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BLOW UP OF SOLUTIONS TO SEMILINEAR WAVE
EQUATIONS

MOHAMMED GUEDDA

ABSTRACT. This work shows the absence of global solutions to the equation
utr = Au + P_k|u|m,

in the Minkowski space Mg = R x RN, where m > 1, (N —1)m < N +1, and
p is a conformal factor approaching 0 at infinity. Using a modification of the
method of conformal compactification, we prove that any solution develops a
singularity at a finite time.

1. INTRODUCTION
This note presents nonexistence results of the problem
upe = Au A+ p~Flu™, (1.1)
posed in the Minkowski space My = R x R, N > 1, with the initial condition
u(0,2) = up(x), us(0,2) =us(x), =RV, (1.2)

Here p is a conformal factor approaching 0 at infinity, the parameter m > 1 satisfies
(N —1)m < N + 1. The constant k = sm — (N + 3)/2, where s = (N —1)/2. The
initial data ug,u; belong to X = {f : f € C(RY);0 # f > 0}. Note that the
factor p~* approaches 0 as |z| tends to infinity for (N — 1)m < N + 1.

This work is motivated by a recent paper by Belchev, Kepka and Zhou [3] in
which Problem (1.1),(1.2) with 1 < m < 14 (2/N) is considered. The authors
proved the following theorem using a modification of the technique of conformal
compactification due to Penrose [6] and developed by Christodolou [4] and Baez et
al. [5].

Theorem 1.1. Let 1 < m < 1+ (2/N) and u be a solution to (1.1),(1.2) with
ug,u1 € X. Then u blows up in finite time.

Attention will be given to show that (1.1),(1.2) does not possess global solutions
for m > 1 and (N — 1)m < N + 1, complementing in this way the results in [3].
Theorem 1.1 is also announced in [1] and the proof is similar to the one given in
[3]. Our main result is the following:
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Theorem 1.2. Let m > 1,(N —1)m < N +1 and u be a solution to (1.1),(1.2)
with ug,uy € X. Then u blows up in finite time.
The proof of this theorem is given in Section 2 which contains also a result of
the nonexistence of global solutions in the case u; < 0.
2. PROOF OF THE MAIN RESULT

Notation and preliminary results. To clarify the proof, we consider as in [3]
the conformal map ¢ from the Minskowski space M to the Einstein universe E :=
R x SN. Here SV is the unit sphere in R¥*! and

c(t,z) = c(t,x1,29,...,2n) = (T, Y1,Ys, ..., YNi1),

where
2 _ g2
sinT = pt, cosT =p(1 — ), Te(-mm),
2 — 22
}/}:pxj7j:17"'7N7 YN+1:p(1+ 4 )7
2 _ 2 o\ —1/2
= (2 + (1 - ) .
b ( + 1
The space M is equipped with the Minkowski metric:
g = dt* — da?,

and the space E with the metric
§=dT? —ds?,
where dS? is the canonical metric on S™V. Therefore, ¢ is a conformal map between
the Lorentz manifolds (Mg, g) and (E,§), with the conformal factor p; that is,
g =p’yg.
Next, we consider as in [3], the function v defined in E by
N -1

w=R2mDpsy R>0, s= —5

, (1.2). Then v satisfies

L.+ s*)v=v|", onE,

where u is a solution to (1.1)
(

v(0,.) = R¥ (M= Dposyg 0 ¢t (2.1)
vp(0,.) = R(m+1)/(m—1)pa(s+l)u1 oc L,

where pg = cos? £, p € [0,7) is the distance on SN from the north pole T =Y; =
0,7=1,...,N, Yyi1=1and L. denotes the d’Alembertien in E relative to the
metric §. Then the function H(T) = [¢x v(T,.)dS satisfies (see [3])

H" > (ColH | — s*)|H], (2.2)
for some positive constant Cjy independent of the parameter R. At the origin we
have

2
H(0) = R2/(m_1)_N/ 1 r —(N+1)/2 d
©) [ ) O

2
> Rg/(m_l)_N/ (1 + %)_(N+l)/2uodx,
]RN

(2.3)
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and

2
H/(O) _ R(m+1)/(M71)7N/ (1 4 L)i(Nil)/QuldCC’
RN 4R?
2 —(N-1)/2 24
> RimAD/(m—1)-N / (1+ )Y e, r= o], R> 1.
. 1
Proposition 2.1. Let H be a solution to (2.2) where H'(0) > 0 and H(0) >

(é—z)l/(m_l). Then H cannot be a global solution.

Proof. By contradiction and assume that H is global. By (2.2) we have H"”(0) > 0.
It follows that H' > 0 and then H > (%)1/(’”_1) on (0,¢),e small. Arguing in the
same way, we deduce that H > 0 and H > ((“%)I/(m_l) on (g,& 4 &*). This shows,
in particular that
2
H/(T)>0, H(T)> (%)1/(’"*1) and H"(T) >0,
0

for all T > 0. Next we claim that H(T') goes to infinity with 7. First note that
H(T) has a limit as T tends to infinity. Assume that this limit is finite. Since H”
is positive, H'(T') goes to 0 as T tends to infinity. Integrating inequality (2.2) over
(0,T) and passing to the limit yield

—H'(0) 2/ (CoH™ ' — s*)HdT.
0

The left side of the last inequality is non-positive while the right hand side is
positive. This is impossible. Now using (2.2) and the fact that H(co) = oo,

H">CiH™, VT >T,,

holds for some Ty large and for some positive constant Cy. Therefore, H develops
a singularity since m > 1. O

Remark 2.2. Note that, as inequality (2.2) is autonomous, if there exists Ty such
that H(Tp) > (g—i)l/(m_l) and H'(Tp) > 0 the conclusion of the preceding propo-
sition remains valid.

Remark 2.3. The condition H(0) > (é—i)l/(m’l) can be replaced by H(0) >
()01 i H'(0) > 0.

Remark 2.4. Inthecase 1 <m <1+ % we have

2

limR_}OOR2/(mfl)fN/ (1+L)7(N+1)/2UO dr — oo
RN 4

Hence we can choose R > Ry such that H(0) > (%)1/(77171); therefore using
Proposition 2.1 we deduce Theorem 1.1 for 1 <m < 1+ 2

N.
Proof of Theorem 1.2. Let u be a local solution to (1.1), (1.2) where (N — 1)m <
N + 1, m > 1. Using the fact that

2
lim R<’"+1>/<m—1>—N/ (1+ ) W20 de = o, (2.5)
R—o00 RN 4
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we deduce from (2.4), that H'(0) > Q, for R > Ry large, where

2 Mm—=1 _2/(m-1) 2(m+1)/(m-1)
= ——0C, . 2.6
© m+1"° 5 (2.6)
Hence Theorem 1.2 is a direct consequence of the following result which is valid for
any m > 1. ([

Proposition 2.5. Let m > 1 and H be a solution to (2.2) where H(0) > 0 and
H'(0) > Q. Then there exists Ty > 0 such that H(Ty) > (é—z)l/(m_l), H'(Ty) >0
and hence H is not a global solution.

Proof. Let H be a solution to (2.2) such that H(0) > 0 and H'(0) > Q. Let us
suppose that H(0) < (%)1/(7’“1), otherwise the proof follows from Proposition 2.1.
Therefore, there exists Ty < oo such that 0 < H(T) < (g%)l/(m_l) and H'(T) > 0
for all T'in (0, Tp). Assume first that Tp is finite and H'(Tp) = 0. Since the function
1 CO 82

F(T)=<(H'(T))> — ——H™"(T)+ = H*(T

(T) = S0 (D)) = O (7) 4+ S ()
is strictly increasing on (0, Tp), thanks to (2.2), we get FI(T') < F(Tp) < 1Q?, for all
0 < T < Ty, in particular F'(0) < %QZ which yields to H'(0) < Q. A contradiction.
Next we suppose that T = oco. Since H is monotone and bounded, there ex-

2

ists 0 < L < (é—o)l/(m_l) such that limy_, H(T) = L and then there exists T,
converging to infinity with n such that H'(T,,) — 0, as n — oco. Using again the
function F we deduce that F(0) < lim,_,o, F(T},). Hence H'(0) < Q, a contradic-
tion. Then there exists 77 > 0 such that H(T}) > (%)1/(7"_1), H'(Ty) > 0 and
hence H is not global thanks to Proposition 2.1 and Remark 2.2. O

Corollary 2.6. Let m > 1 and let ug,u1 be in X such that, for some positive R,
one of the following two conditions is satisfied
m—1)— 2 \—(N+1)/2 s2\1/(m=1)
(1) R¥m=D=N fon (14 472) uodz > (&) )
(2) ROm+D/(m=1=N (14 47§2)7(N71)/2U1d1‘ > Q.
Then Problem (1.1),(1.2) has no global solution.

Case u; < 0. In what follows we shall see that solutions to (1.1) may blow up in
the case where u; € C5°(RY) is non-positive.

Theorem 2.7. Let m > 1 and ug, —uy in X be such that
2C
(H'(0))” — —=

ks ) 1/m=D
where Q is given by (2.6),

H™H0) +*H*(0) < Q, H(0) > (&

2.
. @

m 2 N4t
H(0) = Rw /]RN (R? + %) > upda

and
2 N-1
H'(0) = R2/(m—1>/ (R2+ )77 uyda,
. 4
for some fized R > 0. Then Problem (1.1),(1.2) has no global solution.
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Proof. Assume that ug and uy satisfy (2.7) and are such that (1.1) has a global
solution. Using Proposition 2.1 we easily deduce that the function H is strictly
decreasing and H > (é—z)l/(m_l) on (0,Tp), for some 0 < Ty < co. Now, a simple

analysis shows that H(Tp) = (é—z)l/(m_l). Next, since H' < 0 the function

1 O() 52
F(T)=Z(H'(T))> = ——H™(T)+ = H*T
(T) = SU(T)) = — L (1) + S (T
is decreasing on (0,7p), thanks to (2.2). Therefore F(0) > F(Ty) > 3Q, which
contradicts (2.7). O
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