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EXISTENCE OF POSITIVE SOLUTIONS FOR SOME
POLYHARMONIC NONLINEAR BOUNDARY-VALUE

PROBLEMS

HABIB MÂAGLI, FATEN TOUMI, & MALEK ZRIBI

Abstract. We present existence results for the polyharmonic nonlinear ellip-
tic boundary-value problem

(−∆)mu = f(·, u) in B

(
∂

∂ν
)ju = 0 on ∂B, 0 ≤ j ≤ m− 1.

(in the sense of distributions), where B is the unit ball in Rn and n ≥ 2. The

nonlinearity f(x, t) satisfies appropriate conditions related to a Kato class of
functions Km,n. Our approach is based on estimates for the polyharmonic

Green function with zero Dirichlet boundary conditions and on the Schauder

fixed point theorem.

1. Introduction

Boggio [3] gave an explicit expression for the Green function Gm,n of (−∆)m

on the unit ball B of Rn (n ≥ 2), with Dirichlet boundary conditions ( ∂
∂ν )ju = 0,

0 ≤ j ≤ m− 1. In fact, he proved that for each x, y in B,

Gm,n(x, y) = km,n|x− y|2m−n
∫ [x,y]

|x−y|

1

(v2 − 1)m−1

vn−1
dv (1.1)

where ∂
∂ν is the outward normal derivative, m is a positive integer, km,n is a positive

constant and [x, y]2 = |x− y|2 + (1− |x|2)(1− |y|2), for x, y in B.
Hence, from its expression, it is clear that Gm,n is positive in B2, which does

not hold for the Green function of the biharmonic or m-polyharmonic operator in
an arbitrary bounded domain (see for example [7]). Only for the case m = 1, we
have not this restriction.

Grunau and Sweers [8] derived from Boggio’s formula some interesting estimates
on the Green function Gm,n in B, including a 3G-Theorem, which holds in the case
m = 1 for the Green function GΩ of an arbitrary bounded C1,1-domain Ω (see [5]
and [21]).
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When m = 1, the 3G-Theorem has been exploited to introduce the classical Kato
class of functions Kn(Ω), which was used in the study of some nonlinear differential
equations (see [15, 20]). Definition and properties of the class Kn(Ω) can be found
in [1, 5].

Recently, Bachar et al [2] improved the inequalities of Grunau and Sweers [8]
satisfied by Gm,n in B. For instance, they gave a new form of the 3G-Theorem (see
inequality (1.2) below and its proof in the Appendix).

Theorem 1.1 (3G-theorem). There exists Cm,n > 0 such that for each x, y, z ∈ B,
we have
Gm,n(x, z)Gm,n(z, y)

Gm,n(x, y)
≤ Cm,n

[( δ(z)
δ(x)

)m
Gm,n(x, z) +

(δ(z)
δ(y)

)m
Gm,n(y, z)

]
, (1.2)

where δ(x) = 1− |x|.

When m = 1, this new form of the 3G-Theorem has been proved for the Green
function GΩ in an arbitrary bounded C1,1-domain Ω, by Kalton and Verbritsky [11]
for n ≥ 3 and by Selmi [18] for n = 2.

In [2], the authors used this 3G-Theorem to define and study a new Kato class
of functions on B denoted by Km,n := Km,n(B) (see Definition 1.2 below). In the
case m = 1, this class was introduced for a bounded C1,1-domain Ω in Rn, in [16]
for n ≥ 3 and in [13] and [19] for n = 2. Moreover, it has been shown that K1,n(Ω)
contains properly the classical Kato class Kn(Ω).

Definition 1.2. A Borel measurable function ϕ defined on B belongs to the class
Km,n if ϕ satisfies the condition

lim
α→0

(
sup
x∈B

∫
B∩B(x,α)

( δ(y)
δ(x)

)m
Gm,n(x, y)|ϕ(y)|dy

)
= 0. (1.3)

The properties of the class Km,n were used in [2], to study a singular nonlinear
differential polyharmonic equation

(−∆)mu+ ϕ(., u) = 0, in B\{0},

with boundary conditions ( ∂
∂ν )ju = 0 on ∂B, 0 ≤ j ≤ m − 1. The function ϕ

satisfies |ϕ(x, t)| ≤ tq(x, t), where q is a nonnegative Borel measurable function in
B × (0,∞) which is required to satisfy some other hypotheses related to the class
Km,n.

The plan for this paper is as follows: In Section 2, we recall some estimates on
the Green function Gm,n and some properties of functions belonging to the Kato
class Km,n(B). In section 3, we study the polyharmonic boundary-value problem

(−∆)mu = f(·, u) in B (in the sense of distributions)

(
∂

∂ν
)ju = 0 on ∂B 0 ≤ j ≤ m− 1.

(1.4)

The function f satisfies the following hypotheses:

(H1) The function f is a nonnegative Borel measurable function on B × (0,∞),
which is continuous and non-increasing with respect to the second variable.

(H2) For each c > 0, the function x→ f(x,c(δ(x))m)
(δ(x))m−1 is in Km,n.

(H3) For each c > 0, f(., c) is positive on a set of positive measure.
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To study problem (P), we assume m ≥ n ≥ 2. So we show that for Gm,n there
exists C > 0 such that for each x, y ∈ B,

1
C

(δ(x))mGm,n(0, y) ≤ Gm,n(x, y) ≤ CGm,n(0, y),

which is a fundamental inequality. Then by similar techniques to those used by
Masmoudi and Zribi [17], we prove that (1.4) has a positive continuous solution u
satisfying a(δ(x))m ≤ u(x) ≤ b(δ(x))m−1, where a, b are positive constants.

Note that for m = 1, using the complete maximum principle argument, which
does not hold for m ≥ 2, Mâagli and Zribi [15] established an existence and an
uniqueness result for the problem (1.4) in a bounded C1,1 domain Ω of Rn (n ≥ 3),
where the function f is required to satisfy the hypotheses (H1), (H3), and

(H0) For each c > 0, f(., c) is in Kn(Ω).
In section 4, we shall study the following nonlinear polyharmonic problem in B,

where m ≥ 1, n ≥ 2,
(−∆)mu = g(., u) in B (in the sense of distributions)

(
∂

∂ν
)ju = 0, on∂B, 0 ≤ j ≤ m− 1 .

(1.5)

We Assume that g verifies the following hypotheses:
(H4) The function g is nonnegative Borel measurable function on B × (0,∞),

and is continuous with respect to the second variable.
(H5) There exist p, q : B → (0,∞) nontrivial Borel measurable functions and

h, k : (0,∞) → [0,∞) nontrivial and nondecreasing Borel measurable func-
tions satisfying

p(x)h(t) ≤ g(x, t) ≤ q(x)k(t),

for (x, t) ∈ B × (0,∞), such that
(A1) p ∈ L1

loc(B).
(A2) The function θ(x) := q(x)/(δ(x))m−1 is in Km,n.
(A3) limt→0+ h(t)/t = +∞.
(A4) limt→+∞ k(t)/t = 0.
Under these hypotheses, we will prove that (1.5) has a positive continuous solu-

tion u satisfying a(δ(x))m ≤ u(x) ≤ b(δ(x))m−1, where a, b are positive constants.
This result is a follow up to the one of Dalmasso [6], who studied the problem

(1.5) with more restrictive conditions on the function g. Indeed, he assumed that
g is nondecreasing with respect to the second variable and satisfies

lim
t→0+

min
x∈B

g(x, t)
t

= +∞ and lim
t→+∞

max
x∈B

g(x, t)
t

= 0.

He proved the existence of positive solution and he gave also an uniqueness result
for positive radial solution when g(x, t) = g(|x|, t).

On the other hand, we note that when m = 1, Brezis and Kamin [4] proved the
existence and the uniqueness of a positive solution for the problem

−∆u = ρ(x)uα in Rn,

lim inf
|x|→∞

u(x) = 0,

with 0 < α < 1 and ρ is a nonnegative measurable function satisfying some appro-
priate conditions.
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To simplify our statements, we define the following convenient notations:
• B = {x ∈ Rn : |x| < 1} with n ≥ 2.
• s ∧ t = min(s, t) and s ∨ t = max(s, t), for s, t ∈ R.
• C0(B) = {w ∈ C(B) : lim|x|→1 w(x) = 0}
• For x, y ∈ B, we define: [x, y]2 = |x−y|2+(1−|x|2)(1−|y|2), δ(x) = 1−|x|,

and θ(x, y) = [x, y]2 − |x− y|2 = (1− |x|2)(1− |y|2).
Note that [x, y]2 ≥ 1 + |x|2|y|2 − 2|x||y| = (1− |x||y|)2. So that

δ(x) ∨ δ(y) ≤ [x, y]. (1.6)

• Let f and g be two positive functions on a set S. We call f ∼ g, if there is
c > 0 such that

1
c
g(x) ≤ f(x) ≤ cg(x), for all x ∈ S.

We call f � g, if there is c > 0 such that

f(x) ≤ cg(x), for all x ∈ S.

The following properties will be used several times.
For s, t ≥ 0, we have

s ∧ t ∼ st

s+ t
, (1.7)

(s+ t)p ∼ sp + tp, p ∈ R+. (1.8)

Let λ, µ > 0 and 0 < γ ≤ 1, then we have,

1− tλ ∼ 1− tµ, for t ∈ [0, 1], (1.9)

log(1 + t) � tγ , for t ≥ 0, (1.10)

log(1 + λt) ∼ log(1 + µt), for t ≥ 0, (1.11)

log(1 + tλ) ∼ tλ log(2 + t), for t ∈ [0, 1]. (1.12)

On B2 (that is (x, y) ∈ B2), we have

θ(x, y) ∼ δ(x)δ(y), (1.13)

[x, y]2 ∼ |x− y|2 + δ(x)δ(y) . (1.14)

2. Properties of the Green function and Kato class

For this paper to be self contained, we shall recall some results concerning the
Green function Gm,n(x, y) and the class Km,n. The next result is due to Grunau
and Sweers in [8].

Proposition 2.1. On B2, we have the following statements:
(1) For 2m < n,

Gm,n(x, y) ∼ |x− y|2m−n
(
1 ∧ (δ(x)δ(y))m

|x− y|2m

)
.

(2) For 2m = n,

Gm,n(x, y) ∼ log(1 +
(δ(x)δ(y))m

|x− y|2m ).
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(3) For 2m > n,

Gm,n(x, y) ∼ (δ(x)δ(y))m−n
2

(
1 ∧ (δ(x)δ(y))n/2

|x− y|n
)
.

Corollary 2.2. On B2, we have
(1) If 2m < n,

Gm,n(x, y) ∼ (δ(x)δ(y))m

|x− y|n−2m(
|x− y|2 + δ(x)δ(y)

)m ∼ (δ(x)δ(y))m

|x− y|n−2m[x, y]2m

(2) If 2m = n,

Gm,n(x, y) ∼ (1∧ (δ(x)δ(y))m

|x− y|2m
) log

(
2+

δ(x)δ(y)
|x− y|2

)
∼ (δ(x)δ(y))m

[x, y]2m
log

(
1+

[x, y]2

|x− y|2
)
.

(3) If 2m > n,

Gm,n(x, y) ∼ (δ(x)δ(y))m

(|x− y|2 + (δ(x)δ(y)))n/2
∼ (δ(x)δ(y))m

[x, y]n
.

The proof of this corollary follows immediately from Proposition 2.1 and the
statements (1.7)–(1.9) and (1.11)–(1.14).

Corollary 2.3. For each x, y ∈ B such that |x− y| ≥ r, we have

Gm,n(x, y) � (δ(x)δ(y))m

rn
. (2.1)

Moreover, on B2 we have

(δ(x)δ(y))m � Gm,n(x, y), (2.2)

(δ(x))m ∧ (δ(y))m, if m ≥ n. (2.3)

The assertions of this corollary are obviously obtained by using the estimates in
Corollary 2.2 and the inequalities (1.6) and |x− y| ≤ [x, y] � 1.

Now we recall some properties of functions belonging to the class Km,n.

Lemma 2.4. Let ϕ be a function in Km,n. Then the function x → (δ(x))2mϕ(x)
is in L1(B).

Proof. Let ϕ ∈ Km,n, then by (1.3) there exists α > 0 such that for each x ∈ B,∫
B(x,α)∩B

( δ(y)
δ(x)

)m
Gm,n(x, y)|ϕ(y)|dy ≤ 1.

Let x1, . . . , xp in B such that B ⊂ ∪1≤i≤pB(xi, α). Then by (2.2), there exists
C > 0 such that for all i ∈ {1, . . . p} and y ∈ B(xi, α) ∩B, we have

(δ(y))2m ≤ C(
δ(y)
δ(xi)

)mGm,n(xi, y).

Hence, we have∫
B

(δ(y))2m|ϕ(y)|dy ≤ C
∑

1≤i≤p

∫
B(xi,α)∩B

( δ(y)
δ(xi)

)m
Gm,n(xi, y)|ϕ(y)|dy

≤ Cp <∞.

This completes the proof. �
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Throughout the paper, we will use the notation

‖ϕ‖B := sup
x∈B

∫
B

(
δ(y)
δ(x)

)mGm,n(x, y)|ϕ(y)|dy,

for a measurable function ϕ on B.

Proposition 2.5. Let ϕ be a function in Km,n, then ‖ϕ‖B <∞.

Proof. Let ϕ ∈ Km,n and α > 0. Then we have∫
B

( δ(y)
δ(x)

)m
Gm,n(x, y)|ϕ(y)|dy ≤

∫
B∩B(x,α)

( δ(y)
δ(x)

)m
Gm,n(x, y)|ϕ(y)|dy

+
∫

B∩Bc(x,α)

( δ(y)
δ(x)

)m
Gm,n(x, y)|ϕ(y)|dy.

Now, by (2.1), we have∫
B∩Bc(x,α)

(
δ(y)
δ(x)

)mGm,n(x, y)|ϕ(y)|dy � 1
αn

∫
B

(δ(y))2m|ϕ(y)|dy,

then the result follows from (1.3) and Lemma 2.4. �

The next result is due to Bachar et al [2]. Since reference [2] is not available, we
have chosen to reproduce it here.

Proposition 2.6. There exists a constant C > 0 such that for all ϕ ∈ Km,n and
h a nonnegative harmonic function in B, we have∫

B

Gm,n(x, y)(δ(y))m−1h(y)|ϕ(y)|dy ≤ C‖ϕ‖B(δ(x))m−1h(x), (2.4)

for all x in B.

Proof. Let h be a nonnegative harmonic function in B. So by Herglotz representa-
tion theorem [10, p, 29], there exists a nonnegative measure µ on ∂B such that

h(y) =
∫

∂B

P (y, ξ)µ(dξ),

where P (y, ξ) = 1−|y|2
|y−ξ|n , for y ∈ B and ξ ∈ ∂B. So we need only to verify (2.4) for

h(y) = P (y, ξ) uniformly in ξ ∈ ∂B. From expression (1.1) of Gm,n, it is clear that
for each x, y ∈ B, we have

Gm,n(x, y) ∼ (θ(x, y))m

[x, y]n
(1 + o(1− |y|2)).

Hence for x, y, z in B,

Gm,n(y, z)
Gm,n(x, z)

=
(1− |y|2)m[x, z]n

(1− |x|2)m[y, z]n
(1 + o(1− |z|2)),

which implies

lim
z→ξ

Gm,n(y, z)
Gm,n(x, z)

=
(1− |y|2)m

(1− |x|2)m

|x− ξ|n

|y − ξ|n
∼

( δ(y)
δ(x)

)m−1 P (y, ξ)
P (x, ξ)

. (2.5)
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Thus by Fatou’s lemma and (1.2), we deduce that∫
B

Gm,n(x, y)(
δ(y)
δ(x)

)m−1 P (y, ξ)
P (x, ξ)

|ϕ(y)|dy

� lim inf
z→ξ

∫
B

Gm,n(x, y)
Gm,n(y, z)
Gm,n(x, z)

|ϕ(y)|dy

� sup
x∈B

∫
B

(
δ(y)
δ(x)

)mGm,n(x, y)|ϕ(y)|dy = ‖ϕ‖B .

Which completes the proof. �

For a nonnegative measurable function ϕ on B and x ∈ B, we define

V ϕ(x) =
∫

B

(δ(y))m−1Gm,n(x, y)ϕ(y)dy.

Corollary 2.7. Let ϕ ∈ Km,n. Then we have

‖V ϕ‖∞ <∞. (2.6)

Moreover, the function x 7→ (δ(x))2m−1ϕ(x) is in L1(B).

Proof. Put h ≡ 1 in (2.4) and using Proposition 2.5, we get (2.6). On the other
hand, by (2.2), it follows that∫

B

(δ(y))2m−1|ϕ(y)|dy �
∫

B

Gm,n(0, y)(δ(y))m−1|ϕ(y)|dy.

Hence the result follows from (2.6). �

Example 2.8. If n ≥ 2m, for p > n
2m we have Lp(B) ⊂ Km,n. Furthermore, if

n < 2m then for p > 1 we have
1

(δ(.))2m−n
Lp(B) ⊂ Km,n.

Indeed, these inclusions are obtained by using the estimates on Corollary 2.2, (1.6)
and the Hölder inequality.

Example 2.9. Let ρ be the function defined in B by ρ(x) = 1
δ(x)λ . Then shown in

[2], ρ ∈ Km,n if and only if λ < 2m and we have the following estimates for V ρ in
B,

(1) δ(x)m � V ρ(x) � δ(x)3m−λ−1, if 2m− 1 < λ < 2m.
(2) δ(x)m � V ρ(x) � δ(x)m log( 2

δ(x) ), if λ = 2m− 1.
(3) V ρ(x) ∼ δ(x)m, if λ < 2m− 1.

The properties in Propositions 2.11 and 2.12 below are useful for our existence
results. However, to establish them we need the next key Lemma.

Lemma 2.10. Let x0 ∈ B, then for each ϕ ∈ Km,n,

lim
α→0

(
sup
x∈B

∫
B∩B(x0,α)

( δ(y)
δ(x)

)m
Gm,n(x, y)|ϕ(y)|dy

)
= 0 . (2.7)

Also for a positive harmonic function h in B, we have

lim
α→0

(
sup
x∈B

∫
B∩B(x0,α)

( δ(y)
δ(x)

)m−1 h(y)
h(x)

Gm,n(x, y)|ϕ(y)|dy
)

= 0. (2.8)
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Proof. Let ε > 0, then by (1.3), there exists r > 0 such that

sup
z∈B

∫
B∩B(z,r)

(δ(y)
δ(z)

)m
Gm,n(z, y)|ϕ(y)|dy ≤ ε

Let x0 ∈ B and α > 0. Then by (2.1) we have for each x ∈ B,∫
B∩B(x0,α)

(
δ(y)
δ(x)

)mGm,n(x, y)|ϕ(y)|dy

≤
∫

B∩B(x,r)

( δ(y)
δ(x)

)m
Gm,n(x, y)|ϕ(y)|dy

+
∫

B∩B(x0,α)∩Bc(x,r)

( δ(y)
δ(x)

)m
Gm,n(x, y)|ϕ(y)|dy

� ε+
∫

B∩B(x0,α)

(δ(y))2m|ϕ(y)|dy.

Hence, using Lemma 2.4 and letting α→ 0, claim (2.7) follows.
Now to prove (2.8), using again Herglotz representation theorem, we need only to

verify the assertion for h(y) = P (y, ξ) uniformly in ξ ∈ ∂B, where P (y, ξ) = 1−|y|2
|y−ξ|n ,

for y ∈ B and ξ ∈ ∂B.
Let x ∈ B, then by Fatou’s Lemma and (2.5), we deduce that∫

B∩B(x0,α)

( δ(y)
δ(x)

)m−1 P (y, ξ)
P (x, ξ)

Gm,n(x, y)|ϕ(y)|dy

� lim inf
z→ξ

∫
B∩B(x0,α)

Gm,n(x, y)
Gm,n(y, z)
Gm,n(x, z)

|ϕ(y)|dy

� sup
x∈B

∫
B∩B(x0,α)

( δ(y)
δ(x)

)m
Gm,n(x, y)|ϕ(y)|dy,

Then by (2.7), we get (2.8) when α→ 0. �

Proposition 2.11. Let ϕ ∈ Km,n. Then the following function is in C0(B),

v(x) :=
1

(δ(x))m−1
V ϕ(x) .

Proof. Let x0 ∈ B and α > 0. Let x, z ∈ B ∩B(x0, α), then

|v(x)− v(z)| ≤
∫

B

∣∣Gm,n(x, y)
(δ(x))m−1

− Gm,n(z, y)
(δ(z))m−1

∣∣(δ(y))m−1|ϕ(y)|dy

≤ 2 sup
ξ∈B

∫
B∩B(x0,2α)

(δ(y)
δ(ξ)

)m−1
Gm,n(ξ, y)|ϕ(y)|dy

+
∫

B∩Bc(x0,2α)

∣∣Gm,n(x, y)
(δ(x))m−1

− Gm,n(z, y)
(δ(z))m−1

∣∣(δ(y))m−1|ϕ(y)|dy.

If |x0 − y| ≥ 2α then |x − y| ≥ α and |z − y| ≥ α. Moreover, by (2.1) for all
x ∈ B ∩B(x0, α) and y ∈ Ω := B ∩Bc(x0, 2α), we have( δ(y)

δ(x)
)m−1

Gm,n(x, y) � (δ(y))2m−1.
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Since when y ∈ Ω, the function x → Gm,n(x,y)
(δ(x))m−1 is continuous in B ∩ B(x0, α), then

by (2.8), Corollary 2.7 and the dominated convergence theorem, we obtain that∫
B

|Gm,n(x, y)
(δ(x))m−1

− Gm,n(z, y)
(δ(z))m−1

|(δ(y))m−1|ϕ(y)|dy → 0

as |x − z| → 0. Hence, we deduce that v is continuous in B. Next, we show that
v(x) → 0 as δ(x) → 0. Let x0 ∈ ∂B, α > 0 and x ∈ B(x0, α), then

|v(x)| ≤
∫

B∩B(x0,2α)

( δ(y)
δ(x)

)m−1
Gm,n(x, y)|ϕ(y)|dy

+
∫

B∩Bc(x0,2α)

( δ(y)
δ(x)

)m−1
Gm,n(x, y)|ϕ(y)|dy.

Since limδ(x)→0
Gm,n(x,y)
(δ(x))m−1 = 0, as in the above argument, we get limx→x0 v(x) = 0.

Hence v ∈ C0(B). �

For a nonnegative function ρ in Km,n, we define

Mρ := {ϕ ∈ Km,n : |ϕ| � ρ}.

By similar arguments as in the proof of the above Proposition, we can prove the
following statement.

Proposition 2.12. For any nonnegative function ρ ∈ Km,n, the family of functions
{V ϕ : ϕ ∈Mρ} is relatively compact in C0(B).

3. First existence result

In this section, we consider the case m ≥ n ≥ 2 to study problem (1.4). The
main result that we shall prove is the following.

Theorem 3.1. Assume (H1)–(H3). Then the problem (1.4) has a positive contin-
uous solution u. Moreover, there exist two positive constants a and b such that for
each x ∈ B,

a(δ(x))m ≤ u(x) ≤ b(δ(x))m−1 .

To prove this theorem, we state an existence result for the following boundary-
value problem (in the sense of distributions)

(−∆)mu = f(., u) in B
u = λ on ∂B,( ∂

∂ν

)j
u = 0, on ∂B, 1 ≤ j ≤ m− 1.

(3.1)

where λ > 0. For the next theorem we need the hypothesis

(H2’) For each c > 0, the function x→ f(x,c)
(δ(x))m−1 is in Km,n.

Note that hypothesis (H2) implies (H2’).

Proposition 3.2. Suppose that f satisfies (H1), (H3), and (H2’). Then for each
λ > 0, problem (3.1) has a positive solution uλ ∈ C(B), such that for each x ∈ B,

uλ(x) = λ+
∫

B

Gm,n(x, y)f(y, uλ(y))dy.
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Proof. Let λ > 0. Then by (H2’), the function ρ(y) := f(y,λ)
(δ(y))m−1 ∈ Km,n and so by

Corollary 2.7, we have β := λ+ ‖V ρ‖∞ <∞. Let Y be the convex set given by

Y =
{
u ∈ C(B) : λ ≤ u ≤ β

}
.

We consider the integral operator T on Y , defined by

Tu(x) = λ+
∫

B

Gm,n(x, y)f(y, u(y))dy.

We shall prove that T has a fixed point in Y . Since for u ∈ Y and y ∈ B, by (H1)
we have

f(y, u(y))
(δ(y))m−1

≤ f(y, λ)
(δ(y))m−1

= ρ(y),

then using (H2’), we deduce that the function y → f(y,u(y))
(δ(y))m−1 is in Mρ. So from

Proposition 2.12, we deduce that TY is relatively compact in C(B). In particular,
for all u ∈ Y , Tu ∈ C(B) and so it is clear that TY ⊂ Y .

Now, we aim to prove the continuity of T in Y . Let (uk)k be a sequence in Y
which converges uniformly to u ∈ Y . Then since f is continuous with respect to
the second variable, we deduce by the dominated convergence theorem that

∀x ∈ B, Tuk(x) → Tu(x) as k →∞.

As TY is relatively compact in C(B), then

‖Tuk − Tu‖∞ → 0 as k →∞.

Thus we have proved that T is a compact mapping from Y to itself. Hence, by
Schauder fixed point theorem, there exists a function uλ ∈ Y such that

uλ(x) = λ+
∫

B

Gm,n(x, y)f(y, uλ(y))dy.

Finally, we need to verify that uλ is a solution for problem (3.1). Since by (H1) we
have for each y ∈ B, f(y, uλ(y)) ≤ f(y, λ) = (δ(y))m−1ρ(y), then we deduce from
Corollary 2.7 that the function y → f(y, uλ(y)) is in L1

loc(B). So it is clear that uλ

satisfies (in the sense of distributions) the elliptic differential equation

(−∆)muλ = f(., uλ) in B.

Furthermore, by (H2’), we have

0 ≤ uλ(x)− λ

(δ(x))m−1
≤ 1

(δ(x))m−1
V ρ(x).

This implies from Proposition 2.11 that limδ(x)→0
uλ(x)−λ
(δ(x))m−1 = 0. Namely, uλ satis-

fies the boundary conditions uλ = λ and ( ∂
∂ν )juλ = 0, on ∂B for 1 ≤ j ≤ m − 1.

This ends the proof. �

In the sequel, we consider a sequence (λk)k of positive real numbers, decreasing
to zero. We denote by uk the solution of the problem (Pλk

) given by Proposition
3.2 and satisfying for each x ∈ B,

uk(x) = λk +
∫

B

Gm,n(x, y)f(y, uk(y))dy. (3.2)

Lemma 3.3. There exists a positive constant a such that for all k ∈ N, and x ∈ B,
uk(x) ≥ a(δ(x))m.
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Proof. By (2.2) and (2.3), we remark that on B,

Gm,n(0, y) ∼ (δ(y))m.

Then by (2.2) and (2.3) again, we deduce that there exists a constant c > 1 such
that we have for each x, y ∈ B

1
c
(δ(x))mGm,n(0, y) ≤ Gm,n(x, y) ≤ cGm,n(0, y).

This implies by (3.1) that

uk(x) ≤ c
(
λk +

∫
B

Gm,n(0, y)f(y, uk(y))dy
)

= cuk(0). (3.3)

and

uk(x) ≥ 1
c

(
δ(x))m(λk +

∫
B

Gm,n(0, y)f(y, uk(y))dy
)

≥ 1
c

(
δ(x))m( inf

k∈N
uk(0)

)
.

We claim that a = 1
c (infk∈N uk(0)) > 0. Assume on the contrary that there exists

a subsequence (ukp(0))p which converges to zero. In particular, for p large enough,
we have ukp(0) ≤ 1, which implies with (3.3) and (H1) that

ukp
(0) = λkp

+
∫

B

Gm,n(0, y)f(y, ukp
(y))dy ≥ λkp

+
∫

B

Gm,n(0, y)f(y, c)dy.

Thus, by letting p to ∞, we reach a contradiction from hypothesis (H3). This
completes the proof. �

Proof of Theorem 3.1. Let a be the constant given in Lemma 3.3, then by hypoth-
esis (H2), we deduce that the function

ρ(y) :=
f(y, a(δ(y))m)

(δ(y))m−1
∈ Km,n.

Since for each k ∈ N and y ∈ B, by (H1) we have

f(y, uk(y))
(δ(y))m−1

≤ f(y, a(δ(y))m)
(δ(y))m−1

= ρ(y) .

Then the function y → f(y,uk(y))
(δ(y))m−1 is in Mρ. So using Proposition 2.12, we deduce

from (3.2) that the family (uk)k is relatively compact in C(B). Then it follows
that there exists a subsequence (ukp)p which converges uniformly to a function
u ∈ C(B). Moreover, by Lemma 3.3, we have u(x) ≥ a(δ(x))m, for each x ∈ B.
Hence, using the continuity of f with respect to the second variable, we apply the
dominated convergence theorem in (3.2) to obtain that

u(x) =
∫

B

Gm,n(x, y)f(y, u(y))dy.

Finally, by Lemma 3.3 and hypothesis (H1), for each y ∈ B, we have

f(y, u(y)) ≤ f(y, a(δ(y))m) = (δ(y))m−1ρ(y).

Then we deduce from Corollary 2.7 that the function y → f(y, u(y)) is in L1
loc(B).

So u satisfies (in the sense of distributions) the elliptic differential equation

(−∆)mu = f(., u) in B.
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Furthermore, we have for x ∈ B,

aδ(x) ≤ u(x)
(δ(x))m−1

≤ 1
(δ(x))m−1

V ρ(x),

which together with Proposition 2.11 imply that u satisfies the boundary conditions
( ∂

∂ν )ju = 0, on ∂B, for 0 ≤ j ≤ m − 1 and that there exists a positive constant b
such that

a(δ(x))m ≤ u(x) ≤ b(δ(x))m−1.

This completes the proof. �

Corollary 3.4. Let ϕ ∈ C(∂B) and ψ ∈ C1(∂B) be nonnegative functions on ∂B
and f satisfies (H1)–(H3), then the polyharmonic boundary-value problem

(−∆)mu = f(., u) in B (in the sense of distributions),

(− ∂

∂ν
)m−1u = ψ, (− ∂

∂ν
)m−2u = ϕ, (

∂

∂ν
)ju = 0 on ∂B for 0 ≤ j ≤ m− 3,

(3.4)
has a positive continuous solution u. Moreover there exists a positive constant a
such that

u(x) ≥ a(δ(x))m.

Proof. Let h be the solution of the Dirichlet problem

(−∆)mh = 0 in B

(− ∂

∂ν
)m−1h = ψ, (− ∂

∂ν
)m−2h = ϕ, (

∂

∂ν
)jh = 0, on ∂B, for 0 ≤ j ≤ m− 3.

Then as in [9], for x ∈ B we have

h(x) =
∫

∂B

Km,n(x, y)ϕ(y)dω(y) +
∫

∂B

Lm,n(x, y)ψ(y)dω(y),

where

Lm,n(x, y) =
1

2m(m− 2)!ωn

(1− |x|2)m

|x− y|n+2
[n(1− |x|2) + (m+ 2− n)|x− y|2],

Km,n(x, y) =
1

2m−1(m− 1)!ωn

(1− |x|2)m

|x− y|n

for x, y ∈ B, and ωn denotes the (n− 1) dimensional surface area of the unit ball.
For m ≥ n ≥ 2, we have evidently Lm,n > 0 and so h is nonnegative on B. Using

this fact, we can easily see that the function f0 defined on B × (0,∞) by

f0(x, t) = f(x, t+ h(x))

satisfies (H1)–(H3). Hence by Theorem 3.1, the problem

(−∆)mv = f0(., v) in B (in the sense of distributions)

(
∂

∂ν
)jv = 0, on ∂B, for 0 ≤ j ≤ m− 1 .

has a positive solution v ∈ C0(B) satisfying v(x) ≥ a(δ(x))m, where a is a positive
constant. Let u = v+h. Then u is the desired solution for the problem (3.4). This
completes the proof. �

Remark 3.5. Let f satisfy (H1), (H3), and

(H2”) For each c > 0, the function x→ f(x,c(δ(x))m)
(δ(x))m+n−1 is in Km,n.
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Then problem (1.4) has a positive solution u satisfying u(x) ∼ (δ(x))m. Indeed,
we note that (H2”) implies (H2), so by Theorem 3.1, problem (1.4) has a positive
solution satisfying that for each x ∈ B

u(x) =
∫

B

Gm,n(x, y)f(y, u(y))dy

and u(x) ≥ a(δ(x))m. Now, if m ≥ n, we have by Corollary 2.2 that Gm,n(x, y) ∼
(δ(x)δ(y))m

[x,y]n , which by (1.6) implies that

Gm,n(x, y) � (δ(x))m(δ(y))m−n.

Hence for each x ∈ B, we have

a(δ(x))m ≤ u(x) � (δ(x))m

∫
B

(δ(y))m−nf(y, a(δ(y))m)dy. (3.5)

Since f satisfies (H2”), we deduce by Corollary 2.7, that u(x) ∼ (δ(x))m.

Remark 3.6. Let ψ(r, .) = max|x|=r f(x, .), for r ∈ [0, 1] and suppose that for all
c > 0, ∫ 1

0

rn−1(1− r)m−1ψ(r, c(1− r)m)dr <∞. (3.6)

Then the solution u of (1.4) satisfies u(x) ∼ (δ(x))m. Indeed, by Theorem 3.1 and
(H1), we have

a(δ(x))m ≤ u(x) ≤
∫

B

Gm,n(x, y)f(y, a(δ(y))m)dy. (3.7)

On the other hand using (1.1), we have

Gm,n(x, y) � |x− y|2m−n
( [x, y]2

|x− y|2
− 1

)m−1
∫ [x,y]

|x−y|

1

dv

vn−1
.

Now since [x,y]2

|x−y|2 − 1 ∼ δ(x)δ(y)
|x−y|2 , we deduce that

Gm,n(x, y) � (δ(x)δ(y))m−1G1,n(x, y).

Hence it follows from (3.6) that

u(x) � (δ(x))m−1

∫
B

(δ(y))m−1G1,n(x, y)ψ(|y|, a(δ(y))m)dy.

By similar calculus as in [15, p.538], we have by (3.6) that for x ∈ B,∫
B

(δ(y))m−1G1,n(x, y)ψ(|y|, a(δ(y))m)dy � δ(x).

This implies that u(x) ∼ (δ(x))m.

Example 3.7. Let α > 0 and λ < m+1. Let ρ be a nontrivial measurable function
in B such that for each x ∈ B

0 ≤ ρ(x) ≤ 1
(δ(x))λ−mα

.

Then the problem

(−∆)mu = ρ(x)u−α in B (in the sense of distributions)

(
∂

∂ν
)ju = 0 on ∂B, for 0 ≤ j ≤ m− 1.
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has a positive solution u ∈ C0(B) such that for all x ∈ B,

(1) δ(x)m � u(x) � δ(x)2m−λ, if m < λ < m+ 1
(2) δ(x)m � u(x) � δ(x)m log( 2

δ(x) ), if λ = m

(3) u(x) ∼ δ(x)m, if λ < m.

4. Second existence result

In this section, we prove the following result about problem (1.5).

Theorem 4.1. Assume (H4)and (H5). Then problem (1.5) has a positive contin-
uous solution u. Moreover there exist positive constants a and b, such that

a(δ(x))m ≤ u(x) ≤ b(δ(x))m−1.

Proof. By (A2), the function θ(x) = q(x)/(δ(x))m−1 is in Km,n. Then using Propo-
sition 2.11, we have

M := sup
x∈B

(
1

(δ(x))m−1
V θ(x)) <∞.

By (A4) we have limt→∞
k(t)

t = 0, then there exists b > 0 such that Mk(b) ≤ b.
On the other hand, by (A1) the function p is a nontrivial nonnegative function

in L1
loc(B), then there exists r ∈ (0, 1) such that

0 <
∫

B(0,r)

p(y)dy <∞.

Furthermore, from (2.2) there exists c > 0 such that for each x, y ∈ B

Gm,n(x, y) ≥ c(δ(x))m(δ(y))m.

Hence, since by (A3) we have limt→0
h(t)

t = +∞, then there exists a > 0 such that

c(1− r)mh(a(1− r)m)
∫

B(0,r)

p(y)dy ≥ a.

Let Λ be the convex set

Λ = {u ∈ C0(B) : a(δ(x))m ≤ u(x) ≤ b(δ(x))m−1}

and T be the operator defined on Λ by

Tu(x) =
∫

B

Gm,n(x, y)g(y, u(y))dy.

We shall prove that T has a fixed point. We first note that for u ∈ Λ and y ∈ B,
we have by (H5)

g(y, u(y))
(δ(y))m−1

≤ q(y)k(u(y))
(δ(y))m−1

≤ k(b)
q(y)

(δ(y))m−1
:= k(b)θ(y).

Then we deduce that the function y → g(y,u(y))
(δ(y))m−1 ∈Mθ. Thus by Proposition 2.12,

we obtain that the family TΛ is relatively compact in C0(B)
We need now to verify that for u ∈ Λ, we have

a(δ(x))m ≤ Tu(x) ≤ b(δ(x))m−1.
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Let u ∈ Λ and x ∈ B, then by (H5), we have

Tu(x) ≤
∫

B

Gm,n(x, y)q(y)k(u(y))

≤ (δ(x))m−1
[
k(b)

∫
B

( δ(y)
δ(x)

)m−1
Gm,n(x, y)θ(y)dy

]
≤Mk(b)(δ(x))m−1

≤ b(δ(x))m−1.

On the other hand from (H5) and (2.2), we have

Tu(x) ≥ c(δ(x))m

∫
B

(δ(y))mp(y)h(u(y))dy

≥ (δ(x))m
[
c(1− r)mh(a(1− r)m)

∫
B(0,r)

p(y)dy
]

≥ a(δ(x))m.

Thus we have proved that TΛ ⊂ Λ.
Now we aim to prove the continuity of T in Λ. We consider a sequence (uk)k in

Λ which converges uniformly to u in Λ. Then since g is continuous with respect to
the second variable, we deduce by the dominated convergence theorem that for all
x ∈ B,

Tuk(x) → Tu(x) as k →∞.

Since TΛ is relatively compact in C0(B), we have the uniform convergence. Hence
T is a compact mapping from Λ to itself. Then by the Schauder fixed point theorem,
we deduce that there exists a function u ∈ Λ such that

u(x) =
∫

B

Gm,n(x, y)g(y, u(y))dy.

So u satisfies (in the sense of distributions) the elliptic differential equation

(−∆)mu = g(., u) in B.

Moreover, since u satisfies

a(δ(x)) ≤ u(x)
(δ(x))m−1

� 1
(δ(x))m−1

V θ(x),

we deduce by Proposition 2.11 that limδ(x)→0
u(x)

(δ(x))m−1 = 0 and so u satisfies the
boundary conditions ( ∂

∂ν )ju = 0, on ∂B for 0 ≤ j ≤ m − 1. This completes the
proof. �

Example 4.2. Let λ < m+ 1 and f : (0,∞) → [0,∞) be a nontrivial continuous
and nondecreasing function satisfying

lim
t→0

f(t)
t

= ∞ and lim
t→∞

f(t)
t

= 0.

Then the problem

(−∆)mu = (δ(x))−λf(u) in B

(
∂

∂ν
)ju = 0, on ∂B for 0 ≤ j ≤ m− 1,

has a positive solution u ∈ C0(B) such that for all x ∈ B,
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(1) (δ(x))m � u(x) � (δ(x))2m−λ, if m < λ < m+ 1
(2) (δ(x))m � u(x) � (δ(x))m log( 2

δ(x) ), if λ = m

(3) u(x) ∼ (δ(x))m, if λ < m.

5. Appendix

In this section we prove the 3G-theorem. The following Lemma will help us
doing so.

Lemma 5.1 ([12, 14]). For x, y ∈ B, we have the following properties:

(1) If δ(x)δ(y) ≤ |x− y|2 then (δ(x) ∨ δ(y)) ≤ (
√

5+1)
2 |x− y|

(2) If |x− y|2 ≤ δ(x)δ(y) then (3−
√

5)
2 δ(x) ≤ δ(y) ≤ (3+

√
5)

2 δ(x)

Proof. 1) We may assume that (δ(x) ∨ δ(y)) = δ(y). Then the inequalities δ(y) ≤
δ(x) + |x− y| and δ(x)δ(y) ≤ |x− y|2 imply that

(δ(y))2 − δ(y)|x− y| − |x− y|2 ≤ 0,

i.e.

(δ(y) +
(
√

5− 1)
2

|x− y| )(δ(y)− (
√

5 + 1)
2

|x− y| ) ≤ 0.

It follows that

(δ(x) ∨ δ(y)) ≤ (
√

5 + 1)
2

|x− y|.

2) For each z ∈ ∂B, we have |y− z| ≤ |x−y|+ |x− z| and since |x−y|2 ≤ δ(x)δ(y),
we obtain

|y − z| ≤
√
δ(x)δ(y) + |x− z| ≤

√
|x− z||y − z|+ |x− z|,

i.e.

(
√
|y − z|+ (

√
5− 1)
2

√
|x− z| )(

√
|y − z| − (

√
5 + 1)
2

√
|x− z| ) ≤ 0.

It follows that

|y − z| ≤ (3 +
√

5)
2

|x− z|.

Thus, interchanging the role of x and y, we have

(
3−

√
5

2
)|x− z| ≤ |y − z| ≤ (

3 +
√

5
2

)|x− z|.

Which implies

(
3−

√
5

2
)δ(x) ≤ δ(y) ≤ (

3 +
√

5
2

)δ(x).

�

Proof of the 3G-Theorem, [2]. To prove inequality (1.2), we let

A(x, y) :=
(δ(x)δ(y))m

Gm,n(x, y)

and we claim that A is a quasi-metric, that is for each x, y, z ∈ B,

A(x, y) � A(y, z) +A(x, z).

To show this claim, we separate the proof into three cases.
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Case 1: For 2m < n, using Proposition 2.1, we have

A(x, y) ∼ |x− y|n−2m(|x− y|2 ∨ (δ(x)δ(y)))m.

We distinguish the following subcases:
• If δ(x)δ(y) ≤ |x− y|2, then we have

A(x, y) ∼ |x− y|n � |x− z|n + |y − z|n � A(x, z) +A(y, z).

• The inequality |x− y|2 ≤ δ(x)δ(y) implies from Lemma 5.1 that δ(x) ∼ δ(y). So
we deduce that: if |x− z|2 ≤ δ(x)δ(z) or |y − z|2 ≤ δ(y)δ(z), then it follows from
Lemma 5.1 that δ(x) ∼ δ(y) ∼ δ(z). Hence,

A(x, y) ∼ |x− y|n−2m(δ(x)δ(y))m

� (δ(x)δ(y))m(|x− z|n−2m + |y − z|n−2m)

� |x− z|n−2m(δ(x)δ(z))m + |y − z|n−2m(δ(y)δ(z))m

� A(x, z) +A(y, z),

If |x− z|2 ≥ δ(x)δ(z) and |y − z|2 ≥ δ(y)δ(z). Then using Lemma 5.1, we have

(δ(x) ∨ δ(z)) � |x− z| and (δ(y) ∨ δ(z)) � |y − z|.

So, we have

A(x, y) ∼ |x− y|n−2m(δ(x)δ(y))m

� (|x− z|n−2m + |y − z|n−2m)(δ(x)δ(y))m

� |x− z|n−2m(δ(x))2m + |y − z|n−2m(δ(y))2m

� |x− z|n + |y − z|n

� A(x, z) +A(y, z).

Case 2: For 2m = n, using Proposition 2.1, we have

A(x, y) ∼ (δ(x)δ(y))m

log
(
1 + (δ(x)δ(y))m

|x−y|2m

) . (5.1)

Since for each t ≥ 0, t
1+t � log(1 + t) � t, we deduce that

|x− y|2m � A(x, y) � |x− y|2m + (δ(x)δ(y))m. (5.2)

So we distinguish the following subcases:
• If δ(x)δ(y) ≤ |x− y|2, then by (1.8), we have

A(x, y) � |x− y|2m � |x− z|2m + |y − z|2m � A(x, z) +A(y, z).

• If |x− y|2 ≤ δ(x)δ(y), it follows from Lemma 5.1 that δ(x) ∼ δ(y).
If |x− z|2 ≤ δ(x)δ(z) or |y − z|2 ≤ δ(y)δ(z), so from Lemma 5.1, we deduce that
δ(x) ∼ δ(y) ∼ δ(z). Since

|x− y|2m � |x− z|2m + |y − z|2m � (|x− z|2m ∨ |y − z|2m),

we obtain that(
log

(
1 +

(δ(x)δ(z))m

|x− z|2m

)
∧ log

(
1 +

(δ(y)δ(z))m

|y − z|2m

))
� log

(
1 +

(δ(x)δ(y))m

|x− y|2m

)
,
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which together with (1.7) imply A(x, y) � A(y, z) +A(x, z).
If |x− z|2 ≥ δ(x)δ(z) and |y − z|2 ≥ δ(y)δ(z), then by Lemma 5.1, it follows that

(δ(x) ∨ δ(z)) � |x− z| and (δ(y) ∨ δ(z)) � |y − z|.
Hence, by (5.2) we have

A(x, y) � (δ(x)δ(y))m

� (δ(x))2m + (δ(y))2m

� |x− z|2m + |y − z|2m

� A(x, z) +A(y, z).

Case 3: For 2m > n, from Proposition 2.1, we have

A(x, y) ∼ (|x− y|2 ∨ (δ(x)δ(y)))1/2.

Then the result holds by similar arguments as in case 1. The proof is complete. �
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