+∞

∫ t

s

U(t, σ)eλ·λR(λ, A(0))L(σ)Un−1(σ, s)ϕ dσ

for all ϕ ∈ Cr, n ≥ 1, and 0 ≤ s ≤ t.
The first main result of this section can now be stated.

Theorem 3.2. (i) The expansion UL(t, s) :=
∑

n≥0 Un(t, s), t ≥ s ≥ 0, con-
verges in L(Cr) uniformly on {(t, s) : 0 ≤ s ≤ t ≤ T} (for all T > 0),
and (UL(t, s))t≤s≤0 is an evolution family on Cr. Further, this variation of
constants formula

UL(t, s)ϕ = U(t, s)ϕ + lim
λ→∞

∫ t

s

U(t, σ)eλ·λR(λ, A(0))L(σ)UL(σ, s)ϕ dσ (3.3)

holds for all ϕ ∈ Cr and t ≥ s ≥ 0.
(ii) For every ϕ ∈ Cr and s ≥ 0 the function defined by

x(t, s, ϕ) :=

{
UL(t, s)ϕ(0), t ≥ s,

ϕ(t− s), s− r ≤ t ≤ s,
(3.4)

is the unique mild solution of (3.1), and

xt = UL(t, s)ϕ, t ≥ s ≥ 0.

Proof. For n = 0, we have

‖U0(t, s)‖ ≤ Meω(t−s), t ≥ s ≥ 0.

For n = 1, t ≥ s ≥ 0 and ϕ ∈ Cr

U1(t, s)ϕ = lim
λ→+∞

∫ t

s

U(t, σ)eλ·λR(λ, A(0))L(σ)U0(σ, s)ϕ dσ.
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For all τ ∈ [−r, 0], we have

‖U1(t, s)ϕ‖ = lim
λ→+∞

‖
∫ t

s

U(t, σ)eλ·λR(λ, A(0))L(σ)U0(σ, s)ϕ dσ‖

≤ M2

∫ t

s

eω(t−σ)‖L(σ)‖Meω(σ−s)‖ϕ‖ dσ

≤ M2‖L(·)‖∞Meω(t−s)(t− s)‖ϕ‖.

Hence
‖U1(t, s)‖ ≤ M2‖L(·)‖∞Meω(t−s)(t− s)‖ϕ‖.

By induction, one can see

‖Un(t, s)‖ ≤ (M2‖L(·)‖∞)n

n!
Meω(t−s), t ≥ s ≥ 0.

Therefore, the expansion
∑

n≥0 Un(t, s) converges in L(Cr) uniformly for 0 ≤ s ≤
t ≤ T . The strong continuity of (UL(t, s))t≥s≥0 can be obtained from Lemma (3.1)
and the uniform convergence of the series. The rest of (i) is easy to see.
For (ii), from the variation of constants formula (3.3), we have

UL(t, s)ϕ(τ) =


V (t + τ, s)ϕ(0)
+

∫ t+τ

s
V (t + τ, σ)L(σ)UL(σ, s)ϕ dσ, t + τ ≥ s,

ϕ(t + τ − s), s− r ≤ t + τ ≤ s.

(3.5)

Hence, the translation property

UL(t, s)ϕ(τ) =

{
UL(t + τ, s)ϕ(0), t + τ ≥ s,

ϕ(t + τ − s), s− r ≤ t + τ ≤ s,

holds, and then the function defined by (3.4) satisfies xt = UL(t, s)ϕ. Consequently,
it is now clear that x is a mild solution of (3.1). �

Now we deal with the question of the robustness of some asymptotic behaviour
of the non-retarded equation (1.2) under the introduction of the term retard. More
precisely if we assume that the trajectories t 7→ V (t + s, s)x, s ≥ 0, x ∈ E belong
to some homogeneous closed subspace E of BUC(R+, E), and there exist constants
0 < q < 1

M and s0 ≥ 0 such that∫ +∞

0

‖L(τ + s)U(τ + s, s)ϕ‖dτ ≤ q‖ϕ‖ (3.6)

for all ϕ ∈ Cr and s ≥ s0, we can obtain the following main result.

Theorem 3.3. Assume (3.6) and that the trajectories t 7→ V (t + s, s)x, s ≥ 0,
x ∈ E belong to some homogeneous closed subspace E of BUC(R+, E). Then, the
solution t 7→ x(t + s, s, ϕ) of (3.1) belongs to E for all ϕ ∈ Cr and s ≥ 0.

Proof. Take t ≥ 0, s ≥ s0 and ϕ ∈ Cr. By the above results, we have that

x(t + s, s, ϕ) = UL(t + s, s)ϕ(0)

= V (t + s, s)ϕ(0) +
∫ t

0

V (t + s, σ + s)L(σ + s)UL(σ + s, s)ϕ dσ .
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According to Lemma 2.1, we have to show only that L(· + s)UL(· + s)ϕ is in
L1(R+, E). For this, let t ≥ 0. The variation of constants formula (3.3) leads to

L(t + s)UL(t + s, s)ϕ

= L(t + s)U(t + s, s)ϕ

+ lim
λ→+∞

∫ t+s

s

L(t + s)U(t + s, σ)eλ·λR(λ, A(0))L(σ)UL(σ, s)ϕ dσ.

Therefore,∫ t

0

L(τ + s)UL(τ + s, s)ϕdτ

=
∫ t

0

L(τ + s)U(τ + s, s)ϕdτ

+ lim
λ→+∞

∫ t

0

∫ τ+s

s

L(τ + s)U(τ + s, σ)eλ·λR(λ, A(0))L(σ)UL(σ, s)ϕ dσdτ

=
∫ t

0

L(τ + s)U(τ + s, s)ϕdτ

+ lim
λ→+∞

∫ t+s

s

∫ t+s−σ

0

L(τ + σ)U(τ + σ, σ)eλ·λR(λ, A(0))L(σ)UL(σ, s)ϕ dτdσ,

and the estimate (3.6) implies∫ t

0

‖L(τ + s)UL(τ + s, s)ϕ‖dτ

≤
∫ t

0

‖L(τ + s)U(τ + s, s)ϕ‖dτ

+ lim
λ→+∞

∫ t+s

s

∫ t+s−σ

0

‖L(τ + σ)U(τ + σ, σ)eλ·λR(λ, A(0))L(σ)UL(σ, s)ϕ‖ dτdσ

≤ q‖ϕ‖+ q lim
λ→+∞

∫ t+s

s

‖eλ·λR(λ, A(0))L(σ)UL(σ, s)ϕ‖ dσ

≤ q‖ϕ‖+ qM

∫ t

0

‖L(σ + s)UL(σ + s, s)ϕ‖ dσ.

This proves our claim. For 0 ≤ s ≤ s0 and t ≥ 0, one can write

UL(t + s0 + s, s)ϕ(0) = UL(t + s + s0, s + s0)UL(s + s0, s)ϕ(0).

As s + s0 ≥ s0, then as shown above t 7→ UL(t + s0 + s, s)ϕ(0) belongs to E and by
the translation bi-invariance of E , t 7→ UL(t + s, s)x belongs to E . This completes
the proof. �

4. The inhomogeneous case: the variation of constants formula and
the asymptotic behaviour

Consider again the inhomogeneous retarded differential equation

x′(t) = A(t)x(t) + L(t)xt + f(t), t ≥ s ≥ 0,

xs = ϕ ∈ Cr,
(4.1)
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where (A(t), D(A(t)))t≥0 is a stable family and generates a strongly continuous evo-
lution family (V (t, s))t≥s≥0, on a Banach space E, such that ‖V (t, s)‖ ≤ Meω(t−s),
with ω ∈ R and M ≥ 1, L(·) ∈ BC(R+,Ls(Cr, E)), and f ∈ L1

loc(R+, E).
The following definition is standard in the literature [10, 13, 26].

Definition 4.1. A continuous function x := x(·, s, ϕ) : [−r,∞) → E is called a
mild solution of (4.1) if

x(t) =

{
V (t, s)ϕ(0) +

∫ t

s
V (t, σ) [L(σ)xσ + f(σ)] dσ, t ≥ s,

ϕ(t− s), s− r ≤ t ≤ s.
(4.2)

The existence of mild solutions of (4.1) has been treated recently by many au-
thors, e.g., [13, 26]. Our aim, in this section, is to show that the mild solutions
of these equations are given by variation of constants formulas in terms of the
inhomogeneous term f . To this purpose, we need the fundamental lemma.

Lemma 4.2. For every f ∈ L1
loc(R+, E), the limit

lim
λ→+∞

∫ t

s

UL(t, σ)eλ·λR(λ, A(0))f(σ) dσ

exists in Cr uniformly in compact sets of {(t, s) : 0 ≤ s ≤ t}.

Proof. Let T > 0, 0 ≤ s ≤ t ≤ T , and λ ≥ max(0, ω). Assume first that f ∈
C([0, T ], E), and set

Zλ(t, s) =
∫ t

s

UL(t, σ)λeλ·R(λ, A(0))f(σ)dσ.

For τ ∈ [−r, 0] such that t + τ ≥ s, from the formula (3.5), we have

Zλ(t, s)(τ)

=
∫ t+τ

s

UL(t, σ)λeλ·R(λ, A(0))f(σ)(τ)dσ +
∫ t

t+τ

UL(t, σ)λeλ·R(λ, A(0))f(σ)(τ)dσ

=
∫ t+τ

s

V (t + τ, σ)λR(λ, A(0))f(σ)dσ +
∫ t

t+τ

λeλ(t+τ−σ)R(λ, A(0))f(σ)dσ

+
∫ t+τ

s

∫ t+τ

σ

V (t + τ, δ)L(δ)UL(δ, σ)λeλ·R(λ, A(0))f(σ) dδ dσ.

(4.3)
The last term in the right-hand side of this equality leads to∫ t+τ

s

∫ t+τ

σ

V (t + τ, δ)L(δ)UL(δ, σ)λeλ·R(λ, A(0))f(σ) dδ dσ

=
∫ t+τ

s

∫ δ

s

V (t + τ, δ)L(δ)UL(δ, σ)λeλ·R(λ, A(0))f(σ)dσ dδ

=
∫ t+τ

s

V (t + τ, δ)L(δ)Zλ(δ, s)dδ.
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Then, if t + τ ≥ s we obtain

Zλ(t, s)(τ)

=
∫ t+τ

s

V (t + τ, σ)λR(λ, A(0))f(σ)dσ +
∫ t

t+τ

λeλ(t+τ−σ)R(λ, A(0))f(σ)dσ

+
∫ t+τ

s

V (t + τ, σ)L(σ)Zλ(σ, s)dσ.

If t + τ ≤ s, we have

Zλ(t, s)(τ) =
∫ t

s

λeλ(t+τ−σ)R(λ, A(0))f(σ)dσ.

Now, let λ, µ ≥ λ0 > max(ω, 0),

Zλ(t, s)(τ)−Zµ(t, s)(τ)

=



∫ t+τ

s
V (t + τ, σ)

[
λR(λ, A(0))− µR(µ,A(0))

]
f(σ)dσ

+
∫ t

t+τ

[
λeλ(t+τ−σ)R(λ, A(0))− µeµ(t+τ−σ)R(µ,A(0))

]
f(σ)dσ

+
∫ t+τ

s
V (t + τ, σ)L(σ)

[
Zλ(σ, s)−Zµ(σ, s)

]
dσ, t + τ ≥ s∫ t

s
[λeλ(t+τ−σ)R(λ, A(0))− µeµ(t+τ−σ)R(µ,A(0))]f(σ)dσ, t + τ ≤ s.

For t + τ ≥ s, we get easily

‖Zλ(t, s)(τ)−Zµ(t, s)(τ)‖

≤ M̃(T )
∫ T

0

‖(λR(λ, A(0))− µR(µ, A(0)))f(σ)‖dσ

+ M(
1
λ

+
1
µ

) sup
0≤σ≤T

‖f(σ)‖+ MeωT ‖L(·)‖∞
∫ T

0

‖Zλ(σ, s)−Zµ(σ, s)‖dσ,

and for t + τ ≤ s

‖Zλ(t, s)(τ)−Zµ(t, s)(τ)‖

≤ M̃(T )
∫ T

0

‖(λR(λ, A(0))− µR(µ,A(0)))f(σ)‖dσ + M(
1
λ

+
1
µ

) sup
0≤σ≤T

‖f(σ)‖.

Hence, as

lim
λ,µ→+∞

‖ [λR(λ, A(0))− µR(µ,A(0))] f(σ)‖ = 0 for all σ ∈ [0, T ],

by the Lebesgue dominated convergence theorem, for ε > 0 and λ, µ sufficiently
large we have

‖Zλ(t, s)(τ)−Zµ(t, s)(τ)‖ ≤ ε + MeωT

∫ t

s

‖L(·)‖∞‖Zλ(σ, s)−Zµ(σ, s)‖dσ.

An application of Gronwall’s inequality yields

‖Zλ(t, s)(τ)−Zµ(t, s)(τ)‖ ≤ εeMeωT (t−s)‖L(·)‖∞ .

Then, we can conclude that

sup τ ∈ [−r, 0]‖Zλ(t, s)(τ)−Zµ(t, s)(τ)‖ → 0 as λ, µ → +∞

uniformly on {(t, s) : 0 ≤ s ≤ t ≤ T}.
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Let fn in C([0, T ], E) be a subsequence converging to f in L1(0, T ;E). We have

‖
∫ t

0

UL(t, σ)λeλ·R(λ, A(0))[fn(σ)− f(σ)]dσ‖ ≤ M(T, s)‖fn − f‖L1 .

Hence, this provides the existence of the limit for f ∈ L1
loc(R+, E), and this com-

pletes the proof. �

Theorem 4.3. Let ϕ ∈ Cr and s ≥ 0, then the function x defined by

x(t) :=

{
u(t)(0), t ≥ s,

ϕ(t− s), s− r ≤ t ≤ s,

with

u(t) := UL(t, s)ϕ + lim
λ→+∞

∫ t

s

UL(t, σ)eλ·λR(λ, A(0))f(σ) dσ, t ≥ s,

is a mild solution of (4.1). Conversely, if x is a mild solution of (4.1), then

xt = UL(t, s)ϕ + lim
λ→+∞

∫ t

s

UL(t, σ)eλ·λR(λ, A(0))f(σ) dσ, t ≥ s. (4.4)

Proof. Let τ ∈ [−r, 0], then for t + τ ≥ s, we have

u(t)(τ)

= V (t + τ, s)ϕ(0) +
∫ t+τ

s

V (t + τ, σ)L(σ)UL(σ, s)ϕ dσ

+ lim
λ→+∞

∫ t+τ

s

V (t + τ, σ)λR(λ, A(0))f(σ) dσ

+ lim
λ→+∞

∫ t

t+τ

λeλ(t+τ−σ)R(λ, A(0))f(σ) dσ

+ lim
λ→+∞

∫ t+τ

s

∫ t+τ

σ

V (t + τ, δ)L(δ)UL(δ, σ)λeλ·R(λ, A(0))f(σ) dδdσ

= V (t + τ, s)ϕ(0) +
∫ t+τ

s

V (t + τ, σ)L(σ)UL(σ, s)ϕ dσ +
∫ t+τ

s

V (t + τ, σ)f(σ) dσ

+ lim
λ→+∞

∫ t+τ

s

V (t + τ, δ)L(δ)
∫ δ

s

UL(δ, σ)λeλ·R(λ, A(0))f(σ) dσdδ

= V (t + τ, s)ϕ(0) +
∫ t+τ

s

V (t + τ, σ)L(σ)UL(σ, s)ϕ dσ +
∫ t+τ

s

V (t + τ, σ)f(σ) dσ

+
∫ t+τ

s

V (t + τ, δ)L(δ)
[

lim
λ→+∞

∫ δ

s

UL(δ, σ)λeλ·R(λ, A(0))f(σ) dσ
]
dδ

= V (t + τ, s)ϕ(0) +
∫ t+τ

s

V (t + τ, σ)f(σ) dσ

+ lim
λ→+∞

∫ t+τ

s

V (t + τ, δ)L(δ)[UL(δ, s)ϕ

+ lim
λ→+∞

∫ δ

s

UL(δ, σ)λeλ·R(λ, A(0))f(σ) dσ]dδ.
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Then,

u(t)(τ) = V (t + τ, s)ϕ(0) +
∫ t+τ

s

V (t + τ, δ)L(δ) [u(δ) + f(δ)] dδ. (4.5)

For t + τ ≤ s, we obtain

u(t)(τ) = ϕ(t + τ − s) + lim
λ→+∞

∫ t

s

eλ(t+τ−σ)λR(λ, A(0))f(σ) dσ.

Therefore,
u(t)(τ) = ϕ(t + τ − s). (4.6)

This implies that the function x satisfies xt = u(t), t ≥ 0, and (4.2). Thus x is a
mild solution of (4.1).

Conversely, let x(t) be a mild solution of (4.1), we have to show that xt = u(t)
for all t ≥ s. Let t ≥ s and τ ∈ [−r, 0], from (4.2), (4.5) and (4.6), we obtain

xt(τ)− u(t)(τ) =

{∫ t+τ

s
V (t + τ, σ)L(σ)(xσ − u(σ))dσ, t + τ ≥ s,

0, s− r ≤ t + τ ≤ s,

and by the Gronwall’s inequality, we conclude that xt = u(t). �

The variation of constants formula (4.4) will play a crucial role in the study
of the asymptotic behaviour of the solutions to the retarded differential equation
(4.1). For this purpose, we begin by the following lemma.

Lemma 4.4. Assume that (UL(t, s))t≥s≥0 has an exponential dichotomy. Let f ∈
BC(R+, X), then the limit

lim
λ→+∞

∫ ∞

0

Γ(t, σ)λeλ·R(λ, A(0))f(σ)dσ (4.7)

exists uniformly for t in compact intervals of R+.

Proof. Let t ∈ [0, T ], for some T > 0. We have∫ +∞

0

Γ(t, σ)λeλ·R(λ, A(0))f(σ)dσ

=
∫ t

0

Γ(t, σ)λeλ·R(λ, A(0))f(σ)dσ +
∫ +∞

t

Γ(t, σ)λeλ·R(λ, A(0))f(σ)dσ.

By the definition of the Green’s function, the two members of the above sum are
well defined. by Lemma 4.2, the limit of the first member exists. Hence, it remains
to show that the second one

Eλ(t) :=
∫ +∞

t

Γ(t, σ)λeλ·R(λ, A(0))f(σ)dσ

is a Cauchy sequence.
First, one can verify for all t ≥ s ≥ 0

Eλ(t) = UL(t, s)ωλ(s) +
∫ t

s

UL(t, σ)Q(σ)λeλ·R(λ, A(0))f(σ)dσ.

Then, for r > 0 we have

Q(t + r)Eλ(t + r) = U(t + r, t)Q(t)Eλ(t)

+ Q(t + r)
∫ t+r

t

UL(t + r, s)Q(σ)λeλ·R(λ, A(0))f(σ)dσ,
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and as Eλ(t) ∈ Im Q(t), we obtain

Eλ(t) = [UQ(t + r, t)]−1Q(t + r)Eλ(t + r)

−Q(t + r)
∫ t+r

t

UL(t + r, s)Q(σ)λeλ·R(λ, A(0))f(σ)dσ.

Now, for λ, µ ≥ λ0 > max(ω, 0)

Eλ(t)− Eµ(t) = [UQ(t + r, t)]−1Q(t + r)[Eλ(t + r)− Eµ(t + r)]

− [UQ(t + r, t)]−1Q(t + r)
∫ t+r

t

UL(t + r, σ)[λeλ·R(λ, A(0))

− µeµ·R(µ,A(0))]f(σ)dσ.

Passing to the norm, it follows

‖Eλ(t)− Eµ(t)‖ ≤ ‖[UQ(t + r, t)]−1Q(t + r)[Eλ(t + r)− Eµ(t + r)]‖

+
∥∥∥[UQ(t + r, t)]−1Q(t + r)

∫ t+r

t

UL(t + r, σ)[λeλ·R(λ, A(0))

− µeµ·R(µ,A(0))]f(σ)dσ
∥∥∥

≤ C1e
−αr

[
C2‖f‖+ ‖Q(t + r)

∫ t+r

t

UL(t + r, σ)[λeλ·R(λ, A(0))

− µeµ·R(µ,A(0))]f(σ)dσ‖
]
.

For r sufficiently large and in view of Lemma 4.2, we can conclude that Eλ is a
Cauchy sequence. �

Proposition 4.5. Assume that (UL(t, s))t≥s≥0 has an exponential dichotomy, then
for f ∈ BC(R+, E), the function v : [0,∞) → E defined by

v(t) :=


[UL(t, 0)P (0)ϕ
+ limλ→+∞

∫∞
0

Γ(t, σ)λeλ·R(λ, A(0))f(σ)dσ](0), t ≥ 0

ϕ(t), −r ≤ t ≤ 0

(4.8)

is the unique bounded mild solution of (4.1) with ϕ is an initial condition which
satisfies

Q(0)ϕ = lim
λ→+∞

∫ ∞

0

Γ(0, σ)λeλ·R(λ, A(0))f(σ)dσ. (4.9)

Moreover, if f ∈ C0(IR+, E) then v also belongs to C0(R+, E).

Proof. Let v be a mild solution of (4.1). From Theorem 4.3, one can verify that

v(t) = UL(t, 0)(ϕ + lim
λ→+∞

∫ ∞

0

Γ(0, σ)λeλ·R(λ, A(0))f(σ)dσ)

+ lim
λ→+∞

∫ ∞

0

Γ(t, σ)λeλ·R(λ, A(0))f(σ)dσ.

As t 7→ limλ→+∞
∫∞
0

Γ(t, σ)λeλ·R(λ, A(0))f(σ)dσ is a bounded function, then v is
bounded if and only if

t 7→ UL(t, 0)(ϕ + lim
λ→+∞

∫ ∞

0

Γ(0, σ)λeλ·R(λ, A(0))f(σ)dσ)
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is bounded, and this is equivalent to [ϕ+limλ→+∞
∫∞
0

Γ(0, σ)λeλ·R(λ, A(0))f(σ)dσ]
belongs to Im P (0), i.e.,

Q(0)ϕ = − lim
λ→+∞

∫ ∞

0

Γ(0, σ)λeλ·R(λ, A(0))f(σ)dσ.

Consequently, v is given by (4.8).
Now, let us take f ∈ C0(R+, E) and show that

C0(R+, E) 3 ω(·) := lim
λ→+∞

∫ ∞

0

Γ(·, σ)λeλ·R(λ, A(0))f(σ)dσ.

Let

I(t) := lim
λ→+∞

∫ t

0

UL(t, σ)P (σ)λeλ·R(λ, A(0))f(σ)dσ,

J(t) := lim
λ→+∞

∫ ∞

t

UQ(t, σ)Q(σ)λeλ·R(λ, A(0))f(σ)dσ.

Then, ω(t) = I(t)− J(t).
Since f(t) → 0 as t → ∞, there exists t0 ≥ 0 such that ‖f(t)‖ ≤ ε

2MNδ for all
t ≥ t0. Hence, ‖I‖ ≤ 2MN

δ ‖f‖∞e−δ(t−t0) + ε
2 and this implies that I(t) → 0 as

t → +∞.
For J(·), we have

J(t) = lim
λ→+∞

∫ ∞

0

UQ(t, t + σ)Q(t + σ)λeλ·R(λ, A(0))f(t + σ)dσ.

Then,

‖J(t)‖ ≤ MN

∫ ∞

0

e−δσ‖f(t + σ)‖dσ.

Therefore, letting t approach infinity we obtain the result. �

5. Fundamental Solutions and Stability Results

This section is devoted to use the notion of fundamental solutions to study the
stability of the semi-linear retarded equation

x′(t) = A(t)x(t) + L(t)xt + F (t, xt), t ≥ s ≥ 0,

xs = ϕ ∈ Cr,
(5.1)

where (A(t), D(A(t)))t≥0 and (L(t))t≥0 are defined as above and F a nonlinear
function from R+ × Cr to E.

In [10], the authors showed the existence of fundamental solutions of (3.1), when
A(t) = A. But to study the stability of the non-autonomous retarded equation
(5.1) they assumed the existence of these fundamental solutions. Here, using our
previous variation of constants formulas, we are able to show this assumed result,
and then obtain the same stability results for (5.1) as in [10, Theorems 4.6, 4.7,
4.10 ].

Definition 5.1. A family (Φ(s, t))t≥s≥0 of bounded linear operators on E is called
a fundamental solution of (3.1) if

(i) Φ(t, t) = Id, t ≥ 0.
(ii) (t, s) 7→ Φ(t, s) is strongly continuous for t ≥ s ≥ 0.
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(iii) For every g ∈ L1
loc(R+, E) and t ∈ [s− r,∞), the map

t 7→

{∫ t

s
Φ(t, σ)g(σ)dσ, t ≥ s ≥ 0,

ϕ(t− s), s− r ≤ t ≤ s,

is the unique mild solution of

v′(t) = A(t)x(t) + L(t)xt + g(t), t ≥ s ≥ 0,

vs = ϕ ∈ Cr.

Let us define on Cr the function

[Rλ,x(t, s)](τ) =

{
λR(λ, A(0))x, t + τ ≥ s,

λeλ(t+τ−s)R(λ, A(0))x, t + τ < s,
(5.2)

with x ∈ E, τ ∈ [−r, 0] and λ > max(ω, 0).

Theorem 5.2. Suppose that, for all x ∈ E, the limit

lim
λ→+∞

∫ t

s

V (t, σ)L(σ)Rλ,x(σ, s)dσ (5.3)

exists uniformly on compact sets of {(t, s) : t ≥ s ≥ 0}. Then, there exists a
fundamental solution (Φ(t, s))t≥s≥0 of (3.1) given by

Φ(t, s)x = lim
λ→+∞

λ[UL(t, s)eλ·R(λ, A(0))x)](0) (5.4)

for t ≥ s ≥ 0 and x ∈ E.

This theorem follows fom the variation of constants formula in Theorem 4.3, and
the proof is similar to the one given in [10, Theorem 3.2].
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