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POSITIVE SOLUTIONS FOR INDEFINITE INHOMOGENEOUS
NEUMANN ELLIPTIC PROBLEMS

YAVDAT IL’YASOV & THOMAS RUNST

Abstract. We consider a class of inhomogeneous Neumann boundary-value
problems on a compact Riemannian manifold with boundary where indefinite
and critical nonlinearities are included. We introduce a new and, in some

sense, more general variational approach to these problems. Using this idea

we prove new results on the existence and multiplicity of positive solutions.

1. Introduction and main results

Let (M, g) be a smooth connected compact Riemannian manifold of dimension
n ≥ 2 with boundary ∂M . In this paper we study the existence and multiplicity
of positive solutions for the following class of inhomogeneous Neumann boundary-
value problems with indefinite nonlinearities

−∆pu− λk(x)|u|p−2u = K(x)|u|γ−2u in M, (1.1)

|∇u|p−2 ∂u

∂n
+ d(x)|u|p−2u = D(x)|u|q−2u on ∂M, (1.2)

where ∆p, ∇ denotes the p-Laplace–Beltrami operator and the gradient in the
metric g, respectively. ∂

∂n is the normal derivative with respect to the outward
normal n on ∂M and the metric g. When p = 2 the problem corresponds to the
classical Laplacian and also in this case the results are new. We study the problem
(1.1)-(1.2) with respect to the real parameter λ. In what follows we assume that

p < γ ≤ p∗, where p∗ =

{
pn

n−p if p < n,

+∞ if p ≥ n,
(1.3)

p < q ≤ p∗∗, where p∗∗ =

{
p(n−1)
(n−p) if p < n,

+∞ if p ≥ n,
(1.4)

k(·), K(·) ∈ L∞(M), d(·), D(·) ∈ L∞(∂M). (1.5)

Here p∗ and p∗∗ are the critical Sobolev exponents for the embedding W 1
p (M) ⊂

Lp∗(M) and the trace-embedding W 1
p (M) ⊂ Lp∗∗(∂M), respectively. If γ = p∗

2000 Mathematics Subject Classification. 35J70, 35J65, 47H17.
Key words and phrases. p-Laplacian, nonlinear boundary conditions,
indefinite and critical nonlinearities.
c©2003 Southwest Texas State University.
Submitted January 10, 2003. Published May 19, 2003.

1



2 YAVDAT IL’YASOV & THOMAS RUNST EJDE–2003/57

and/or q = p∗∗, then one has a problem with critical exponents. When all non-
linear terms are present both in the differential equation (1.1) and in the non-linear
Neumann boundary condition (1.2), i.e. when K 6= 0 in M and D 6= 0 on ∂M
one has a inhomogeneous problem. The nonlinearity K(x)|u|γ−2u (D(x)|u|q−2u) is
called indefinite if the function K on M (D on ∂M) changes the sign cf. [1, 2].

Problems like (1.1)-(1.2) arise in several contexts (see for example [4], [15]). In
particular, when p = 2, γ = p∗, q = p∗∗, n ≥ 3, the problem of the existence a
positive solution for (1.1)-(1.2) is equivalent to the classical problem of finding a
conformal metric g′ on M with the prescribed scalar curvature K on M and the
mean curvature D on ∂M [5, 9, 21]. For p 6= 2 we refer to [7] for background
material and applications.

The case which is best known in the literature is the problem (1.1) with Dirichlet
boundary condition and when nonlinearity has definite sign. The indefiniteness of
the sign of nonlinearity changes essentially the structure of the solutions set. In
this case, the dependence of the problem on the parameter λ is more complicate
(cf. [1, 2]). The homogeneous cases with indefinite nonlinearity has been treated
in several recent papers ( in [2, 9, 10, 11, 16, 19, 22] for p = 2 and in [8] also
for p 6= 2. An additional difficulty occurs if the problem is inhomogeneous or it
involves multiple critical exponents. For instance, in applying of the constrained
minimization method to the inhomogeneous problem, i.e. the finding of a suitable
constraint or the finding of a suitable modification for the variational problem is
not simple. The inhomogeneous cases of (1.1)-(1.2) for p = 2 with definite sign of
nonlinearity have been considered in [15], [21]. In recent papers [12, 18] the authors
investigated the inhomogeneous Neumann boundary value problem when one of the
nonlinearities can be indefinite whereas the rest is with definite sign.

The main purpose of the present paper is a development of the fibering method
of Pohozaev [17] for the investigation of the inhomogeneous Neumann boundary
value problems (1.1)-(1.2) with indefinite nonlinearities and critical exponents.

Let us state our main results. To illustrate, we consider the case d(x) ≡ 0.
Denote by dµg and dνg the Riemannian measure (induced by the metric g) on M
and on ∂M , respectively. We consider our problem in the framework of the Sobolev
space W = W 1

p (M) equipped with the norm

‖u‖ =
(∫

M

|u|pdµg +
∫

M

|∇u|pdµg

)1/p

. (1.6)

Define

λ∗(K) = inf
{ ∫

M
|∇u|pdµg∫

M
k(x)|u|pdµg

:
∫

M

K(x)|u|γdµg ≥ 0, u ∈W
}
,

λ∗(D) = inf
{ ∫

M
|∇u|pdµg∫

M
k(x)|u|pdµg

:
∫

∂M

D(x)|u|qdνg ≥ 0, u ∈W
}
.

In the case when the set {u ∈ W 1
p (M) :

∫
M
K(x)|u|γdµg ≥ 0} ({u ∈ W 1

p (M) :∫
∂M

D(x)|u|qdνg ≥ 0}) is empty we put λ∗(K) = +∞ (λ∗(D) = +∞).
We denote by Iλ the Euler functional on W 1

p (M) which corresponds to problem
(1.1)-(1.2). Our main results on the existence and multiplicity of positive solutions
for (1.1)-(1.2) are summarized in the following theorems.

Theorem 1.1. Under the conditions of (1.5), k(x) ≥ 0 on M and d(x) ≡ 0, we
have the following:
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(I) Let p < γ ≤ p∗; then λ∗(K) > 0 if and only if
∫

M
K(x)dµg < 0.

Let p < q ≤ p∗∗; then λ∗(D) > 0 if and only if
∫

∂M
D(x)dνg < 0.

(II) Let p < γ < p∗, p < q < p∗∗ and q < γ.
(1) Suppose

∫
M
K(x)dµg < 0,

∫
∂M

D(x)dνg < 0. Then for every λ ∈
(0,min{λ∗(K), λ∗(D)}) there exists a ground state u1 ∈ W 1

p (M) of
Iλ. Furthermore, u1 > 0 on M and Iλ(u1) < 0.

(2) Suppose
∫

M
K(x)dµg < 0, the set {x ∈ M : K(x) > 0} is not empty

and D(x) ≤ 0 on ∂M . Then for every λ < λ∗(K) there exists a weak
positive solution u2 ∈ W 1

p (M) of (1.1)-(1.2) such that u2 > 0 on M
and Iλ(u2) > 0.

Theorem 1.2. Let γ = p∗, q = p∗∗. Under the conditions (1.5), k(x) ≥ 0 on M
and d(x) ≡ 0, we have the following: Suppose

∫
M
K(x)dµg < 0 and D(x) ≤ 0 on

∂M . Then for every λ ∈ (0, λ∗(K)) there exists a ground state u1 ∈W 1
p (M) of Iλ.

Furthermore, u1 > 0 on M and Iλ(u1) < 0.

The proof of these results is based on the fibering method of Pohozaev [17].

Remark 1.3. We refer to the Theorem 4.5, 4.10, Theorem 5.1, Theorem 5.2, for
a more general version of the above results.

Remark 1.4. Symmetric results as in Theorem 1.1, Theorem 1.2 (Theorem 4.5,
Theorem 4.10, Theorem 5.1 and Theorem 5.2) in more general cases) can be ob-
tained when λ = 0 (λ ≤ 0) is fixed and the problem of the existence of positive
solutions for (1.1) is considered with respect to parameter µ ∈ R at the boundary
condition

|∇u|p−2 ∂u

∂n
+ µd(x)|u|p−2u = D(x)|u|q−2u on ∂M,

instead of (1.2).

Remark 1.5. Some results in this paper have been announced in [13]. Since then,
there has been some progress. This paper contains the details and extensions of
[13] as well as other results.

Remark 1.6. In the paper [18] existence and multiplicity results for problem (1.1)-
(1.2) when D has a definite sign whereas K may change one are proved by using
the fibering method. However our approach and results are different then in [18].

The paper is organized as follows. In Section 2, based on the fibering strategy
of Pohozaev we introduce an explicit process of construction of the constrained
minimization problems associated with the given abstract functional on Banach
spaces. In Section 3, we give the basic variational formulation for problem (1.1)-
(1.2). In Section 4 we prove our main results on the existence and multiplicity
of positive solutions in subcritical cases of nonlinearities. Finally, in Section 5 we
prove the existence of positive solutions in critical cases of exponents.

2. The fibering scheme

A powerful tool of studying the existence of critical points for a functional given
on Banach space is a constrained minimization method [2, 8, 9, 20]. The main diffi-
culty in applying the method is to find suitable constraints on admissible functions
and/or to find a suitable modification for the variational problem.
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In this section, based on the fibering strategy of Pohozaev [17] we introduce an
explicit scheme of construction of constrained minimization problems for arbitrary
functional given on Banach spaces.

Let (W, ‖ · ‖) be a real Banach space. Assume that the norm ‖ · ‖ defines a C1-
functional u→ ‖u‖ on W \{0}. In this case, the sphere S1 = {v ∈W | ‖v‖ = 1} is a
closed submanifold of class C1 in W and R+×S1 is C1-diffeomorphic with W \{0}.
Thus we have the trivial principal fibre bundle P (S1,R+) over S1 with structure
group R+ and the bundle space W \ {0} that C1-diffeomorphic to R+ × S1.

Actually the way of construction of constrained minimization problems which
we introduce below relies on the trivial principal fibre bundle P (S1,R+). In what
follows, it is therefore reasonable to call this scheme as the trivial fibering scheme
with respect to fibre bundle P (S1,R+) (in short the trivial fibering scheme).

Let I(u) be a functional on W of class C1(W \ {0}). Associate with I there
exists a function Ĩ : R+ × S1 → R defined by

Ĩ(t, v) = I(tv), (t, v) ∈ R+ × S1. (2.1)

Since R+ × S1 is C1-diffeomorphic with W \ {0} it follows that Ĩ(t, v) is a C1-
functional on R+ × S1 and the set of critical points of the functional Ĩ(t, v) on
R+ × S1 as well as the set of critical points of the functional I(u) on W \ {0} are
one-to-one. Moreover, we have the following statement.

Proposition 2.1 (Pohozaev [17]). Let (t0, v0) ∈ R+ × S1 be a critical point of
Ĩ(t, v) then u0 = t0v0 ∈W \ {0} is a critical point of I(u).

We impose an additional condition on I

(RD) The first derivative ∂
∂t Ĩ(t, v) is a C1-functional on R+ × S1.

We define

Q(t, v) =
∂

∂t
Ĩ(t, v), L(t, v) =

∂2

∂t2
Ĩ(t, v), (t, v) ∈ R+ × S1. (2.2)

Extract from R+ × S1 the sets

Σ1 = {(t, v) ∈ R+ × S1|Q(t, v) = 0, L(t, v) > 0}, (2.3)

Σ2 = {(t, v) ∈ R+ × S1|Q(t, v) = 0, L(t, v) < 0}. (2.4)

Lemma 2.2. Assume that (RD) holds, and let j = 1, 2. Then the set Σj is a
submanifold of class C1 in R+ × S1 and it is local C1-diffeomorphic with S1.

The proof of this lemma will follow directly from the next proposition.

Proposition 2.3. Let (t0, v0) ∈ Σj, j = 1, 2. Then there exist a neighborhood
Λ(v0) ⊂ S1 of v0 ∈ S1 and an uniqueness C1-map tj : Λ(v0) → R such that

tj(v0) = t0, (tj(v), v) ∈ Σj , v ∈ Λ(v0), j = 1, 2. (2.5)

Proof. Let j = 1, j = 2. Assume (t0, v0) ∈ Σj . Then ∂Q(t0, v0)/∂t = L(t0, v0) 6= 0.
It follows from the assumption (RD) that we have Q ∈ C1(R+ × S1). Hence, by
the implicit function theorem we obtain the proof of the proposition. �

Finally, we introduce the main constrained minimization problems associated
with the given functional I.
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Let I(u) be a functional on W of class C1(W \ {0}) and the assumption (RD)
holds. The main constrained minimization problems by the trivial fibering scheme
are the following

Îj = inf{Ĩ(t, v) : (t, v) ∈ Σj}, j = 1, 2, (2.6)

where
Îj = +∞, if Σj = ∅, j = 1, 2. (2.7)

Definition 2.4. A point (t0, v0) ∈ Σj is said to be a solution of the problem (2.6),
if −∞ < Îj = Ĩ(t0, v0) <∞, where j = 1, 2.

Remark 2.5. It is reasonable to consider also the maximization problems like
(2.6). However, the substitution I ′ = −I reduces any maximization problem to the
minimization one. Hence it suffices to study only minimization problems (2.6).

Now we show that the trivial fibering scheme makes it possible to study of the
existence of critical points of functionals. Denote by J̃j the restriction of Ĩ on the
submanifolds Σj , for j = 1, 2:

J̃j(t, v) = Ĩ(t, v), (t, v) ∈ Σj , j = 1, 2.

Lemma 2.6. Assume that hypothesis (RD) holds, and let j = 1, 2. Let (t0, v0) be
a critical point of the functional J̃j on the submanifolds Σj, i.e. holds

dJ̃j(t0, v0)(h) = 0, ∀h ∈ T(t0,v0)(Σ
j). (2.8)

Then (t0, v0) is a critical point for Ĩ on R+ × S1, i.e.,

dĨ(t0, v0)(l) = 0, ∀l ∈ T(t0,v0)(R
+ × S1). (2.9)

Here dJ̃j(t0, v0) (dĨ(t0, v0)) is the differential of J̃ i : Σj → R (Ĩ : R+ × S1 → R)
at point (t0, v0), the set T(t0,v0)(Σ

j) ( T(t0,v0)(R+ × S1)) denotes the tangent space
to Σj (R+ × S1) at (t0, v0).

Proof of Lemma 2.6. Let us prove this lemma for the case j = 1. Let (t0, v0) be a
critical point of J̃1 on Σ1. Observe that

dĨ(t0, v0)(τ, φ) =
∂

∂t
Ĩ(t0, v0)(τ) +

δ

δv
Ĩ(t0, v0)(φ) (2.10)

for every τ ∈ Tt0(R+) and φ ∈ Tv0(S
1).

By virtue of (2.3) the first term on the right-hand side of (2.10) is equal zero.
So to prove (2.9) it suffices to show that

δ

δv
Ĩ(t0, v0)(φ) = 0, ∀φ ∈ Tv0(S

1). (2.11)

By Proposition 2.3 there exists a neighborhood Λ(v0) ⊂ S1 of v0 ∈ S1 and an
uniqueness C1-map t1 : Λ(v0) → R such that (2.5) holds. Introduce J1(v) =:
Ĩ(t1(v), v), v ∈ Λ(v0). Then by the definition of J̃1 we have

J1(v) ≡ J̃1(t1(v), v), v ∈ Λ(v0). (2.12)

Hence, taking into account that the submanifold Σj is local C1 - diffeomorphic with
S1, we deduce that v0 is a critical point of J1(v) on Λ(v0), i.e.

dJ1(v0)(φ) = 0, ∀φ ∈ Tv0(S
1).
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Since J1(v) = Ĩ(t1(v), v) as v ∈ Λ(v0) we get

0 = dJ1(v0)(h) =
∂

∂t
Ĩ(t1(v0), v0)(dt1(v0))(h) +

δ

δv
Ĩ(t1(v0), v0)(h), ∀h ∈ Tv0(S

1).

(2.13)
By virtue of (2.3) the first term on the right-hand side of (2.13) is equal zero. Thus

∂

∂v
Ĩ(t1(v0), v0)(φ) = 0, ∀φ ∈ Tv0(S

1)

and we get (2.11). The proof of Lemma 2.6 is complete. �

From Lemma 2.6 and Proposition 2.1 we derive the following theorem.

Theorem 2.7. Assume that I(u) ∈ C1(W \ {0}) and (RD) hold. Let (tj0, v
j
0) ∈ Σj

be a solution of the variational problem (2.6), for j = 1 or j = 2, respectively. Then

uj
0 = tj0v

j
0 ∈W \ {0} (2.14)

is a critical point of I.

Let pr2 be a canonical projection from R+ × S1 to S1. Denote Θj = pr2(Σj),
j = 1, 2.

Recall that by Proposition 2.3 for every vj
0 ∈ Θj , j = 1, 2, there exist a

neighborhood Λ(vj
0) ⊂ Θj and an uniqueness C1-map tj : Λ(vj

0) → R such that
(tj(v), v) ∈ Σj , j = 1, 2, respectively.

Definition 2.8. Let j = 1, 2. The trivial fibering scheme for I on W is said to
be a solvable with respect to Σj if for every v ∈ Θj there exists a unique point
tj(v) ∈ R+ such that (tj(v), v) ∈ Σj , respectively. In case when the trivial fibering
scheme for I on W is solvable one with respect to both Σ1 and Σ2 then it is called
a solvable.

If in addition the functional tj(v) can be found in exact form then the trivial
fibering scheme is called exactly solvable.

We remark that in the papers [2, 9, 8, 20], it is used the constrained minimization
method to homogeneous problems like (1.1)-(1.2) which is with respect to the trivial
fibering scheme an exactly solvable one (see also below Remark 3.3).

We point out that in the present paper we are concerned with the applications
of the trivial fibering scheme in cases of solvable but may be not exactly solvable.

Observe by Proposition 2.3 in case of the solvable trivial fibering scheme it can
be defined the global functionals:

tj : Θj → R+, j = 1, 2 (2.15)

such that (tj(v), v) ∈ Σj , j = 1, 2. Moreover in this case the sets Θj , j = 1, 2 are
submanifolds of class C1 in S1 and tj(·) ∈ C1(Θj), j = 1, 2. Hence we can define
the following global functionals

J1(v) = Ĩ(t1(v), v), v ∈ Θ1, (2.16)

J2(v) = Ĩ(t2(v), v), v ∈ Θ2. (2.17)

Thus the variational problems (2.6) are reduced to the following equivalent, respec-
tively

Ĵj = min{Jj(v) : v ∈ Θj}, j = 1, 2. (2.18)
where

Îj = +∞, if Θj = ∅, j = 1, 2. (2.19)
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From Theorem 2.7we have the following statement.

Lemma 2.9. Assume the trivial fibering scheme applying to the functional I is
solvable. Let j = 1, 2 and vj

0 ∈ Θj is a solution of the problem (2.18). Then
uj

0 = tj(v
j
0)v

j
0 is a nonzero critical point of the functional I.

Finally, we give a property for the constrained minimization problems (2.6) which
also characterizes the trivial fibering scheme as basic.

Denote by Z a set of all nonzero critical points of I on space W . Then with
respect to the trivial fibering scheme we have the following decomposition: Z =
Z− ∪ Z+ ∪ Z0, where

Z+ =
{
u ∈ Z|(‖u‖, u

‖u‖
) ∈ Σ1

}
,

Z− =
{
u ∈ Z|(‖u‖, u

‖u‖
) ∈ Σ2

}
,

Z0 =
{
u ∈ Z|(‖u‖, u

‖u‖
) ∈ ∂σ

}
,

with ∂σ = {(t, v) ∈ R+ × S1|Q(t, v) = 0, L(t, v) = 0}.
For physical applications it is important to investigate ground states [6]. By the

definition the nonzero critical point ug ∈ W is said to be a ground state if it is a
point with the least level of I among all the nonzero critical points Z, i.e

min{I(u) : u ∈ Z} = I(ug). (2.20)

We introduce in addition the following concept.

Definition 2.10. The nonzero critical point u−g ∈ W (u+
g ∈ W ) is said to be a

ground state of type (-1) ((0)) for I if it holds:

min{I(u)|u ∈ Z−} = I(u−g ), (min{I(u)|u ∈ Z+} = I(u+
g )). (2.21)

The following lemma follows directly from the construction of constrained min-
imization problems (2.6).

Lemma 2.11. Assume I(u) ∈ C1(W \ {0}) and (RD) holds, where j = 1 or
j = 2. Let (tj0, v

j
0) ∈ Σj be a solution of the variational problem (2.6). Then

u+ = t10v
1
0 ∈ W \ 0 is a ground state of type (0) for I and u− = t20v

2
0 ∈ W \ 0 is

a ground state of type (-1) for I. Furthermore, if in addition Z0 = ∅ then one of
these solutions u− or u+ is a ground state for I, i.e.

min{I(u)|u ∈ Z} = min{I(u−g ), I(u+
g )}. (2.22)

For the case of the even functionals, I(u) = I(|u|) with u ∈ W , we have the
following statement.

Lemma 2.12. Assume I(u) ∈ C1(W \ {0}) is an even functional and (RD) holds.
Suppose that there exists a solution of problem (2.6) j = 1 (j = 2). Then there
exists a nonnegative on M ground state u+ of type (0) for I (a nonnegative on M
ground state u− of type (-1) for I).

Proof. As a particular case, consider j = 1. Since the functional I is even it
follows that the functionals Ĩ(t, v), Q(t, v), L(t, v) are also even with respect to
v ∈ S1. Hence the manifolds Σ1 and Σ2 are symmetric with respect to origin, i.e.,
if (t, v) ∈ Σj then it follows that (t,−v) ∈ Σj .
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Let us suppose that there exists a solution (t10, v
1
0) ∈ Σ1 of problem (2.6), j = 1.

Then it follows that (t10, |v1
0 |) ∈ Σ1 where t10 > 0 is also a solution of the problem

(2.6), j = 1. Now, taking into account Lemma 2.12 we complete the proof. �

3. Constrained minimization problems associated with (1.1)–(1.2).

In this section, we use the trivial fibering scheme to introduce the constrained
minimization problems for (1.1)-(1.2). Let (M, g) be a connected compact Riemann-
ian manifold with boundary ∂M of dimension n ≥ 2. Let gi,j be the components of
the given metric tensor g = (gij) with inverse matrix (gi,j), and let |g| = det(gi,j).
If (xi) is a local system of coordinates, then we define the divergence operator divg

on the C1 vector field X = (Xi) by

div gX =
1√
|g|

∑
i

∂

∂xi
(
√
|g|Xi),

and the p-Laplace–Beltrami operator by ∆u = div g(|∇u|p−2∇u). Here

∇u =
∑

i

gi,j ∂u

∂xi

denotes the gradient vector field of u. Let the Riemannian measure (induced by
the metric g) on M and ∂M , respectively, be denoted by dµg and dνg, respectively.

We consider our problems in the framework of the Sobolev space W = W 1
p (M)

equipped with the norm

‖u‖ =
( ∫

M

|u|pdµg +
∫

M

|∇u|pdµg

)1/p

. (3.1)

Let us introduce the following notation

f(u) =
∫

M

k(x)|u|pdµg, F (u) =
∫

M

K(x)|u|γdµg,

b(u) =
∫

∂M

d(x)|u|pdνg, B(u) =
∫

∂M

D(x)|u|qdνg,

Hλ(u) =
∫

M

|∇u|pdµg + b(u)− λf(u).

(3.2)

We recall that there is a continuous embedding W 1
p (M) ⊂ Lp∗(M) and a con-

tinuous trace-embedding W 1
p (M) ⊂ Lp∗∗(∂M), respectively. Using the hypotheses

(1.3), (1.4), (1.5) and these embedding results it is easy to check that all functionals
in (3.2) are well-defined on the Sobolev space W and belong to the class C1(W ).
The Euler functional I on W which corresponds to problem (1.1)-(1.2) is defined
by

Iλ(u) =
1
p
Hλ(u)− 1

q
B(u)− 1

γ
F (u). (3.3)

A function u0 ∈W is called the weak solution for problem (1.1)-(1.2) if the following
identity

δ

δu
Iλ(u0)(ψ) = 0

holds for every function ψ ∈ C∞(M). Hence the existence of weak solutions of
problem (1.1)-(1.2) is equivalent to the existence of critical points for the Euler
functional Iλ defined above.
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Let us apply to functional (3.3) the trivial fibering scheme. It is easily verified
that the norm (3.1) defines a C1-functional u→ ‖u‖ on W \ {0}. Hence the sphere
S1 = {v ∈ W | ‖v‖ = 1} is a closed submanifold of class C1 in W and S1 × R+ is
C1-diffeomorphic with W \ {0}.

Following the trivial fibering scheme, we associate with the original functional
Iλ a new fibering functional Ĩλ defined for (t, v) ∈ R+ × S1 by

Ĩλ(t, v) = Iλ(tv) =
1
p
tpHλ(v)− 1

q
tqB(v)− 1

γ
tγF (v) . (3.4)

For (t, v) ∈ R+ × S1, we define the functionals

Qλ(t, v) =
∂

∂t
Ĩλ(t, v) = tp−1(Hλ(v)− tq−pB(v)− tγ−pF (v)), (3.5)

Lλ(t, v) =
∂2

∂t2
Ĩλ(t, v) = tp−2((p− 1)Hλ(v)− (q − 1)tq−pB(v)− (γ − 1)tγ−pF (v)).

(3.6)

Thus we can extract from R+ × S1 the sets

Σ1
λ = {(t, v) ∈ R+ × S1|Qλ(t, v) = 0, Lλ(t, v) > 0}, (3.7)

Σ2
λ = {(t, v) ∈ R+ × S1|Qλ(t, v) = 0, Lλ(t, v) < 0}. (3.8)

Thus in accordance to the trivial fibering scheme we have the following variational
problems

Îj
λ = inf{Ĩλ(t, v)|(t, v) ∈ Σj

λ}, j = 1, 2, (3.9)

where
Îj
λ = +∞, if Σj

λ = ∅, j = 1, 2. (3.10)

From (3.4) it follows that Iλ satisfies to condition (RD).
It is easy to verify that the equation Qλ(t, v) = 0 can have, in dependent of

Hλ(v), B(v) and F (v), at most two solutions on R+. The conditions Lλ(t, v) < 0
and Lλ(t, v) > 0 separate them: the equation Qλ(t, v) = 0 may have at most
one solution t1(v) ∈ R+ such that Qλ(t1(v), v) = 0, (t1(v), v) ∈ Σ1

λ, and at most
one solution t2(v) ∈ R+ such that Qλ(t2(v), v) = 0, (t2(v), v) ∈ Σ2, respectively.
Moreover we have

tj(·) ∈ C1(Θj
λ), j = 1, 2 (3.11)

where Θj
λ = pr2(Σ

j
λ), j = 1, 2 are submanifolds of class C1 in S1.

Thus we have deal with the solvable trivial fibering scheme and we can define

J1
λ(v) = Ĩλ(t1(v), v), v ∈ Θ1

λ, (3.12)

J2
λ(v) = Ĩλ(t2(v), v), v ∈ Θ2

λ. (3.13)

Thus problem (3.9) is reduced to the following problem

Îj
λ = min{Jj

λ(v) : v ∈ Θj
λ}, j = 1, 2. (3.14)

From Theorem 2.7 we have the following statement.

Lemma 3.1. Let j = 1, 2. Assume that vj
0 ∈ Θj

λ is a solution of problem (3.14).
Then uj

0 = tj(vj
0)v

j
0 is a nonzero critical point of the functional Iλ.
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Remark 3.2. In the case when p = 2, γ = 2∗, q = p∗∗, n ≥ 3, problems of type
(1.1)-(1.2) have their root in Riemannian geometry. Let (M, g) be a Riemannian
manifold of dimension n ≥ 3 with the boundary ∂M , the scalar curvature k(x) of
M and the mean curvature d(x) of ∂M . Let K be a given function on M and D
be a fixed function on ∂M . One may ask the question: Can we find a new metric
ḡ on M such that K is the scalar curvature of ḡ on M , D is the mean curvature
of ḡ on ∂M and ḡ is conformal to g (i.e., it holds ḡ = u4/(n−2)g for some u > 0 on
M)? This is equivalent (see Escobar [9, 10], Taira [21]) to the problem of finding
positive solutions u of (1.1)-(1.2) with critical exponents γ = 2∗ and q = p∗∗, where
k is the scalar. Thus, by the trivial fibering scheme we have also the variational
statements (3.9) for this geometrical problem.

Remark 3.3. Observe, the variational definition (3.14) includes the formulations
used by Escobar [9]-[11]. Indeed, let us consider the case D(x) = 0. This implies
B(·) ≡ 0 in (2.2). It is easy to verify that Lλ(t(v), v) > 0 and Lλ(t(v), v) < 0,
respectively, holds, if sgn(F (v)) < 0 and sgn(F (v)) > 0, respectively. Hence we
have j = 1 in the first case and j = 2 in the other one.

4. Existence and multiplicity for subcritical cases

In this section, we prove the main results of the paper, i.e., we show the existence
and the multiplicity of positive solutions of (1.1)-(1.2). Define

λ∗(K) = inf
{∫

M
|∇u|pdµg + b(u)∫
M
k(x)|u|pdµg

: F (u) ≥ 0, u ∈W
}
, (4.1)

λ∗(D) = inf
{∫

M
|∇u|pdµg + b(u)∫
M
k(x)|u|pdµg

: B(u) ≥ 0, u ∈W
}
, (4.2)

where in case when the set {u ∈W 1
p (M) : F (u) ≥ 0} ({u ∈W 1

p (M) : B(u) ≥ 0}) is
empty we put λ∗(K) = +∞ (λ∗(D) = +∞). Remark that

λ1 = inf
{∫

M
|∇u|pdµg + b(u)∫
M
k(x)|u|pdµg

: u ∈W 1
p (M)

}
(4.3)

and λ1 is the simple first eigenvalue of the Neumann boundary problem

−∆pφ1 = λ1k(x)|φ1|p−2φ1 in M,

|∇φ1|p−2 ∂φ1

∂n
+ d(x)|φ1|p−2φ1 = 0 on ∂M,

(4.4)

where φ1 > 0 is a corresponding principal eigenfunction (see [23], [24]). Suppose
that k(x) ≥ 0 on M , d(x) ≥ 0 on ∂M then it follows immediately from the defini-
tions that 0 ≤ λ1 ≤ λ∗(K) and 0 ≤ λ1 ≤ λ∗(D).

Lemma 4.1. Assume (1.5) holds and k(x) ≥ 0 on M , d(x) ≥ 0 on ∂M .

(1) If F (φ1) < 0 and p < γ ≤ p∗, then λ1 < λ∗(K)
(2) If B(φ1) < 0 and p < q ≤ p∗∗, then λ1 < λ∗(D).

Proof. First assertion: For our purpose it is important to prove separately some
parts of the lemma in the following two cases: in subcritical cases of exponents and
in critical cases of exponents, respectively.
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Let us suppose that F (φ1) < 0. Assume to the contrary that λ1 = λ∗(K). Hence
there exists a minimizing sequence {wm} for the problem (4.2) such that

E(wm) =

∫
M
|∇wm|pdµg + b(u)∫
M
k(x)|wm|pdµg

→ λ1 = λ∗(K) as m→∞,

where F (wm) ≥ 0, m = 1, 2, . . ., see (4.1). The functional E(·) is 0-homogeneous.
Therefore we may assume without loss of generality that the sequence {wm} is
bounded and that wm ⇁ w weakly converges for some w ∈W .

Since E is lower semi-continuous with respect to W we get E(w) ≤ λ1. But λ1

is a minimum of E (see (4.3)) and therefore we get E(w) = λ1.
Let us consider the subcritical cases; i.e., we assume that p < γ < p∗ holds.

Then since W is compactly embedded in Ls(M) for p ≤ s < p∗ we may assume
that F (wm) → F (w) as m→∞. Hence F (w) ≥ 0. Note that the eigenvalue λ1 is
simple. Hence it follows that w = rφ1 for some constant r > 0. This implies that
we have F (rφ1) ≥ 0, a contradiction to our assumption F (rφ1) = rγF (φ1) < 0.

Now let us consider also the critical case of the exponent. As it has been shown
above it suffices to prove that F (w) ≥ 0. Let us show that wm → w strongly in W .
Indeed, as it has been shown above we have E(w) = λ1. This implies that∫

M

|∇wm|pdµg →
∫

M

|∇w|pdµg.

Now taking into account that wm ⇁ w weakly in W we get wm → w strongly in
W . Thus we have F (w) ≥ 0. Consequently, we have shown that F (φ1) < 0 implies
λ1 < λ∗(K). �

Remark 4.2. The main difficulty in investigation of the solvability problem for the
elliptic equations with critical exponents of nonlinearities is a “lack of compactness”
(cf. [3], [20]). From the point of view of the overcoming this difficulty Lemma 4.1
plays the main role in our approach. Generally speaking, in our approach we reduce
the problem of the lack of compactness mainly to the investigations at a bifurcation
point λ1.

Remark 4.3. Recall, if the set {u ∈W : F (u) ≥ 0} = ∅ ({u ∈W : B(u) ≥ 0} = ∅)
then λ∗(K) = +∞ (λ∗(D) = +∞). Thus in this case Lemma 4.1 is trivial. Note
that if the conditions {u ∈ W : F (u) ≥ 0} = ∅ and {u ∈ W : B(u) ≥ 0} = ∅
are satisfied then for λ > 0 problem (1.1)-(1.2) become coercive. Observe also the
conditions {u ∈ W : F (u) ≥ 0} = ∅ and {u ∈ W : B(u) ≥ 0} = ∅ mean that
K(x) < 0 on M and D(x) < 0 on M , respectively.

Proposition 4.4. Let (1.5) and k(x) ≥ 0 on M , d(x) ≥ 0 on ∂M be satisfied.
Then the following two statements hold

(1) If λ < λ∗(K) (λ < λ∗(D) ) and F (u) ≥ 0 (B(u) ≥ 0) for some u ∈ W ,
then Hλ(u) > 0.

(2) If λ < λ∗(K) (λ < λ∗(D)) and Hλ(u) ≤ 0 for some u ∈W , then F (u) < 0
(B(u) < 0).

The assertions in the above proposition follow immediately from the definitions,
see (4.1), (4.2), (4.3).

Let us formulate our main theorem on the existence of positive solutions for the
family of problems (1.1)-(1.2) in the subcritical cases.
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Theorem 4.5. Suppose that (1.5) and k(x) ≥ 0 on M , d(x) ≥ 0 on ∂M , p < q <
p∗∗, p < γ < p∗ and q < γ are satisfied.

(1) Assume F (φ1) < 0 and B(φ1) < 0. Then for every λ ∈ (λ1,min{λ∗(K),
λ∗(D)} there exists a weak positive solution u1 of (1.1)-(1.2) such that u1 >
0 on M and u1 ∈ W 1

p (M). Furthermore, it holds Iλ(u1) < 0 and u1 is a
ground state of type (0) for Iλ.

(2) Suppose that the set {x ∈ M : K(x) > 0} is not empty and D(x) ≤ 0 on
∂M . Assume F (φ1) < 0 holds. Then for every λ < λ∗(K) there exists
a weak positive solution u2 of (1.1)- (1.2) such that u2 > 0 on M and
u2 ∈ W 1

p (M). Furthermore, we have Iλ(u2) > 0 and u2 is a ground state
of type (-1) for Iλ.

For the proof of this theorem, we use the following lemma.

Lemma 4.6. Let k(x) ≥ 0 on M , d(x) ≥ 0 on ∂M , p < q ≤ p∗∗, p < γ ≤ p∗ and
q < γ.

(1) Assume F (φ1) < 0 holds. Then for every λ ∈ (λ1, λ
∗(K))

Θo
1,λ := {w ∈W : Hλ(w) < 0} ⊆ Θ1,λ (4.5)

and the set Θo
1,λ is not empty.

(2) Suppose that the set {x ∈ M : K(x) > 0} is not empty and D(x) ≤ 0 on
∂M . Then the set Θ2,λ is not empty and

Θ2,λ = {w ∈W : F (w) > 0} (4.6)

for every λ < λ∗(K).

Proof. First assertion. Note that by Proposition 4.1. λ1 < min{λ∗(K), λ∗(D)}). At
first we show (4.5). Let λ ∈ (λ1,min{λ∗(K), λ∗(D)}). We suppose that w ∈ Θo

1,λ,
i.e., Hλ(w) < 0 holds. Then by Proposition 4.4 we have that F (w) < 0 and
B(w) < 0. These facts and (3.5) imply the existence of a number t1(w) > 0 such
that Q(t1(w), w) = 0 and L(t1(w), w) > 0 hold. Thus w ∈ Θ1,λ and (4.5) is proved.
Let us consider the first eigenvalue φ1 ∈ S1 of problem (4.4). Then for any λ > 0
we have Hλ(φ1) < 0. Thus φ1 ∈ Θo

1,λ, and therefore the set Θo
1,λ is not empty for

λ ∈ (λ1, λ
∗(K)). The first assertion is proved.

We show the second part. Assume that the set {x ∈M : K(x) > 0} is not empty.
Then there exists a function v0 ∈ W such that F (v0) > 0. Applying Proposition
4.4 we deduce that Hλ(v0) > 0 holds for any λ < λ∗(K). Recall that we have
p < q < γ. Hence we obtain from (3.5) the existence of a number t2(v) > 0 such
that Q(t2(v), v) = 0 and L(t2(v), v) < 0. This implies v ∈ Θ2,λ. Thus the set Θ2,λ

is not empty and
{w ∈W : F (w) > 0} ⊆ Θ2,λ. (4.7)

Suppose F (w) ≤ 0 for some w ∈W . By assumption we have B(w) ≤ 0. Hence the
equation Q(t, w) = 0 may have a solution t2(w) only in the case when Hλ(w) < 0 is
satisfied. However, in this case, we have L(t2(w), w) > 0 by (3.6). This fact yields
w 6∈ Θ2,λ and therefore {w ∈ W : F (w) ≤ 0} ∩ Θ2,λ = ∅. Using this and (4.7) we
deduce (4.6). The proof is complete. �

For the proof of theorem 4.5, we restrict the functional J1
λ on the set Θo

1,λ.
Therefore, instead of the minimization problem (2.6) for j = 1, we consider

Î1,o
λ = min{J1

λ(v) : v ∈ Θo
1,λ}. (4.8)
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To prove the existence of the solution u1 and u2 in W we apply Lemma 2.9. There-
fore, we show that the variational problem (4.8) has a solution v1 ∈ W and (3.14)
with j = 2 has a solution v2 ∈W .

Note that Lemma 4.6 implies also

J1,o
λ (v) < 0, if v ∈ Θo

1,λ, (4.9)

J2
λ(v) > 0, if v ∈ Θ2,λ. (4.10)

Now we prove a mapping property of the functionals Jj
λ, j = 1, 2.

Lemma 4.7. Let k(x) ≥ 0 on M , d(x) ≥ 0 on ∂M , p < q < p∗∗, p < γ < p∗ and
q < γ.

(1) Assume that F (φ1) < 0, B(φ1) < 0. Let λ ∈ (λ1,min{λ∗(K), λ∗(D)}).
Then the functional J1

λ(·) defined on Θo
1,λ is bounded below, i.e., −∞ <

infΘo
1,λ
J1

λ(w).
(2) Suppose that the set {x ∈ M : K(x) > 0} is not empty and D(x) ≤ 0 on

∂M . Let λ < λ∗(K). Then the functional J2
λ(·) defined on Θ2,λ is bounded

below, i.e., −∞ < infΘ2,λ
J2

λ(w).

Proof. For the first assertions, observe that supΘo
1,λ
|J1

λ(w)| = ∞ if and only if there
exists a sequence vm ∈ Θo

1,λ , m = 1, 2, . . . , such that t1(vm) → ∞ as m → ∞.
By Proposition 4.4, if Hλ(v) ≤ 0 and λ ∈ (λ1,min{λ∗(K), λ∗(D)}) then we have
F (v) < 0 and B(v) < 0. Hence and sinceHλ(w) is bounded on Θo

1,λ ⊂ S1 we deduce
from the equation Qλ(t1(v), v) = 0 (cf. (3.5)) that is impossible if t1(v) →∞.

To prove the second assertion, observe that from equation Qλ(t2(v), v) = 0 it
follows

Ĩλ(t2(v), v) = (t2(v))p[(
1
p
− 1
γ

)Hλ(v)− (
1
q
− 1
γ

)(t2(v))q−pB(v)]. (4.11)

From Proposition 4.4 it follows that if v ∈ Θ2,λ and λ < λ∗(K) then Hλ(v) >
0 holds. Hence and since by assumption B(v) ≤ 0 we deduce from (4.11) that
J2

λ(v) = Ĩλ(t2(v), v) > 0 for v ∈ Θ2,λ and therefore the assertion 2) holds. �

Lemma 4.8. Let k(x) ≥ 0 on M , d(x) ≥ 0 on ∂M , p < q < p∗∗, p < γ < p∗ and
q < γ.

(1) Assume that F (φ1) < 0, B(φ1) < 0. Let λ ∈ (λ1,min{λ∗(K), λ∗(D)}).
Then the functional J1

λ(·) defined on Θo
1,λ is weakly lower semi - continuous

with respect to W .
(2) Suppose that the set {x ∈ M : K(x) > 0} is not empty and D(x) ≤ 0 on

∂M . Let λ < λ∗(K). Then the functional J2
λ(·) defined on Θ2,λ is weakly

lower semi-continuous with respect to W .

Proof. Let j = 1 or j = 2 be fixed. We assume that vm ⇁ v weakly with respect
to W for some v ∈ Θj . Recall that Θj ⊂ S1 and therefore {vm} is bounded in W .
Thus we may assume that

B(vm) → B(v), F (vm) → F (v) as m→ +∞, (4.12)

and
Hλ(vm) → H̄ as m→ +∞, (4.13)
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where H̄ is finite. Since Hλ(·) is weakly lower semi-continuous with respect to W
we get

Hλ(v) ≤ H̄. (4.14)
From (4.12), (4.13) it follows {tj(vm)} is a convergent sequence. Furthermore it
holds tj(vm) → t̄ < +∞ as m → +∞. Indeed, in both cases of assertions 1), 2)
we have F (v) 6= 0 and B(v) 6= ∞, |H̄| 6= ∞ for v ∈ Θj , j = 1, 2, respectively.
Hence and from (3.5) it follows that the contrary supposing tj(vm) → t̄ = +∞ as
m→ +∞ is impossible. Thus tj(vm) → t̄ < +∞ as m→ +∞. Now we define

Ī(t) =
1
p
tpH̄ − 1

q
tqB(v)− 1

γ
tγF (v)

for t ∈ R+. Then
Jj

λ(vm) → Ī(t̄) as m→ +∞. (4.15)

Let us prove the assertion 1). It follows from (4.14) that Ī(t̄) ≥ Ĩλ(t̄, v). It is easy
to see that t1(v) is the minimization point of the function Ĩλ(t, v) on R+. Therefore
we have Ĩλ(t̄, v) ≥ Ĩλ(t1(v), v) and, consequently,

lim
m→∞

J1
λ(vm) = Ī(t̄) ≥ J1

λ(v).

Hence J1
λ(v) is weakly lower semi-continuous on Θo

1,λ with respect to W .
Now we prove the second assertion. Let us define

Q̄(t) =
1

tp−1

∂

∂t
Ī(t), L̄(t) =

1
tp−2

∂2

∂t2
Ī(t)

for all t ∈ R+. Then it follows from (4.12), (4.13), (3.5) and (3.6) that

Q̄(t̄) = H̄ − t̄q−pB(v)− t̄γ−pF (v) = 0, (4.16)

L̄(t̄) = (p− 1)H̄ − (q − 1)t̄q−pB(v)− (γ − 1)t̄γ−pF (v) ≤ 0. (4.17)

Assume that we have equality in (4.17). Then by (4.16) and (4.17) we get

(γ − p)H̄ − (γ − q)t̄q−pB(v) = 0.

Recall that B(v) ≤ 0 and p < q < γ hold. Therefore, H̄ ≥ 0 is only possible in
the case when H̄ = 0. Then we deduce from (4.14) that Hλ(v) ≤ 0. By (4.6) we
have F (v) > 0 for v ∈ Θ2

λ. Hence, since λ < λ∗(K) we obtain by Proposition 4.4
a contradiction. Thus we have in (4.17) a strong inequality. This implies that the
function Ī(t) defined on R+ attains a maximum at the point t̄. Using (4.14) we
infer that

lim
m→∞

J2
λ(vm) = Ī(t̄) ≥ Ī(t2(v)) ≥ Ĩλ(t2(v), v) = J2

λ(v),

i.e., the second case is proved. �

Now we complete the proof of our main theorem. We start with the first part
of Theorem 4.5. Therefore we suppose that all corresponding assumptions are
satisfied. We consider the minimization problem (4.8). Let {vm} be a minimizing
sequence for this problem, i.e., we have vm ∈ Θo

1 and J1
λ(vm) → Î1,o

λ . Recall that

‖vm‖ = 1 for m = 1, 2, . . . . (4.18)

Thus vm is bounded in W . Hence since W is reflexive, we may assume vm ⇁ v1

weakly for some v1 ∈W . Let us suppose, for the moment, that

v1 ∈ Θo
1. (4.19)
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Then the blondeness and weakly lower semi-continuity of J1
λ shows that

−∞ < J1
λ(v1) ≤ Î1

λ.

Thus v1 is solution of the problem (2.6).
Now we prove (4.19). First of all we observe from (4.18) that v1 6= 0. Indeed,

assume to the contrary that v1 = 0. Since W 1
p (M) is compactly embedded in the

space Lp(M) and also compactly trace - embedded in the space Lp(∂M), we may
assume b(vm) → 0 and f(vm) → 0 as m→∞. These and (4.18) imply Hλ(vm) > 0
for m large enough. Therefore we get a contradiction to the fact that Hλ(vm) < 0
for vm ∈ Θo

1.
Now we show v1 6∈ ∂Θo

1. It is sufficient to prove that the following strong
inequality

Hλ(v1) < 0 (4.20)

holds. Using the weakly lower semi-continuity of Hλ it follows from the definition
of v1 that Hλ(v1) ≤ 0. Assume to the contrary that Hλ(v1) = 0. Since λ <
min{λ∗(K), λ∗(D)} we conclude by Proposition 4.4, ii) that F (v1) < 0, B(v1) < 0.
This fact, the continuity of F on Lγ(M) and B on Lq(∂M) imply that t1(vm) → 0
as m→∞. Applying now (3.4) we obtain that Īλ(t1(vm), vm) → 0 as m→∞. On
the other hand it is easy to see that J1

λ(v) < 0 for all v ∈ Θo
1,λ. Therefore we have a

contradiction to the assumption that {vm} is minimizing sequence. Thus we have
proved (4.20). Hence (4.19) is true.

Now we prove the second statement of Theorem 4.5. Suppose that the corre-
sponding assumptions of Theorem 4.5 hold. We consider the minimization problem
(2.6) with j = 2. Let {vm} be a minimizing sequence for this problem, i.e., we have
vm ∈ Θ2 and J2

λ(vm) → Î2
λ. As above in the proof of the first part of Theorem 4.5

it can be shown that vm ⇁ v2 weakly with some v2 ∈ W . Therefore, the proof is
finished if

v2 ∈ Θ2 . (4.21)

By the second part of Lemma 4.6 it is sufficient to show that the strong inequality

F (v2) > 0 (4.22)

holds. Assume to the contrary that F (v2) = 0. Since λ < λ∗(K) we conclude by
Proposition 4.4, i) that Hλ(v2) > 0. Hence using the continuity of F on Lγ(M),
supposing B(vm) ≤ 0 we derive that t2(vm) → ∞ as m → ∞. Observe that by
(3.8), (3.4), (3.5) we have

Ĩλ(t2(vm)vm) = (t2(vm))p[(
1
p
− 1
γ

)Hλ(vm)− (
1
q
− 1
γ

)(t2(vm))q−pB(vm)].

This fact, the lower semi-continuity of Hλ and since B(vm) ≤ 0, m = 1, 2, . . . ,
imply that Ĩλ(t2(vm), vm) → ∞ as m → ∞. Therefore we get a contradiction to
the assumption that {vm} is minimizing sequence. Thus (4.21) is proved.

By Lemma 3.1 the functions uj = tj(vj)vj , j = 1, 2, are weak solutions of (1.1)
and (1.2). It follows from Lemma 2.12, since the functional Iλ is even, that uj ≥ 0 in
M . By the maximum principle [23], since uj 6≡ 0, we see that uj > 0 in M . Finally,
it follows from (4.9) and (4.10), respectively, that Iλ(u1) > 0 and Iλ(u2) < 0. By
Lemma 2.11 we have that u2 is a ground state of type (-1) and u1 is a ground state
of type (0) for Iλ. The proof of Theorem 4.5 is finished. �

Next, we prove a lemma on the existence of ground states.
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Lemma 4.9. Suppose (1.5), k(x) ≥ 0 on M , d(x) ≥ 0 on ∂M , p < γ < p∗, p <
q < p∗∗ and q < γ are satisfied. Furthermore, we assume that

(1) F (φ1) < 0
(2) D(x) ≤ 0 on ∂M .

Then for every λ ∈ (λ1, λ
∗(K)) there exists a ground state u1 ∈ W 1

p (M) of Iλ.
Furthermore, u1 > 0, Iλ(u1) < 0.

Proof. First let us remark that under the additional assumption D(x) ≤ 0 on ∂M
we have

Θo
1,λ = Θ1,λ. (4.23)

Indeed, suppose Hλ(w) ≥ 0 for some w ∈ W . By assumption we have B(w) ≤ 0.
Hence the equation Q(t, w) = 0 may have a solution t1(w) 6= 0 only in the case
when F (w) > 0 is satisfied. However, in this case, we have L(t1(w), w) < 0 by
(3.6). This fact yields w 6∈ Θ1,λ and therefore {w ∈ W : Hλ(w) ≤ 0} ∩ Θ1,λ = ∅.
Using this and Lemma 4.6 we deduce (4.23).

It follows from the proof of Theorem 4.5 and from (4.23) that there exists a
positive solution u1 ∈ W 1

p (M) of variational problem (3.14), j = 1 such that
Iλ(u1) < 0.

Now let us show that u1 is a ground state for Iλ. First note that for the solution
u2 of (3.14), j = 2 we have Iλ(u2) > 0. Hence

min{Iλ(u1), Iλ(u2)} = Iλ(u1).

Therefore by Lemma 2.11 to prove our assertion it remains to show that the set

∂σ = {(t, v) ∈ R+ × S1|Q(t, v) = 0, L(t, v) = 0},
is empty. Assume the converse. Then by (3.5), (3.6) there exists (t, v) ∈ R+ × S1

such that it holds the following system of equations

Hλ(v0)− tq−pB(v0)− tγ−pF (v0) = 0,

(p− 1)Hλ(v0)− (q − 1)tq−pB(v0)− (γ − 1)tγ−pF (v0) = 0.
(4.24)

From here we derive

(q − p)Hλ(v) + (γ − q)tγ−pF (v) = 0.

However, this is impossible since by Proposition 4.4 we have for λ < λ∗(K) if
F (v) ≥ 0 then Hλ(v) > 0 and if Hλ(u) ≤ 0 then F (u) < 0. The contradiction
proves the lemma. �

From Theorem 4.5 and Lemma 4.9 we can derive the following multiplicity re-
sults.

Theorem 4.10. Suppose that (1.5), k(x) ≥ 0 on M , d(x) ≥ 0 on ∂M , p < γ < p∗,
p < q < p∗∗ and q < γ are satisfied. Furthermore, we assume

(1) F (φ1) < 0 holds
(2) The set {x ∈M : K(x) > 0} is not empty
(3) D(x) ≤ 0 on ∂M .

Then for every λ ∈ (λ1, λ
∗(K)) there exists at least two weak positive solutions u1

and u2 of (1.1)-(1.2) such that u1 > 0 and u2 > 0 on M . Furthermore, we have
u1, u2 ∈ W 1

p (M), Iλ(u1) < 0, Iλ(u2) > 0. u1 is a ground state and u2 is a ground
state of type (-1) for Iλ.
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5. Existence results for critical exponents

In this section, we prove the existence of positive solutions of (1.1)-(1.2) in the
cases where the exponents may be critical. The main theorem in this section is as
follows.

Theorem 5.1. Suppose that k(x) > 0 on M , d(x) ≥ 0 on ∂M , q < γ, p < γ ≤ p∗

and p < q ≤ p∗∗ are satisfied. Assume that F (φ1) < 0 and B(φ1) < 0. Then
for every λ in (λ1,min{λ∗(K), λ∗(D)}) there exists a weak positive solution u1

of (1.1)-(1.2) such that u1 > 0 on M and u1 ∈ W 1
p (M). Furthermore, it holds

Iλ(u1) < 0.

Proof. For the cases p < γ < p∗ and p < q < p∗∗ the statement of this theorem
follows from Theorem 4.5. For critical exponents γ = p∗ and q = p∗∗ the result will
be obtained by limiting arguments from the subcritical cases. As an example, let
us suppose that γ = p∗ and p < q < p∗∗. The other cases can be done analogously.

Let p < β ≤ p∗. Then we define

Fβ(u) =
∫

M

K(x)|u|βdµg, u ∈W.

Analogously one defines λ∗β(K). We assume that Fp∗(φ1) < 0. Then it fol-
lows from Lemma 4.1 that λ1 < min{λ∗p∗(K), λ∗(D)}). Furthermore, let λ0 ∈
(λ1,min{λ∗p∗(K), λ∗(D)}). Then it is easy to see that one can find a number ε > 0
such that Fβ(φ1) < 0, |p∗ − β| < ε and λ∗β(K) → λ∗p∗(K) as β → p∗. Hence we
have λ0 ∈ (λ1,min{λ∗β(K), λ∗(D)} if |p∗ − β| < ε0 for some ε0 > 0. Applying now
Theorem 4.5 we obtain the existence of a weak positive solution u1,β of (1.1)-(1.2)
with γ = β such that∫

M

|∇u1,β |p−2(∇u1,β ,∇ψ)dµg+
∫

∂M

d(x)|u1,β |p−2u1,βψdνg

−λ0

∫
M

k(x)|u1,β |p−2u1,βψdµg−
∫

M

K(x)|u1,β |β−2u1,βψdµg

−
∫

∂M

D(x)|u1,β |q−2u1,βψdνg = 0

(5.1)

holds for any ψ ∈ C∞(M).
We show that the functions u1,β are uniformly bounded in the W -norm. Suppose

to the contrary that ‖u1,βi
‖ → ∞ for some sequence βi such that βi → p∗ as i→∞.

Let v1,βi = u1,βi/‖u1,βi‖ for i = 1, 2, ...,. Then we have u1,βi = t1(v1,βi)v1,βi ,
where ‖v1,βi

‖ = 1 and by assumption t1(v1,βi
) → ∞. Since the functions v1,βi

are uniformly bounded in the W -norm then, by weak compactness, we can find a
weak convergent subsequence of {v1,βi

} (again denoted by {v1,βi
}) which converges

weakly to some point w ∈W .
Suppose that w = 0. Since W is compactly embedded in Lp(M) and compactly

trace - embedded in Lp(∂M) we may assume that
∫

M
k(x)|v1,βi

|pdµg → 0 as i→∞.
This implies Hλ0(v1,βi

) > 0 for βi near p∗. Therefore we get a contradiction to the
fact that Hλ0(v1,βi) < 0 for v1,βi ∈ Θo

1,βi
. Thus w 6= 0 and therefore we can find

ψ0 ∈ C∞(M) such that ∫
M

K(x)|w|p
∗−2wψ0dµg 6= 0. (5.2)
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It follows from (5.1) that∫
M

|∇v1,βi
|p−2(∇v1,βi

,∇ψ0)dµg+
∫

∂M

d(x)|u1,βi
|p−2u1,βψdνg

−λ0

∫
M

k(x)|v1,βi |p−2v1,βiψ0dµg =t1(v1,βi)
βi−2

∫
M

K|v1,βi |βi−2v1,βiψ0dµg

+t1(v1,βi
)q−2

∫
∂M

D|v1,βi
|q−2v1,βi

ψ0dνg.

(5.3)

Since W 1
p is compactly embedded in Ls(M) for p < s < p∗ and trace-embedded

in Lq(∂M) for p < q < p∗∗, it follows that v1,βi
→ w in Ls(M), p < s < p∗ and

in Lq(∂M), p < q < p∗∗. Hence and by (5.2) it follows that the right hand side of
(5.3) converges to infinity as i→∞ in contrast to the fact that the left hand side
of this equality is bounded. Thus we get a contradiction and the functions u1,β are
uniformly bounded in the W -norm.

Therefore, by weak compactness, we can find a weak convergent subsequence
of {u1,β} (again denoted by {u1,β}). Since W 1

p is compactly embedded in Ls(M)
for p < s < p∗ and trace-embedded in Lq(∂M) for p < q < p∗∗, it follows easily
that the weak W 1

p -limit u1,p∗ of the sequence u1,β satisfies also (5.1). To prove our
theorem it remains to show that u1,p∗ is nonzero. Suppose to the contrary that
u1,p∗ = 0. Let v1,β = u1,β/‖u1,β‖. Then u1,β = t1(v1,β)v1,β where ‖v1,β‖ = 1.
Hence t1(v1,β) → 0 and/or v1,β ⇁ 0 weakly with respect to W as β → p∗.

Suppose the second case holds: v1,β ⇁ 0 weakly as β → p∗. Since W 1
p is

compactly embedded in Ls(M) for p < s < p∗, we may assume f(v1,β) → 0
as β → p∗. This implies Hλ0(v1,β) > 0 for β near p∗. Therefore we have a
contradiction to the fact that Hλ0(v1,β)) < 0 for v1,β ∈ Θ0

1,β .
Thus v1,p∗ 6= 0. Suppose now that t1(v1,β) → 0 as β → p∗. By virtue of (5.1) we

have∫
M

|∇v1,β |p−2(∇v1,β ,∇ψ)dµg+
∫

∂M

d(x)|v1,β |p−2v1,βψdνg−

−λ0

∫
M

k(x)|v1,β |p−2v1,βψdµg =t1(v1,β)β−1

∫
M

K(x)|v1,β |β−2v1,βψdµg+

+t1(v1,β)q−1

∫
∂M

D(x)|v1,β |qv1,βψdνg.

(5.4)

Passing to the limit in (5.4) as β → p∗ we get∫
M

|∇v1,p∗ |p−2∇v1,p∗∇ψdµg+
∫

∂M

d(x)|v1,p∗ |p−2v1,p∗ψdνg−

−λ0

∫
M

k(x)|v1,p∗ |p−2v1,p∗ψdµg = 0.
(5.5)

Observe that v1,p∗ ≥ 0. Hence by the maximum principle and the Hopf lemma,
since v1,p∗ 6≡ 0, we see that v1,p∗ > 0 in M . But λ1 < λ0 and λ1 is a simple and
isolated eigenvalue. Hence we get a contradiction.

Thus there exists a weak solutions u1,p∗ ≥ 0 of problem (1.1)-(1.2) with γ = p∗

and p < q < p∗∗. Since the functional Hλ is weakly lower semi-continuous on W 1
p ,

Hλ(u1,p∗) ≤ lim infβ→p∗ Hλ(u1,β) < 0. Then for λ ∈ (λ1,min{λ∗p∗(K), λ∗(D)}) by
Proposition 4.4 it follows F (u1,p∗) < 0, B(u1,p∗) < 0. It implies Iλ(u1,p∗) < 0. By
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the maximum principle and the Hopf lemma, since u1,p∗ 6≡ 0, we see that u1,p∗ > 0
in M . This completes the proof of the Theorem 5.1. �

The following result shows existence of ground state in critical cases.

Theorem 5.2. Suppose that (1.5), k(x) ≥ 0 on M , d(x) ≥ 0 on ∂M , p < γ ≤ p∗,
p < q ≤ p∗∗ and q < γ are satisfied. Furthermore, we assume

(1) F (φ1) < 0
(2) D(x) ≤ 0 on ∂M

Then for every λ ∈ (λ1, λ
∗(K)) there exists a ground state u1 ∈ W 1

p (M) of Iλ.
Furthermore, u1 > 0, Iλ(u1) < 0.

Proof. The existence of ground state in subcritical cases of exponents p < γ < p∗,
p < q < p∗∗ follows from Lemma 4.9. As an example, let us prove the assertion of
the theorem for the following critical case p < q < p∗∗, γ = p∗. The other cases can
be done analogously.

Suppose λ ∈ (λ1, λ
∗(K)) and let u1,β be a ground state of Iλ,β when p < β <

p∗. Using the same arguments as in proving of Theorem 5.1 it can be shown
the existence of weak convergent subsequence u1,βi

⇁ u1,p∗ with respect to W as
βi → p∗ where u1,p∗ is a positive solution of (1.1)-(1.2). Let us show that u1,p∗ is
a ground state.

First note that the functional J1
λ,β(·) defined on Θo

1,λ,β is bounded below, i.e.,

−∞ < Î1
λ,β = inf{J1

λ,β(w) : w ∈ Θ1,λ}.
for λ ∈ (λ1, λ

∗(K)) and p < β ≤ p∗ (see Lemma 4.7). Next we remark that for
every w ∈ Θ1,λ the function J1

λ,β(w) is continuous with respect to β ∈ (p, p∗]. Hence
it follows that Î1

λ,β is also continuous with respect to β ∈ (p, p∗] and

Î1
λ,β → Î1

λ,p∗ , asβ → p∗. (5.6)

Thus to prove the claim it is sufficient to show that

J1
λ,p∗(v1,p∗) ≤ Î1

λ,p∗ = lim
β→p∗

J1
λ,β(v1,β). (5.7)

where v1,β = u1,β/‖u1,β‖. Observe from the convergence u1,βi
⇁ u1,p∗ it follows

that
B(u1,βi

) → B̄, Fβi
(u1,βi

) → F̄ as i→ +∞, (5.8)
and

Hλ(u1,βi
) → H̄ as i→ +∞, (5.9)

where H̄, F̄ , B̄ are finite. Since Hλ(·) is weakly lower semi-continuous with respect
to W we have

Hλ(u1,p∗) ≤ H̄. (5.10)
Let us show that

Fp∗(u1,p∗) ≤ F̄ . (5.11)
Consider a finite partition of unity for M : ψj : M → R, Suppψj ⊂M , 0 ≤ ψj ≤ 1,∑

j ψj(x) ≡ 1 on M . Let p < β < p∗ then testing (1.1) by ψju1,βi we obtain∫
M

|∇u1,βi
|pψjdµg +

∫
M

|∇u1,βi
|p−2(∇u1,βi

,∇ψj)dµg

−λ
∫

M

k(x)|u1,βi
|pψjdµg −

∫
M

K(x)|u1,βi
|βiψjdµg = 0.

(5.12)



20 YAVDAT IL’YASOV & THOMAS RUNST EJDE–2003/57

From the weak convergence u1,βi
⇁ u1,p∗ with respect to W and strong convergence

u1,βi
→ u1,p∗ in Ls(M), p < s < p∗ it follows that∫

M

|∇u1,βi |pψjdµg−λ
∫

M

k(x)|u1,βi |pψjdµg → H̄j ,

Fβi
(u1,βi

(ψj)1/βi) →F̄j as i→ +∞,

(5.13)

and ∫
M

|∇u1,βi |p−2(∇u1,βi ,∇ψj)dµg →
∫

M

|∇u1,p∗ |p−2(∇u1,p∗ ,∇ψj)dµg

as i→ +∞. Hence passing to the limit in (5.12) we deduce

H̄j +
∫

M

|∇u1,p∗ |p−2(∇u1,p∗ ,∇ψj)dµg = F̄j . (5.14)

On the other hand from (1.1) in critical case γ = p∗ we have∫
M

|∇u1,p∗ |pψjdµg − λ

∫
M

k(x)|u1,p∗ |pψjdµg+

+
∫

M

|∇u1,p∗ |p−2(∇u1,p∗ ,∇ψj)dµg = Fp∗(u1,p∗(ψj)1/p∗).

Since H̄j ≥ Hλ(u1,p∗ψj), it follows that Fp∗(u1,p∗ψj) ≤ F̄j . Thus by summing these
inequalities we obtain (5.11). Observe that from the equationQλ(t1(v1,β), v1,β) = 0,
β ∈ (p, p∗] it follows

J1
λ,p∗(v1,β) =

q − p

pq
(t1(v1,β))pHλ(v1,β) +

γ − q

γq
(t1(v1,β))γFβ(v1,β).

Hence from (5.8), (5.9), (5.10), (5.11) we deduce

J1
λ,p∗(v1,p∗) ≤

q − p

pq
H̄ +

γ − q

γq
F̄ = lim

β→p∗
J1

λ,β(v1,β).

Thus we obtain (5.7) and the proof of theorem is complete. �
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