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MAGNETIC BARRIERS OF COMPACT SUPPORT AND
EIGENVALUES IN SPECTRAL GAPS

RAINER HEMPEL & ALEXANDER BESCH

Abstract. We consider Schrödinger operators H = −∆ + V in L2(R2) with
a spectral gap, perturbed by a strong magnetic field B of compact support.

We assume here that the support of B is connected and has a connected com-
plement; the total magnetic flux may be zero or non-zero. For a fixed point
E in the gap, we show that (for a sequence of couplings tending to ∞) the

signed spectral flow across E for the magnetic perturbation is equal to the

flow of eigenvalues produced by a high potential barrier on the support of the
magnetic field. This allows us to use various estimates that are available for

the high barrier case.

1. Introduction

We study the discrete eigenvalues that may appear in a spectral gap of a Schrö-
dinger operator acting in L2(R2),

H = −∆ + V, (1.1)

under perturbation by a strong magnetic field B of compact support. In the present
paper we restrict our attention to the case where the support of B as well as its
complement are connected sets.

For a bounded and measurable potential V = V (x) and a magnetic vector poten-
tial ~a ∈ C1(R2; R2) with curl~a = B, the associated Schrödinger operator is defined
as

H(λ~a) = (−i∇− λ~a(x))2 + V (x), λ ≥ 0. (1.2)
Our main interest is then in the (signed) flow of the eigenvalues of H(λ~a) across a
fixed observation point E in a spectral gap of H, as the coupling λ tends to infinity.
For periodic H, the eigenvalues of H(λ~a) can be interpreted as electronic bound
states in a thin wafer of solid matter (semi-conductor or insulator) which is locally
penetrated by a strong magnetic field.

For a sequence of couplings λk →∞ we will establish a direct link between the
magnetic problem and the classical case where H is perturbed by µχΩ, for µ→∞;
here χΩ denotes the characteristic function of the bounded, open set

Ω = {x ∈ R2 : B(x) 6= 0}. (1.3)
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To describe the relevant properties of the high barrier problem, let

M = R2 \ Ω (1.4)

and let HM denote the operator −∆ + V , acting in M with Dirichlet boundary
conditions on ∂M . It is well known that H + µχΩ converges to HM in the norm
resolvent sense, as µ→∞, and a finite number of eigenvalues of H+µχΩ may cross
a fixed point E inside a gap of H; we denote this number (counting multiplicities)
as N(Ω, E), cf. (3.2), (3.4). All eigenvalues of H + µχΩ are increasing functions of
the coupling µ. Estimates for N(Ω, E) will be discussed in Section 3. Compactness
implies that σess(HM ) = σess(H) so that the spectrum of HM is discrete in R \
σess(H).

The eigenvalues of H + µχΩ cross E according to the repulsion produced by
the potential barrier µχΩ. By the Avron-Herbst-Simon-bound [2] and Dirichlet
decoupling [14], a similar repulsive effect is to be expected in the case of a magnetic
perturbation. The magnetic case is more delicate, however, because eigenvalues
will not depend monotonically on the coupling and, in general, we have to deal
with vector potentials that do not vanish identically in M . Because of the lack of
monotonicity, we will rather count the signed flow of spectral multiplicity instead
of the number of eigenvalues that cross E. Defining the flux of B,

Φ =
∫
B(x) dx, (1.5)

we must distinguish, as usual, between the cases Φ = 0 and Φ 6= 0. For Φ =
0, we may pass to an equivalent vector potential that vanishes in the interior G
of M (assuming some regularity of ∂G) and much simpler proofs are available
(cf. Remark5.6); the situation is similar in dimensions 3 and higher. Hence the
most difficult case is the one where we are in R2 and Φ is non-zero; in addition, this
is the case that is closest to the experimental situation in physics. Note that we
may assume λ ≥ 0 and Φ ≥ 0 without loss of generality since the operators H(λ~a)
and H(−λ~a) are anti-unitarily equivalent under complex conjugation.

We will work with the following assumptions:

Assumption 1.1. The sets Ω = suppB and G = (suppB)C are both connected,
with suppB 6= ∅.

Loosely speaking, Assumption 1.1 means that suppB is connected and has no
holes. Assumption 1.1 implies that the fundamental group of G is isomorphic to Z.

Assumption 1.2. The Dirichlet Laplacian −∆M of the closed set M has form
core C∞c (G).

The precise definition of −∆M is given in Section 2. It is sufficient for As-
sumption 1.2 to hold that ∂Ω has measure zero and that G satisfies the segment
condition; cf. Section 2 for details and a more general criterion.

Following Safronov [29, 30], we next define a function that counts the signed
spectral multiplicity of H(λ~a) crossing E: we let M(λ;B, E) denote the number
of eigenvalues (counting multiplicities) of H(µ~a) that cross E in upwards direction
minus the number of eigenvalues crossing downwards, at couplings µ ∈ (0, λ); the
eigenvalues that change direction at E are not counted. The precise definition of
M(λ;B, E) is given in Equation (2.7). Our main result reads as follows.
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Theorem 1.3. Let H and HM as above and let B : R2 → R a continuous function
of compact support such that Assumptions 1.1 and 1.2 are satisfied. Let E ∈ R,
E /∈ σ(H) ∪ σ(HM ). Then there exists Λ0 ≥ 0 such that

M(λ;B, E) = N(Ω, E), λ ≥ Λ0, λΦ ∈ 2πZ. (1.6)

We therefore see that the repulsion produced by a strong magnetic field of com-
pact support corresponds to the repulsion from a high potential barrier, supported
on the set where B is non-zero, for a sequence of couplings going to infinity.

Remark 1.4. (i) For flux Φ = 0, the only restriction on λ is λ ≥ Λ0. For Φ > 0,
we obtain a sequence (λk)k∈N ⊂ (0,∞), with λk = 2πk/Φ, such that (1.6) holds for
λk ≥ Λ0.
(ii) For E < inf σ(H), we have N(Ω, E) = 0 by monotonicity and M(λ;B, E) = 0
by the diamagnetic inequality.
(iii) In between two successive λk’s a certain number of eigenvalues of H(λ~a) may
cross and cross back. While the results of Herbst and Nakamura [18] imply that
the eigenvalues in the gap will approach periodic functions, as λ → ∞, it appears
to be rather difficult to find conditions that would guarantee these perodic limiting
functions to be non-constant. At the same time, it is rather unlikely that these
periodic functions are constant.

Under the assumptions of Theorem 1.3 there exists a constant c(E,~a) ≥ 0 such
that

|M(λ;B, E)−N(Ω, E)| ≤ c(E,~a), λ ≥ Λ1, (1.7)

for some Λ1 ≥ 0; cf. Remark 5.5 for a proof. More precisely, it is shown in Remark
5.5 that the constant c(E,~a) in (1.7) can be estimated in terms of a (non-magnetic)
eigenvalue problem for which the Birman-Schwinger principle is applicable.
(iv) In a subsequent paper we will discuss magnetic perturbations where the sets
G = M int and suppB may have more than one component. Here a theorem of
Dirichlet in number theory can be used in the construction of a suitable gauge
leading to a “smallest possible” vector potential.
(v) Theorem 1.3 assumes E /∈ σ(H) ∪ σ(HM ). If E /∈ σ(H) belongs to σ(HM ),
monotonicity with respect to E and Theorem 1.3 yield

N(Ω, E + ε) ≤ lim inf
λ→∞, λΦ∈2πZ

M(λ;B, E) ≤ lim sup
λ→∞, λΦ∈2πZ

M(λ;B, E) ≤ N(Ω, E),

(1.8)
for any sufficiently small ε > 0.

In the following corollaries, Theorem 1.3 is combined with simple upper and
lower estimates on N(Ω, E) of phase space volume type, taken from [11, 12]; cf.
Section 3. The first corollary provides an upper bound:

Corollary 1.5. Suppose that the assumptions of Theorem 1.3 are satisfied. Then
there exist constant C1, C2, independent of B, such that

lim
λ→∞, λΦ∈2πZ

M(λ;B, E) ≤ C1R
2 + C2, (1.9)

provided Ω = {x;B(x) 6= 0} is contained in some disk of radius R.

The corresponding lower bound requires an additional assumption on the spec-
trum of H below E:
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Assumption 1.6. Let dimE(HBR
) denote the number of eigenvalues of HBR

below
E, counting multiplicities, where HBR

= −∆ + V on BR := {x ∈ R2 : |x| < R},
with Dirichlet boundary conditions. Let E ∈ R\σ(H). We assume that there exist
constants c > 0 and R0 ≥ 0 such that

dimE(HBR
) ≥ cR2, R ≥ R0. (1.10)

For this assumption to hold it is sufficient that the i.d.s. for H exists (cf. [28, 21])
and has a positive value at E. If (1.10) holds, H must have some essential spectrum
below E.

Corollary 1.7. In addition to the conditions of Theorem 1.3, suppose that As-
sumption 1.6 is satisfied. Then there exist constants c1 > 0, c2 ≥ 0, independent of
B, such that

lim
λ→∞, λΦ∈2πZ

M(λ;B, E) ≥ c1R
2 − c2, (1.11)

provided suppB contains a disk of radius R.

The paper is organized as follows. In Section 2, we provide basic definitions and
describe the fundamental approximation procedure by eigenvalue problems on large
disks Bn. In particular, we construct a family of approximating operators H̃n(λ~a),
for λ ≥ 0, acting in L2(Bn) with Dirichlet boundary conditions.

In Section 3 we recall basic properties of the discrete eigenvalues of H + µχU ,
for 0 ≤ µ→∞, where U ⊂ Rm is open and bounded.

Section 4 contains the key estimate for the number of eigenvalues below E for the
approximating operators H̃n(λ~a) on large disks Bn. Here we consider the counting
functions

Mn(λ;B, E) = dimE(H̃n(0))− dimE(H̃n(λ~a)), (1.12)
which correspond to the loss of eigenvalues below E due to the magnetic pertur-
bation for the approximating problems on Bn. In a first step, we decouple the
problem by a natural Dirichlet boundary condition along ∂G, for λ large. Then,
for λΦ ∈ 2πZ, it is shown that the operator on the “annulus” Bn ∩G, with Dirich-
let boundary conditions, is unitarily equivalent to an operator without magnetic
terms. For the latter the number of eigenvalues below E is easy to estimate. We
also obtain a preliminary result on the existence of limn→∞Mn(λ;B, E), for λ large,
λΦ ∈ 2πZ, and we show that this limit is equal to N(Ω, E).

In Section 5, we finally show that

lim
n→∞

Mn(λ;B, E) = M(λ;B, E), (1.13)

provided λ is such that E /∈ σ(H(λ~a)). We then prove Theorem 1.3 as well as
Corollaries 1.5 and 1.7.

There are three appendices (Sections 6—8) containing some of the more technical
arguments.

We conclude the introduction with a few remarks on related work in the lit-
erature. General information on magnetic Schrödinger operators can be found in
Avron, Herbst and Simon [2], Mohamed and Raikov [24]. Scattering for decreasing
magnetic fields has been studied by Loss and Thaller [22]. The problem studied in
the present paper is somewhat related to the Bohm-Aharonov effect (cf. Helffer [9],
Weder [33]), but with a (periodic) electric background potential.

A situation which has attracted some attention is that of a constant magnetic
background, combined with localized electric perturbations (cf., e.g., Birman and
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Raikov [5], Hempel and Levendorski [16], Levendorskii [23], Raikov [26]). The
existence of eigenvalues in spectral gaps for a perturbation by a magnetic field of
compact support has been studied previously in Hempel and Laitenberger [15] under
the assumption of zero flux, in a rather special case. In [16] there is a result for the
case where both the magnetic field and the vector potential decay exponentially at
infinity; again, the flux is zero. The paper [13] constructs examples of Schrödinger
operators H(λ~a) having an eigenvalue in the gap that asymptotically approaches
a periodic or quasi-periodic function of the coupling λ; here the magnetic field has
compact support consisting of a disk enclosed by an annulus.

It is interesting to note that the situation can be strikingly different for the Pauli
operator in R2. Here some (purely magnetic) cases can be analyzed in depth by
using the property of supersymmetry (cf. [6]). It turns out that, under suitable
assumptions, eigenvalues will in fact move downwards where one might at first
expect an upwards movement (cf. [3, 4]). We take as the “unperturbed” operator
the Pauli Hamiltonian of a constant magnetic field B0 > 0, and add a perturbation
by a magnetic field B ≤ 0 of compact support. We therefore consider the pair of
operators

H±(λ) = (−i∇− ~a0 − λ~a)2 ∓ B0 ∓ λB, (1.14)
where we refer to [6] for the construction of the Pauli Hamiltonian in R2. Looking at
H+(λ), one might expect that the repulsive effect of the potential barrier −λB ≥ 0,
combined with some repulsion coming from the magnetic term λ~a, should shift a
finite number of eigenvalues from below through each spectral gap of H+. But this
cannot be true for the first gap (0, 2B0): by supersymmetry, each non-zero point
in the spectrum of H+(λ) must also appear in the spectrum of H−(λ), yet H−(0)
has no spectrum below 2B0. On the other hand, it can be shown that there exist
eigenvalues that move downwards through the first gap, as λ increases. A more
detailed discussion of the related phenomena can be found in [3, 4].

2. Notation and Preliminaries

General Notation. We write x = (x1, x2) ∈ R2 and Bs = {x ∈ R2 : |x| < s}; χs

denotes the characteristic function of the ball Bs, for s > 0. The function spaces
Ck(U), L2(U), for U ⊂ Rd open, are defined as usual; the norm of u ∈ L2(U) is
given by ‖u‖2 =

∫
U
|u|2 dx. Scalar products in Hilbert space are written 〈., .〉. The

Sobolev space H1(R2) consists of those functions u ∈ L2(R2) that have weak first
derivatives ∂ju ∈ L2(R2). H1(R2) is a Hilbert space with norm ‖u‖2

1 = ‖u‖2 +∑
j ‖∂ju‖2.
For a self-adjoint operator T acting in a Hilbert space H we denote the spectrum

by σ(T ), the essential spectrum by σess(T ), and the spectral projections by PI(T ),
for any interval I of the real line. If T has only discrete spectrum in the interval I,
then dim ranPI(T ) = tracePI(T ) is the number of eigenvalues of T in I, counting
multiplicities. For α ≤ β ∈ R and η ∈ R, we will write

dim(α,β)(T ) = dim ranP(α,β)(T ), dimη(T ) = dim ranP(−∞,η)(T ). (2.1)

The Dirichlet Laplacian of a Closed Set. We will mostly be concerned with
self-adjoint operators defined via quadratic forms, with form domain given by a
suitable subspace of the Sobolev space H1(R2). For any closed set K ⊂ R2, a
natural subspace of H1(R2) [8, 19] is

H̃1
0(K) := {u ∈ H1(R2);u(x) = 0 a.e. in KC}, (2.2)
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where KC denotes the complement of K. The self-adjoint operator associated
with the quadratic form

∫
|∇u|2 dx on H̃1

0(K) via the usual representation theorem
([20, Thm. VI-2.1]) will be called the Dirichlet Laplacian on K, denoted as −∆K .
Operators of this type occur naturally; for instance, if U = KC , then −∆ + µχU

converges to −∆K in the strong resolvent sense, as µ→∞.
If D is an open set, there is also the standard Sobolev space H1

0(D), obtained
by taking the closure of C∞c (D) in the ‖ · ‖1-norm. For K closed, an alternative
choice of a form domain for a Dirichlet Laplacian is H1

0(K
int) ⊂ H̃1

0(K); note that
H1

0(K
int) may be considerably smaller than H̃1

0(K). We say that the Dirichlet
Laplacian associated with K is unique, if H1

0(K
int) = H̃1

0(K).
Returning to the sets M = M , Ω = MC and G = M int of Section 1, Assumption

1.2 is equivalent to the uniqueness of the Dirichlet Laplacian on M = ΩC . It follows
directly from results in [19] that the Laplacian of M = M is unique if ∂G satisfies
the segment condition and if M \G = Ω

int \ Ω has measure zero.
While the above discussion of Dirichlet Laplacians applies also to Rd, we note

as an aside that there is a stronger criterion [17] that is specific to R2: in fact, the
Dirichlet Laplacian of a closed set M ⊂ R2 will be unique if for each point x ∈ ∂M
there exists a continuous function f : [0, 1] → R2 such that f(0) = x and f(s) /∈M ,
for all s ∈ (0, 1]. This criterion follows from [19, Thms. 2.1, 2.5], combined with
the fact that Brownian paths in R2 will immediately “spiral” around their starting
point with probability 1 (cf. [25, Ch. 2, Section 7]; we warn the reader to be careful
about the definition of τM in [19] and of τB in [25]).

Magnetic Schrödinger operators. We next turn to magnetic Schrödinger op-
erators. As above, we assume that ~a ∈ C1(R2; R2) is bounded and such that
B = curl~a = ∂2a1 − ∂1a2 has compact support. For an electric potential V ∈
L∞(R2,R) the magnetic Schrödinger operators H(~a) = (−i∇− ~a(x))2 + V (x) can
be easily realized as self-adjoint operators with form domain H1(R2); cf., e.g., [6].
Magnetic operators defined on a closed set K ⊂ R2 with Dirichlet boundary con-
ditions are obtained as for the Dirichlet Laplacian. We will also use the following
simple commutator identities: for φ ∈ C∞c , we have [−i∇ − ~a, φ] = −i∇φ and
[(−i∇− ~a)2, φ] = −2i∇φ · (−i∇− ~a)−∆φ.

The vector potential ~a is not uniquely determined by the field B; in fact, if we
take any function f ∈ C2(R2), then ~a+∇f produces the same field as ~a. Passing
from ~a to ~a+∇f is called a “gauge transformation”; any two C1 vector potentials
on R2 associated with the same field are connected via a gauge transformation. It is
a well-known and simple fact (cf. [6]) that H(~a) and H(~b) are unitarily equivalent
if ~b = ~a+∇f ; this is also true for unbounded vector potentials. In particular, the
spectrum and also the usual parts of the spectrum are gauge-independent.

If the field B has compact support contained in BR, and if the flux Φ is zero,
then we can easily find a vector potential ~a such that curl~a = B and ~a(x) = 0 for
|x| ≥ R. For Φ > 0, we have the following lemma.

Lemma 2.1. Let B : R2 → R be a continuous function of compact support and
suppose Φ =

∫
B > 0. Let R > 0 be such that suppB ⊂ BR. Then there exists a

vector potential ~a of class C1 such that curl~a = B in R2, div~a(x) = 0 for |x| > R,
and

|~a(x)| ≤ Φ
2π

1
|x|
, |x| ≥ R. (2.3)
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Proof. Writing r = (x2
1 + x2

2)
1/2, we let g : [0,∞) → R denote a C1-function

satisfying g′(0) = 0 and

g(r) =
Φ
2π
r−2, r ≥ R. (2.4)

Define ~arad(x) = (−x2g(r), x1g(r)) and let Brad = curl~arad. Then div~arad and Brad

vanish in the exterior of BR, while
∫
Brad(x) dx =

∫
B(x) dx = Φ. Since the flux

of B − Brad is zero, there exists a vector potential ~b of class C1, vanishing outside
of BR, such that curl~b = B − Brad, and we see that ~a = ~arad +~b has the required
properties. �

A direct consequence of Lemma 2.1 is that

σess(H(~a)) = σess(H), (2.5)

provided ~a ∈ C1 with curl~a of compact support. In fact, since gauge transforma-
tions are unitary, we may assume that ~a is as in Lemma 2.1. It is then easy to see
that the resolvent difference H−1 −H(~a)−1 is compact.

While σess(H(λ~a)) = σess(H), for λ ∈ R, the discrete spectrum of H(λ~a) will
depend on λ, in general. For ~a as in Lemma 2.1, the operators H(λ~a) form a
holomorphic self-adjoint family of type (A) in the sense of Kato [20], and it follows
that the discrete eigenvalues of H(λ~a) are described by an (at most countable)
family of analytic functions of λ. This family is locally finite in the sense that each
compact subset of R × (R \ σess(H)) is intersected by only finitely many of these
functions. It follows that, for E /∈ σ(H), the set

M(B, E) = {µ ∈ R : E ∈ σ(H(µ~a))}, (2.6)

is a discrete subset of the real line. In order to define the counting function
M(λ;B, E) for λ > 0, write M(B, E) ∩ (0, λ) = {µ1, . . . , µ`}, for a suitable ` =
`(λ) ∈ N, where µ1 < . . . < µ`. For any j = 1, . . . , `, there is an open set
Uj ⊂ R × (%(H) ∩ R), with (µj , E) ∈ Uj , such that the spectrum of the family
(H(µ~a);µ ≥ 0) in Uj is described by the union of the graphs of a finite set of
(pairwise distinct) analytic functions φjs, s = 1, . . . , rj , where φjs(µj) = E. If φjs

carries multiplicity mjs ∈ N, then the signed spectral multiplicity of H(µ~a) crossing
E as µ increases from 0 to λ is given by

M(λ;B, E) =
`(λ)∑
j=1

rj∑
s=1

σjsmjs, (2.7)

where the sign-factors σjs ∈ {−1, 0, 1} are defined as follows: if kjs ∈ N is the order
of the first non-zero derivative of φjs at µj (i.e., φ(kjs)

js (µj) 6= 0 while φ(m)
js (µj) = 0,

for 0 < m < kjs), we let σjs := 0 if kjs is even, and σjs = sgnφ(kjs)
js (µj), for kjs odd.

In other words, strict crossings in upward direction give a positive contribution
to M(λ;B, E), strict downward crossings are counted negatively, while direction
changes are not counted at all.

It is easy to see that M(λ;B, E) is monotonically decreasing in E ∈ (a, b). More
precisely, for λ fixed, M(λ;B, .) is constant if E varies between two consecutive
eigenvalues of H(λ~a) while M(λ;B, E) decreases by dim ker(H(λ~a)−η) if E crosses
an eigenvalue η ∈ (a, b) of H(λ~a) in upward direction.
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Approximating Operators on Bn. We finally describe the modifications that we
need to make in the approach developed in [7, 10, 1, 11] for Schrödinger operators
Hλ = −∆ + V − λW , λ ∈ R. As above, let (a, b) ∩ σ(H) = ∅ and E ∈ (a, b). The
basic idea translates to the magnetic case as follows: in order to find solutions of
the equation

H(λ~a)u = Eu (2.8)
on R2, we look for solutions of suitably defined problems on Bn, and let n tend
to ∞. The main technical difficulty comes from the “surface states” that may
appear inside the gap of H upon the introduction of a Dirichlet boundary condition
along ∂Bn. In the non-magnetic Schrödinger case, one can use a (λ-independent)
projection plus cut-offs to eliminate these surface states. Since we wish to employ
gauge transformations in the regions

Gn = Bn ∩G = Bn \ Ω̄, (2.9)

we have to make sure that the modifications near ∂Bn will cooperate with such
transformations. We first define

Hn(λ~a) = (−i∇− λ~a)2 + V (x), (2.10)

acting in L2(Bn), with a Dirichlet boundary condition along ∂Bn; if ~b is some
bounded vector potential of class C1, Hn(~b) will be defined accordingly. We then
choose a subinterval [a′, b′] ⊂ (a, b) such that E ∈ (a′, b′), and a continuous function
P : R → R satisfying

0 ≤ P ≤ 1, suppP ⊂ (a, b), P(x) = 1 for a′ ≤ x ≤ b′. (2.11)

One should think of P as a smoothed characteristic function so that P(Hn(λ~a)) is
close to a spectral projection; note that P(Hn(λ~a)) depends continuously on λ in
operator norm. We distinguish between two classes of eigenfunctions of Hn(λ~a))
that contribute to P(Hn(λ~a)):
(1) there may be eigenfunctions produced by the Dirichlet boundary condition on
∂Bn (and the interaction with λ~a); we expect these eigenfunctions to be concen-
trated near ∂Bn.
(2) there may be eigenfunctions produced by the magnetic field; we expect these
eigenfunctions to be concentrated close to the set Ω.

It will turn out that this classification is exhaustive, for n large.
To conclude our construction, we define a family of cut-off functions as follows:

fix ϕ ∈ C∞c (R2) with the properties

0 ≤ ϕ ≤ 1, ϕ(x) =

{
1, for |x| ≤ 1/3
0, for |x| ≥ 2/3

(2.12)

and let
ϕk(x) = ϕ(x/k), ψk = 1− ϕk, k ∈ N. (2.13)

The functions ϕk satisfy the familiar estimates

‖∇ϕk‖∞ ≤ c/k, ‖∆ϕk‖∞ ≤ c/k2, (2.14)

for a constant c. Then ψnP(Hn(λ~a))ψn singles out that part of the range of
P(Hn(λ~a)) which is supported close to the boundary ∂Bn. We choose a constant
γ > b− a and define

H̃n(λ~a) = Hn(λ~a) + γψnP(Hn(λ~a))ψn. (2.15)
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The family (H̃n(λ~a))−1 is norm-continuous in λ.
More generally, if ~b is a bounded vector potential, we define

H̃n(~b) = Hn(~b) + γψnP(Hn(~b))ψn. (2.16)

In the sequel, we will tacitly assume that n is so large that ψn vanishes in a neigh-
borhood of Ω.

As a (partial) motivation for the above definition of H̃n(λ~a), we point out that
H̃n(0) has no spectrum in [a′′, b′′] ⊂ (a′, b′), for n sufficiently large (cf. [10, 1, 11]),
i.e., there exists n′ ∈ N such that

σ(H̃n(0)) ∩ [a′′, b′′] = ∅, n ≥ n′. (2.17)

We certainly cannot expect the same to be true for H̃n(λ~a). However, it can be
shown that H̃n(λψk~a) has no spectrum in [a′′, b′′], for k sufficiently large and all
n ≥ nk:

Proposition 2.2. Suppose that (a, b) is a spectral gap of H, let [a′, b′] ⊂ (a, b) and
[a′′, b′′] ⊂ (a′, b′), and let ~b be a continuous vector potential tending to 0 at infinity.
For µ ≥ 0, define H̃n(µψk

~b) as in (2.16), with P as in (2.11). Then for M > 0
fixed, there exists k0 ∈ N such that

σ(H̃n(µψk
~b)) ∩ [a′′, b′′] = ∅, k ≥ k0, n ≥ nk, 0 ≤ µ ≤M, (2.18)

for some nk > k.

A proof of this result is given in Section 6.
In counting the eigenvalues of H̃n(λ~a), we will need two related operators which

appear in the process of taking the limit λ→∞ in H̃n(λ~a).
Here we first introduce the Dirichlet Laplacian −∆Gn

on Gn = Bn \ Ω̄, and the
operator

HGn(λ~a) = (−i∇− λ~a(x))2 + V (x), (2.19)
acting in L2(Gn), with Dirichlet boundary conditions (i.e., with C∞c (Gn) as a form
core). We have two choices to modify HGn

(λ~a) near the boundary ∂Bn: following
the construction of H̃n(λ~a), we first define

H̃Gn(λ~a) = HGn(λ~a) + γψnP(HGn(λ~a))ψn. (2.20)

Alternatively, instead of P(HGn
(λ~a)) we may use P(Hn(λ~a)) to produce

ĤGn
(λ~a) = HGn

(λ~a) + γψnP(Hn(λ~a))ψn; (2.21)

we will need to use both operators since taking λ → ∞ in H̃n(λ~a) leads us to
ĤGn

(λ~a), while the natural gauge transformation operates on H̃Gn
(λ~a). Fortu-

nately, the norm difference between the two correction terms tends to zero in op-
erator norm, as n→∞; cf. Proposition 8.1.

3. Schrödinger Operators with High Barriers

In this section, we recall some basic facts about the eigenvalues and eigenvalue
counting functions associated with the family of Schrödinger operators

H + µχU , µ ≥ 0, (3.1)

acting in L2(R2), where U ⊂ R2 is open and bounded. Let M = R2 \ U and
HM = −∆M + V ; for simplicity of notation, we again assume that V ≥ 1. It is
well-known thatH+µχU converges toHM in norm resolvent sense; this follows from
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the monotonicity of the associated quadratic forms and the fact that the difference
of resolvents H−1−H−1

M is compact (cf., e.g., [14]). Compactness also implies that
σess(HM ) = σess(H) so that HM has only discrete spectrum in R \ σess(H).

Let (a, b)∩σ(H) = ∅ and let E ∈ (a, b). The eigenvalues of H+µχU in (a, b) are
analytic, monotonically increasing functions of the coupling µ. Any compact subset
of R × (a, b) is intersected by at most a finite number of these analytic functions.
For E ∈ (a, b) and λ > 0, we let

N(λ;U,E) =
∑

0<µ<λ

dim ker(H + µχU − E) (3.2)

denote the total spectral multiplicity crossing E at couplings µ ∈ (0, λ). Obviously,
N(λ;U,E) is monotonically increasing w.r.t. λ and monotonically decreasing w.r.t.
E. Monotonicity with respect to U is more subtle:

Lemma 3.1. Let U ⊂ U ′ be open and bounded subsets of R2 and let E ∈ R\σ(H).
Then

N(λ;U,E) ≤ N(λ;U ′, E), λ ≥ 0.

Proof. By the Birman-Schwinger principle, N(λ;U,E) is equal to the number of
eigenvalues less than −1/λ of the (compact and symmetric) Birman-Schwinger
operator

KU = χU (H − E)−1χU . (3.3)

Now suppose L is a linear subspace of L2(U) such that 〈KUu, u〉 < (−1/λ)‖u‖2, for
all 0 6= u ∈ L. Then U ′ ⊃ U implies that we also have 〈KU ′u, u〉 < (−1/λ)‖u‖2, for
all 0 6= u ∈ L. Therefore, the min-max principle of Weyl ([28, Thm. XIII-2]) yields
dim−1/λ(KU ′) ≥ dim−1/λ(KU ), and the result follows. �

The eigenvalues of H +µχU either cross the gap or they are asymptotic to some
eigenvalue of HM in the gap, as µ→∞; in fact, for each η ∈ σdisc(HM ) there exists
an eigenvalue branch of H + µχU that is asymptotic to η, as µ → ∞. Finally, we
let

N(U,E) = lim sup
λ→∞

N(λ;U,E) (3.4)

denote the total number of eigenvalues (counting multiplicities) of H + µχU that
cross E as µ ranges from 0 to ∞. N(U,E) is finite for bounded U and there exists
λ0 ≥ 0 such that N(U,E) = N(λ;U,E), for all λ ≥ λ0. Upper and lower bounds
for N(U,E) are discussed below.

Central to our approach are approximations on large disks Bn and we need to
study the convergence of such approximations to the corresponding problem on R2.
For the case of potential barriers, we consider H̃n = H̃n(0), as defined in Section 2,
and we let

Nn(U,E) =
∑

0<µ<∞
dim ker(H̃n(0) + µχU − E) (3.5)

denote the number of eigenvalues (counting multiplicities) of H̃n(0)+µχU that cross
E at positive couplings. It follows by regular perturbation theory and monotonicity
that

Nn(U,E) = dimE(H̃n)− dimE(ĤGn
), (3.6)
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with ĤGn
= ĤGn

(0) as in (2.21). For later use we note that, for E /∈ σ(HM ) and
n large, we have dimE(ĤGn

) = dimE(H̃Gn
), as ‖ψn (P(Hn)− P(HGn

))ψn‖ → 0,
n→∞, by Proposition 8.1. Therefore,

Nn(U,E) = dimE(H̃n)− dimE(H̃Gn
), (3.7)

for n large, provided E /∈ σ(HM ).
The main result of this section reads as follows.

Proposition 3.2. Let U ⊂ R2 be open and bounded, let M = R2 \U , and suppose
that E ∈ R, E /∈ σ(H) ∪ σ(HM ). We then have

Nn(U,E) → N(U,E), n→∞. (3.8)

Proof. (1) We denote the associated Birman-Schwinger operators as

K = χU (H − E)−1χU , Kn = χU (H̃n − E)−1χU ; (3.9)

then [11, Corollary 2.2] implies

‖Kn −K‖ → 0, n→∞, (3.10)

where Kn has been extended by zero outside of Bn.
(2) As N(U,E) is finite, there exists η0 > 0 such that K has no spectrum in the
interval (−η0, 0). There also exist λ0 > 0 and δ0 > 0 such that H + µχU has no
eigenvalues in the interval (E − δ0, E + δ0), for µ ≥ λ0.
(3) We now claim that there exist η1 > 0 and n1 ∈ N such that the Birman-
Schwinger operators Kn have no spectrum in the interval (−η1, 0), for n ≥ n1.

Assuming the claim not to be true, it follows that there exist sequences (nj) ⊂
N, (λj) ⊂ (0,∞) such that E ∈ σ(H̃nj

+ λjχU ) and nj → ∞, λj → ∞. Let
uj ∈ D(H̃nj ) satisfy ‖uj‖ = 1 and (H̃nj + λjχU )uj = Euj . We now consider
vj = φnj/3uj and wj = uj −vj = ψnj/3uj , where φk, ψk are as in (2.12), (2.13). By
the familiar calculations we find (assuming that nj is so large that χUψnj/3 = 0,
without restriction)

(H̃nj −E)(wj) = (H̃nj + λjχU −E)(wj) = −2∇ψnj/3 · ∇uj − (∆ψnj/3)uj . (3.11)

By construction of H̃n, there exists a constant β > 0 such that ‖(H̃n − E)w‖ ≥
β‖w‖, for all w ∈ D(H̃n), and so we can use (2.14) to find a constant C such that

β‖wj‖ ≤ Cn−1
j (‖∇uj‖+ ‖uj‖) . (3.12)

It is easy to see that there is a constant C ′ > 0 such that ‖∇uj‖ ≤ C ′, since
λjχU ≥ 0. As a consequence,

‖wj‖ → 0, ‖vj‖ → 1, j →∞. (3.13)

By a similar calculation we also find that

(H̃nj
+ λjχU − E)vj → 0, j →∞. (3.14)

Obviously, vj ∈ D(H) and (H + λjχU − E)vj = (H̃nj
+ λjχU − E)vj → 0. Since

‖vj‖ → 1, it follows that there exists a sequence (εj) of positive numbers, εj → 0,
such that H + λjχU has spectrum in the interval (E − εj , E + εj), in contradiction
to what was obtained in (1).
(4) Let η = min{η0, η1}. Then (2) and (3) imply that the Birman-Schwinger
operators K and Kn, n ≥ n1, have no eigenvalues in the interval (−η, 0), and the
desired result follows from (3.10). �
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Upper and lower estimates for N(U,E) are discussed, e.g., in [11, 12]. The
simplest result reads as follows:

Proposition 3.3. (i) There exist constants C1, C2 such that

N(U,E) ≤ C1R
2 + C2, R > 0, (3.15)

for all open and bounded sets U ⊂ R2 satisfying U ⊂ BR.
(ii) Suppose H satisfies Assumption 1.6. Then there exist constants c1 > 0, c2 ≥ 0
such that

N(U,E) ≥ c1R
2 − c2, R > 0, (3.16)

for all open and bounded U ⊂ R2 that satisfy U ⊃ BR.

Proof. By the monotonicity property of Lemma 3.1, we only need estimates for
U = BR. For the statement (i), we can directly refer to [12, Theorem 3.6], since
dimE(HR) ≤ dimE(−∆BR

) ≤ cR2. Similarly, Assumption 1.6 and [12, Theo-
rem 4.4] yield (ii). �

Remark 3.4. It is not easy to give sharp upper or lower bounds for N(U,E) since
N(U,E) is more or less unrelated to the volume of U (cf. [11, 12]). On the one
hand, the counting function will not be affected in the limit λ→∞ if U has many
tiny holes (“Swiss cheese”). Hence there may be a large number of eigenvalues
crossing E although U has small volume. Conversely, if U consists of small and
well separated pieces, the volume of U may be large while N(U,E) = 0.

4. Eigenvalue Counting on Large Disks

In this section, we create the link that connects the magnetic problem with the
high barrier case: we will show that, for large couplings λ that satisfy λΦ ∈ 2πZ,
the signed spectral flow across E on Bn is the same for magnetic perturbations as
for potential barriers. We will use the function

Mn(λ;B, E) = dimE(H̃n(0))− dimE(H̃n(λ~a)), λ > 0, (4.1)

which corresponds to the loss of spectral multiplicity below E for the operators
H̃n(µ~a) as the coupling µ increases from 0 to λ.

Proposition 4.1. Let E ∈ R, E /∈ σ(H) ∪ σ(HM ) and let η > 0 be so small that
[E − η,E + η] does not intersect σ(H)∪ σ(HM ). Then there exists Λ ≥ 0 such that
for all λ ≥ Λ that satisfy λΦ ∈ 2πZ there exists nλ such that

Nn(Ω, E + η) ≤ Mn(λ;B, E) ≤ Nn(Ω, E − η), n ≥ nλ. (4.2)

The proof, given at the end of this section, relies on the following two basic facts:
(1) By the results of [14, 18], the resolvent of H̃Gn

(λ~a) yields a good approximation
of the resolvent of H̃n(λ~a), for λ large. (Here the resolvent of H̃Gn(λ~a) acts on
L2(Gn), with Gn = Bn \ Ω̄, and we take the direct sum with the zero operator on
L2(Ω̄) without making this explicit in the notation.)
(2) Second, for λΦ ∈ 2πZ we may use a gauge transformation to eliminate the
vector potential in the region Gn.

Our first lemma is an adaptation of results of [14, 18] on the emergence of
Dirichlet boundary conditions at the boundary of a strong magnetic field. There
are two additional difficulties: we need estimates that are uniform in n, for n large,
and we have to take care of the non-local terms ψnP(Hn(λ~a))ψn.
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Lemma 4.2. Suppose ~a is a bounded vector potential of class C1 such that B =
curl~a has compact support and Assumption 1.2 is satisfied.

For any ε > 0 there exists Λε ≥ 0 such that

‖H̃n(λ~a)−1 − H̃Gn
(λ~a)−1‖ < ε, λ ≥ Λε, (4.3)

for all sufficiently large n (i.e., n ≥ Nε,λ).

Proof. By Proposition 7.2, for ε > 0 given there exists Λε such that

‖Hn(λ~a)−1 −HGn
(λ~a)−1‖ < ε, (4.4)

for all λ ≥ Λε and n ≥ Nε,λ. We now add the term γψnP(Hn(λ~a))ψn to both
operators in (4.4) to produce H̃n(λ~a) and ĤGn

(λ~a), as defined in (2.15), (2.21). It
follows from (4.4) and Lemma 4.3, below, that

‖H̃n(λ~a)−1 − ĤGn
(λ~a)−1‖ < 4ε, λ ≥ Λε, n ≥ Nε,λ. (4.5)

By (2.15), (2.21), we have

H̃Gn(λ~a)− ĤGn(λ~a) = γψn (P(HGn(λ~a))− P(Hn(λ~a)))ψn, (4.6)

and Proposition 8.1 concludes the proof. �

We have singled out the following lemma from the proof of Lemma 4.2.

Lemma 4.3. Let A, B denote self-adjoint operators that satisfy A ≥ c and B ≥ c,
for some c > 0, D(A) = D(B), and ‖A−1 − B−1‖ ≤ ε, for some ε ∈ (0, 1). Let C
denote a bounded, symmetric operator. If ‖C‖ ≤ c/2, then

‖(A+ C)−1 − (B + C)−1‖ ≤ 4ε. (4.7)

Proof. First note that A + C ≥ c/2 implies that A + C is invertible with ‖(A +
C)−1‖ ≤ 2/c. By the second resolvent equation, we have

(A+ C)−1 − (B + C)−1 = −(A+ C)−1AA−1(A−B)B−1B(B + C)−1, (4.8)

and the desired result is now immediate from ‖A(A+C)−1‖ ≤ 2, ‖B(B+C)−1‖ ≤ 2,
and B−1(A−B)A−1 = B−1 −A−1. �

We next employ a gauge transformation on Gn = Bn \ Ω̄ to eliminate the vector
potential λ~a, for λΦ ∈ 2πZ.

Lemma 4.4. If λ ∈ R satisfies λΦ ∈ 2πZ, then the operators H̃Gn
(λ~a) and H̃Gn

(0)
are unitarily equivalent.

Proof. Fixing a base point x0 ∈ Gn, we define a (multi-valued) function F by a line
integral,

F (x) =
∫

γx

~a(y) · dy, (4.9)

where γx is a smooth path connecting x0 and x within Gn. The values of F at
x ∈ Gn differ by integer multiples of the flux Φ. Each branch of F is (locally) C2

and ∇F = ~a. Thus, for λΦ ∈ 2πZ, the function uλ = eiλF is in C2(Gn) and has
modulus 1. Hence multiplication by uλ defines a unitary operator Uλ on L2(Gn).

To check that Uλ establishes a unitary equivalence between H̃Gn
(λ~a) and H̃Gn

(0),
we first note that C1

c (Gn), the space of C1-functions of compact support in Gn, is a
core for the quadratic forms of both operators and that C1

c (Gn) is invariant under
Uλ. Furthermore, it is easy to see that for all f , g ∈ C1

c (Gn),

〈u−1
λ (−i∇− λ~a)uλf, u

−1
λ (−i∇− λ~a)uλg〉 = 〈−i∇f,−i∇g〉. (4.10)
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From this it easily follows that U−1
λ HGn

(λ~a)Uλ = HGn
(0). Therefore, by the

Spectral Calculus,
U−1

λ P(HGn
(λ~a))Uλ = P(HGn

(0)). (4.11)

Finally, [Uλ, ψn] = 0 since Uλ is a multiplication operator, and we are done. �

Proof of Proposition 4.1. It follows from Lemma 4.2 that there exists Λ ≥ 0 such
that

dimE(H̃n(λ~a)) ≤ dimE+η(H̃Gn
(λ~a)), λ ≥ Λ, (4.12)

for n large, n ≥ nλ, say. By Lemma 4.4, H̃Gn(λ~a) is unitarily equivalent to H̃Gn =
H̃Gn(0), provided λΦ ∈ 2πZ, and we conclude that for λ ≥ Λ, λΦ ∈ 2πZ, and
n ≥ nλ we have

Mn(λ;B, E) = dimE(H̃n)− dimE(H̃n(λ~a))

≥ dimE(H̃n)− dimE+η(H̃Gn) (4.13)

= dimE+η(H̃n)− dimE+η(H̃Gn
),

as dimt(H̃n) is constant for a < t < b. Recalling (3.7), this proves the first inequal-
ity.

The proof of the second inequality in Proposition 4.1 is analogous and omitted.
�

Combining the convergence results of Section 3 with Proposition 4.1 we obtain
the following preliminary result.

Proposition 4.5. Let E ∈ R, E /∈ σ(H)∪ σ(HM ). Then there exists Λ0 ∈ N such
that for λ ≥ Λ0 satisfying λΦ ∈ 2πZ, there exists nλ such that

Mn(λ;B, E) = N(Ω, E), n ≥ nλ. (4.14)

Proof. Let η > 0 be such that [E−η,E+η] doesn’t intersect the spectrum of either
H orHM ; in particular, N(Ω, E±η) = N(Ω, E). By Proposition 3.2, Nn(Ω, E±η) →
N(Ω, E ± η) = N(Ω, E). Now Proposition 4.1 implies that Mn(λ;B, E) = N(Ω, E),
for λ ≥ Λ, λΦ ∈ 2πZ, and for all n ≥ nλ, and we are done. �

5. The Convergence Step

In Section 4, we have seen that limn→∞Mn(λ;B, E) exists and is equal to
N(Ω, E), provided λ ≥ Λ and λΦ ∈ 2πZ. Nowe, we show that limn→∞Mn(λ;B, E)
is equal to M(λ;B, E) for most λ ≥ 0. The main result of this section reads as
follows.

Proposition 5.1. Let B be a continuous function of compact support, and let
~a ∈ C1(R2; R2) be such that curl~a = B, with ~a tending to zero at infinity and
div~a(x) = 0 outside some ball BR. Let E ∈ R \ σ(H) and define Mn(λ;B, E) and
M(λ;B, E) as before. Let λ ≥ 0 be such that E /∈ σ(H(λ~a)). Then

Mn(λ;B, E) → M(λ;B, E), n→∞. (5.1)

Proof. (1) Fix a < a′ < b′ < b such that (a, b)∩σ(H) = ∅ and a′ < E < b′. Also fix
λ > 0 such that E /∈ σ(H(λ~a)). By analyticity and compactness, the spectrum of
H(µ~a) inside the compact set Kλ = [0, λ+ 1]× [a′, b′] ⊂ [0,∞)× (a, b) is the union
of the graphs Γ(φj) of a finite number of analytic functions φj , defined on suitable
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intervals of the real line, with values in (a, b). Regular perturbation theory yields
a constant C such that |φ′j | ≤ C, for all j.

By compactness and analyticity again, the number of points in Kλ where the
graphs of two or more of the functions φj intersect is finite. Similarly, the number
of points in Kλ where any of the functions φj has derivative zero, is finite too.

Therefore, we can find levels E+ > E and E− < E with the following properties:

• E± ∈ (a′, b′) and M(λ;B, E±) = M(λ;B, E);
• E± /∈ σ(H(λ~a));
• For all j we have φ′j(t) 6= 0 whenever t ∈ (0, λ+ 1] is such that φj(t) = E±;
• For any t ∈ (0, λ + 1], there is at most one j such that φj(t) = E+ or
φj(t) = E−.

(2) We now consider E+. A simple compactness argument and the properties
collected in (1) imply that there exists a finite number of open rectangles

Rk := (tk − τk, tk + τk)× (E+ − ηk, E+ + ηk), k = 1, . . . , kλ, (5.2)

with τk, ηk > 0, such that 0 ≤ tk < tk+1, and
(a) the union of the intervals (tk − τk, tk + τk), k = 1, . . . , kλ, covers [0, λ];
(b) for each k, there is at most one j = jk such that Γ(φjk

) ∩Rk 6= ∅.
(c) suppose there exists j = jk such that Γ(φjk

) intersects Rk; then we may assume
that φjk

(tk) = E+, i.e., φjk
crosses the level E+ at the center of Rk. In addition, we

may assume that φ′jk
(t) 6= 0, for tk−τk < t < tk +τk, and that |φjk

(tk±τk)−E+| <
ηk/2.
(d) By decreasing the τk’s, if necessary, we may assume without restriction that
tk−1 < tk − τk < tk + τk < tk+1.
(3) Suppose now that Rk ∩ Γ(φj) = ∅, for all j. Then it is a direct consequence
of Lemma 5.2, below, that (E+− ηk/2, E+ + ηk/2) doesn’t contain any eigenvalues
of H̃n(µ~a), for |µ − tk| < τk and for n ≥ nk. Therefore, the counting functions
M(.;B, E) and Mn(.;B, E) are constant in the interval (tk−τk, tk +τk), for n large.
(4) We next consider the case where for some j = jk we have Γ(φjk

) ∩ Rk 6= ∅.
Here we define the band of width δ < ηk around the graph of φjk

,

Γδ(φjk
) = {(t, e) : |t− tk| < τk, |e− φjk

(t)| < δ}. (5.3)

Lemma 5.2 implies that there exists a sequence of positive numbers δn ↓ 0 such
that {(t, e); |t− tk| < τk, e ∈ σ(H̃n(t~a))∩ (E+−3ηk/4, E+ +3ηk/4)} is contained in
Γδn(φjk

)∩Rk, for n ≥ nk. In view of (5.7), below, we also assume that δn ≥ 1/ log n,
without restriction.

According to the properties gathered in part (c) of (2), φ′jk
is either strictly

positive or strictly negative in (tk − τk, tk + τk). We now consider the case where
φ′jk

(tk) > 0, so that for n large

mk := M(tk + τk;B, E)−M(tk − τk;B, E)

= dim(E+−δn,E++δn)(H(tk~a)).
(5.4)

We also letm(n)
k denote the loss or gain in spectral multiplicity below E+ for H̃n(t~a),

as t ranges between tk − τk and tk + τk, i.e.,

m
(n)
k = Mn(tk + τk;B, E)−Mn(tk − τk;B, E)

= dimE+(H̃n((tk − τk)~a))− dimE+(H̃n((tk + τk)~a)).
(5.5)
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Here we conclude from the above that

m
(n)
k = dim(E+−δn,E++δn)(H̃n(tk~a)), (5.6)

for n large. In fact, the number of eigenvalues of H̃n(t~a) inside the intervals (φjk
(t)−

δn, φjk
(t)+δn) is constant for tk−τk < t < tk +τk, while at the same time φjk

(tk−
τk)+δn < E+ and φjk

(tk+τk)−δn > E+, for n large. Hence all eigenvalue branches
of H̃n(t~a) that intersect R̃k = (tk − τk, tk + τk)× (E+ − 3ηk/4, E+ + 3ηk/4) enter
below the level E+ (at t = tk−τk) and leave R̃k above the level E+ (at t = tk +τk).
Now Lemma 5.3 and Equations (5.4), (5.6) imply that lim supn→∞m

(n)
k ≤ mk.

In the other direction, we apply simple cut-offs to a basis of ker(H(tk~a) − E+)
to show that, for n large,

dim(E+−δn,E++δn)(H̃n(tk~a)) ≥ mk, (5.7)

and so m(n)
k ≥ mk, for n large. In conclusion, we have shown that m(n)

k = mk, for
n large.
(5) From the above we conclude that M(λ;B, E+) = Mn(λ;B, E+), for n large.

By monotonicity, we have Mn(λ;B, E+) ≤ Mn(λ;B, E), while E± have been
chosen so that M(λ;B, E±) = M(λ;B, E). As a consequence, lim inf Mn(λ;B, E) ≥
lim inf Mn(λ;B, E+) = lim Mn(λ;B, E+) = M(λ;B, E+) = M(λ;B, E).
(6) Similarly, using E− in place of E+, we obtain lim supMn(λ;B, E) ≤ M(λ;B, E),
and we are done. �

In the proof of Proposition 5.1, we have been using two lemmas where the finer
parts of our construction come into play. The first lemma does not take care of
multiplicities.

Lemma 5.2. Under the assumptions of Proposition 5.1, let (a, b) ∩ σ(H) = ∅, let
λ > 0 and suppose we are given sequences (µn) ⊂ (0, λ] and (En) ⊂ (a, b) such that
En is an eigenvalue of H̃n(µn~a), for all n ∈ N.

If µn → µ0 ∈ [0, λ] and En → E0 ∈ (a, b), as n → ∞, then E0 is an eigenvalue
of H(µ0 ~a).

Proof. Let [a′, b′] ⊂ (a, b) and [a′′, b′′] ⊂ (a′, b′) such that E0 ∈ (a′′, b′′). By as-
sumption, there exist un ∈ D(H̃n) = D(Hn), ‖un‖ = 1, such that

H̃n(µn~a)un = Enun, n ∈ N. (5.8)

With φk and ψk as in (2.12), (2.13), we let

vn = φn/3un, wn = ψn/3un = 1− vn. (5.9)

Clearly, vn ∈ D(H). Below, we will prove that

‖vn‖ → 1, (H(µ0~a)− E0)vn → 0, n→∞. (5.10)

It is then immediate from (5.10) that E0 belongs to the spectrum of H(µ0~a).
For the proof of (5.10) we first observe that [ψnP(Hn(µn~a))ψn, ψn/3] = 0 because

(1− ψn/3)ψn = 0. We next compute

(H̃n(µn~a)− En)(ψn/3un) = [H̃n(µn~a), ψn/3]un

= [Hn(µn~a), ψn/3]un

= −2i∇ψn/3 · (−i∇− µn~a)un −∆ψn/3un.

(5.11)
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Since ‖(−i∇ − µn~a)un‖2 is clearly bounded while the ψn/3 satisfy the estimates
given in (2.14), we see that

(H̃n(µn~a)− En)(ψn/3un) → 0, n→∞. (5.12)

In (5.12), we are now going to replace ~a with ψk~a, for suitable k. This is the most
subtle point of our construction and it is here that the specific definition of the
operators H̃n(~b) bears fruit.

First, Proposition 2.2 yields a k ∈ N such that the interval [a′′, b′′] is free of
spectrum of H̃n(µψk~a), for n ≥ nk, and for all 0 ≤ µ ≤ λ.

Second, for n ≥ 9k, we have ψkψn/3 = ψn/3 so that Hn(µn~a)(ψn/3un) =
Hn(µnψk~a)(ψn/3un).

Third, Proposition 8.1 implies that

‖ψn [P(Hn(µn~a))− P(Hn(µnψk~a))]ψn‖ → 0, n→∞, (5.13)

and we conclude from (5.12), (5.13) that

(H̃n(µnψk~a)− En)(wn) → 0, n→∞. (5.14)

Let η > 0 denote the smaller of the numbers b′′−E0 and E0− a′′. By the Spectral
Theorem, we have

η‖v‖ ≤ ‖(H̃n(µψk~a)− E0)v‖, v ∈ D(Hn), n ≥ nk, (5.15)

and it now follows from (5.14) that wn → 0, proving the first part of (5.10).
As for the second part of (5.10), we first compute

(H(µn~a)− En)((1− ψn/3)un) = (H̃n(µn~a)− En)((1− ψn/3)un)

= −[H̃n(µn~a), ψn/3]un.
(5.16)

It was shown above that [H̃n(µn~a), ψn/3]un → 0, as n → ∞, and it follows that
(H(µn~a)− En)vn → 0, as n→∞. We finally observe that

‖ (H(µn~a)−H(µ0~a)) vn‖ ≤2|µn − µ0|2‖|~a|2 vn‖
+ |µn − µ0| (2‖~a · ∇vn‖+ ‖(div~a)vn‖) .

(5.17)

Since ~a and div~a are bounded, the RHS of (5.17) tends to zero, as n→∞, and it
follows from (5.16) that (H(µ0~a)− E0)vn → 0, as claimed. �

The next lemma is a variant of Lemma 5.2, where we keep track of multiplicities.
The proof is similar to the proof of Lemma 5.2 and it is omitted.

Lemma 5.3. Let µ0 > 0, E0 ∈ (a, b) and assume that

dim(E0−δn,E0+δn)(H̃n(µ0~a)) = m, n ≥ n0, (5.18)

for some m,n0 ∈ N and for a sequence of positive numbers δn such that δn → 0, as
n→∞. Then

dim ker(H(µ0~a)− E0) ≥ m. (5.19)

Before proceeding to the proof of our main result, Theorem 1.3, we need yet
another lemma.

Lemma 5.4. Let E /∈ σ(H) ∪ σ(HM ). Then there exists Λ′ ≥ 0 such that E /∈
σ(H(λ~a)), for λ ≥ Λ′ satisfying λΦ ∈ 2πZ.
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Proof. Let γ > 0 denote the distance from E to σ(HM ). For λ large, λΦ ∈ 2πZ,
the spectrum of H(λ~a) inside the gap (a, b) is contained in a γ/2-neighborhood of
σ(HM ): in fact, Proposition 7.1 implies that

‖(H(λ~a))−1 − (HM (λ~a))−1‖ → 0, λ→∞, (5.20)

while, by a simple variant of Lemma 4.4, HM (λk~a) is unitarily equivalent to HM ,
provided λΦ ∈ 2πZ, and so σ(HM (λ~a)) = σ(HM ). This implies the desired result.

�

We are now ready for the proof of our main results as stated in Section 1.

Proof of Theorem 1.3. By Proposition 4.5 we have for all λ ≥ Λ that satisfy λΦ ∈
2πZ

Mn(λ;B, E) = N(Ω, E), n ≥ nλ. (5.21)

By Lemma 5.4 we see that E /∈ σ(H(λ~a)), for λ large, λΦ ∈ 2πZ, and we may
apply Proposition 5.1 to the effect that Mn(λ;B, E) → M(λ;B, E), as n→∞. �

Corollaries 1.5 and 1.7 follow directly from Theorem 1.3 and Proposition 3.3.

Remark 5.5. In this remark, we give some indications on the proof of (1.7). Let
again Φ > 0 and E /∈ σ(H) ∪ σ(HM ). Also recall that M(λk;B, E) = N(Ω, E),
according to Theorem 1.3, for λk := 2kπ/Φ large enough.

Writing d := dist(E, σ(H) ∪ σ(HM )), we let E′ = E + d/3 and E′′ = E + 2d/3.
For any ε > 0, Lemma 4.2 yields an estimate

‖H̃n(λ~a)−1 − H̃Gn
(λ~a)−1‖ < ε, (5.22)

for λ ≥ Λε, n ≥ N(ε, λ), and it follows that, for λ ≥ Λ′ and n ≥ n′(λ),

dimE(H̃n(λ~a)) ≤ dimE′(H̃Gn(λ~a)) = dimE′(H̃Gn((λ− λk)~a)), (5.23)

for k ∈ N, by a simple variant of Lemma 4.4. For any λ ≥ 0 we can pick k such
that |λ− λk| ≤ π/Φ =: µ0.

The electric potential q(x) := |~a(x)|2 is continuous and satisfies 0 ≤ q(x) ≤
C(1 + |x|)−2, by Lemma 2.1. By (6.1), we have

H̃Gn
(κ~a) ≥ (1− ε)H̃Gn

(0)− (1 + 1/(2ε))µ2
0 q, 0 ≤ κ ≤ µ0, (5.24)

in the sense of quadratic forms. We now fix some 0 < ε0 ≤ d with the property that
dimE(H̃Gn

(0)) = dimE′′(H̃Gn
(0)) = dimE′

(
(1− ε0)H̃Gn

(0)
)
, for n large; such an

ε0 exists since the spectrum of H̃Gn
approaches the spectrum of HM , as n → ∞.

Now (5.24) implies (writing η0 := (1 + 1/(2ε0))µ2
0)

dimE′(H̃Gn
(κ~a)) ≤ dimE′

(
(1− ε0)H̃Gn

(0)− η0q
)

≤ dimE′((1− ε0)H̃Gn
(0)) + C(η0, q)

= dimE(H̃Gn
(0)) + C(η0, q),

(5.25)

with C(η0, q) denoting the number of eigenvalues of the family (1− ε0)H̃Gn
(0)− ξq

that cross E′ at couplings ξ ∈ (0, η0). There are several possibilities to obtain
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bounds on C(η0, q) by using the Birman-Schwinger principle, e.g. We conclude
that

Mn(λ;B, E) = dimE(H̃n(0))− dimE(H̃n(λ~a))

≥ dimE(H̃n(0))− dimE(H̃Gn
(0))− C(η0, q)

= Nn(Ω, E)− C(η0, q),

(5.26)

for λ large, where we have also used (3.7). The upper estimate is obtained in the
same way. Now n→∞ and Propositions 5.1 and 3.2 yield (1.7).

We conclude this section with a comment on the case where the flux Φ is zero.

Remark 5.6. Our main result (Theorem 1.3) includes the case Φ = 0. If the
flux Φ is zero, substantial simplifications of the proof are possible under additional
smootheness assumptions on ∂G that allow to pass to an equivalent vector potential
~b such that curl~b = B and~b(x) = 0 for a.e. x ∈M . A suitable gauge transformation
can be constructed by starting from a line integral of ~a in the open set G, as in the
proof of Lemma 4.4, and then extending first to the closed set G and then to R2;
both extension steps are non-trivial and require additional (but mild) assumptions
([32, 14]).

Assuming for the moment that a vector potential ~b with the above proper-
ties exists, we may work with the λ-independent “correction term” ψnP(Hn(0))ψn

throughout. From [14] and a simple variant of Proposition 7.2, we then infer that

‖Ĥn(λ~b)−1 − Ĥ−1
Gn

(0)‖ < ε, λ ≥ Λε, n ≥ nε,λ, (5.27)

and (3.6) establishes the desired link with the case of a high barrier on Ω.

6. Appendix A: Proof of Proposition 2.2

We let h and h~b denote the quadratic forms of the operators H = −∆ + V and
H(~b) = (−i∇ −~b)2 + V , respectively, where ~b = (b1(x), b2(x)) denotes a bounded
vector potential. Recall that we always assume V ≥ 1. Introducing the electric
potential q = q~b(x) := b21(x) + b22(x), it is easy to see that

|h[u]− h~b[u]| ≤ εh[u] + (1 + 1/(2ε)) 〈qu, u〉, u ∈ H1, ε > 0. (6.1)

In fact, (6.1) follows from the elementary estimate∣∣〈~bu,∇u〉∣∣ ≤ 2∑
j=1

∫
|bju ∂ju|dx ≤

2∑
j=1

(
ε‖∂ju‖2 +

1
4ε
〈bju, bju〉

)
, ε > 0. (6.2)

The following notation will be useful: Given a spectral gap (a, b) of H, we choose a
sequence of (non-empty) subintervals (aj , bj) satisfying [aj , bj ] ⊂ (aj−1, bj−1), with
a0 = a and b0 = b, j ∈ N. (6.1) and [20, Thm. VI-3.9] yield the following lemma.

Lemma 6.1. Suppose (a, b)∩σ(H) = ∅, and let (a1, b1) as above. Then there exists
a constant η > 0 such that σ(H(~b)) ∩ [a1, b1] = ∅, for all ~b satisfying ‖~b‖∞ ≤ η.

Proof of Proposition 2.2. By the construction of H̃n(0) we have (cf. [7, 1, 10, 11])

σ(H̃n(0)) ∩ [a1, b1] = ∅, n ≥ n1. (6.3)

We will pass from H̃n(0) to H̃n(ψk
~b) by using as an intermediate the operators

Kk,n = (−i∇− ψk
~b)2 + V (x) + γψnP(Hn(0))ψn, k, n ∈ N. (6.4)



20 RAINER HEMPEL & ALEXANDER BESCH EJDE–2003/48

As ~b tends to zero at infinity, we find as before that the magnetic terms obtained
from ψk

~b satisfy the following estimate: for ε > 0, there exists kε such that

|〈ψk
~bu,∇u〉|+ ‖ψk

~bu‖2 ≤ ε〈Hn(0)u, u〉 ≤ ε〈H̃n(0)u, u〉, u ∈ H1
0(Bn), (6.5)

for k ≥ kε and for all n ∈ N; here terms like 〈Hn(0)u, u〉 should be read in the sense
of quadratic forms. As before, (6.5) and [20, Thm. VI-3.9] imply that the operator
Kk,n has no spectrum in the interval [a2, b2], for k ≥ k1, and all n ≥ n1(k).

We next provide an estimate for the difference of H̃n(ψk
~b) and Kk,n which we

denote as

Dk,n = H̃n(ψk
~b)−Kk,n = γψn

(
P(Hn(ψk

~b))− P(Hn(0))
)
ψn. (6.6)

As ‖ψk
~b‖∞ → 0, as k → ∞, it follows again from [20, Thm. VI-3.9] that, for any

ε > 0 there exists k′ε such that for all n

‖Hn(ψk
~b)−1 −Hn(0)−1‖ < ε, k ≥ k′ε. (6.7)

As a consequence, we find that, for ε > 0 given, there exists k′′ε ∈ N such that

‖P(Hn(ψk
~b))− P(Hn(0))‖ < ε, k ≥ k′′ε , (6.8)

and for all n. Going from (6.7) to (6.8) is not entirely trivial. Proceeding as
in the proof of [27, Thm. VIII.18] we can infer from (6.7) that the resolvents of
A = Hn(ψk

~b)−1 and B = Hn(0)−1 satisfy a uniform estimate

‖(A− ζ)−1 − (B − ζ)−1‖ < ε, ζ ∈ C, |ζ| = 2, (6.9)

for k large. We may then express any continuous function of A or B as a contour
integral of the resolvents along |ζ| = 2.

We finally conclude that H̃n(ψk
~b) = Kk,n + Dk,n has no spectrum inside the

interval [a3, b3], for k sufficiently large and n ≥ n1. �

7. Appendix B: Strong magnetic fields and Dirichlet boundaries

Our starting point in this appendix is a result of [14, 18] on the emergence of
a Dirichlet boundary condition along the boundary of the support of a strong
magnetic field. We let HM (λ~a) denote the operator (−i∇ − λ~a)2 + V , acting
in L2(M) with Dirichlet boundary condition. Here V is a bounded, measurable
potential; for simplicity, we again assume V ≥ 1. We use the notation of Section 2
for G, Gn, HM , HGn etc. The following proposition is derived in [18] in the case
V = 0 only; it easy to see that one might include a potential V with positive part
locally integrable and negative part in the Kato class.

Proposition 7.1 ([18]). Suppose ~a is a (bounded) vector potential of class C1 such
that B = curl~a has compact support and let M = {x : B(x) = 0}. We then have

‖(H(λ~a))−1 − (HM (λ~a))−1‖ → 0, λ→∞. (7.1)

In view of Lemma 4.2, we need an analogous result for operators acting on Bn

instead of R2, with estimates that are uniform in n large, for λ fixed (and sufficiently
large). The precise result is as follows:

Proposition 7.2. Let ~a and B as above and let ε > 0. Then there exists Λε such
that for all λ ≥ Λε there exists nε,λ ∈ N such that

‖Hn(λ~a)−1 −HGn(λ~a)−1‖ < ε, n ≥ nε,λ. (7.2)
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For the proof, we will show that the difference of the terms on the left-hand side
of (7.1) and (7.2) tends to zero, as n→∞. Here we first deal with the case ~a = 0
and V = 1 and then use the Feynman-Kac-Itô formula to reduce the magnetic case
to the situation of Lemma 7.3.

Lemma 7.3. Let −∆G, −∆Gn
etc. as in Section 2. Then, as n→∞,

‖
(
(−∆ + 1)−1 − (−∆G + 1)−1

)
−

(
(−∆Bn + 1)−1 − (−∆Gn + 1)−1

)
‖ → 0. (7.3)

Proof. We multiply with 1 = φn + ψn, with φn as in (2.12), (2.13), and rearrange
the 8 terms in form of the following 4 differences,

φn(−∆ + 1)−1 − φn(−∆Bn
+ 1)−1, φn(−∆G + 1)−1 − φn(−∆Gn

+ 1)−1,

ψn(−∆ + 1)−1 − ψn(−∆G + 1)−1, ψn(−∆Bn + 1)−1 − ψn(−∆Gn + 1)−1;

again, resolvents are extended by zero whenever necessary. As an example, we treat
the third of the four terms; the argument in the other cases is similar and omitted.
Let

v = (−∆ + 1)−1f − (−∆G + 1)−1f, f ∈ L2, (7.4)

and find by the usual calculation (−∆ + 1)ψnv = [−∆, ψn]v, whence

ψnv = (−∆ + 1)−1[−∆, ψn]v. (7.5)

It is easy to see that ‖(−∆ + 1)−1[−∆, ψn]‖ ≤ c/n, and the result follows. �

With some more effort one could obtain an exponentially small bound in Lemma
7.3. We are now ready for the proof of Proposition 7.2.

Proof of Proposition 7.2. The proof relies on arguments used in the proof of [14,
Lemma 1.3]. In the following, it will be enough to consider 0 ≤ f ∈ C∞c (Rd). We
start from the Feynman-Kac-Itô-representation for the difference of the semi-groups
associated with H(λ~a) and HM (λ~a),

Dλf(x; t) : =
(
e−tH(λ~a)f − e−tHM (λ~a)f

)
(x)

= Ex

{
eiΦ(λ~a,ω)e−

∫ t
0 V (ω(s))dsχW (ω)f(ω(t))

}
, t > 0,

(7.6)

where W = {ω ; ω(0) = x, ∃s ∈ [0, t) : ω(s) ∈ Ω} denotes the set of those Brownian
paths ω (starting at x at time t = 0) that enter Ω before time t; Φ(λ~a, ω) is a real
phase, given by (15.2) in [31].

We may write down a completely analogous formula for the difference of the semi-
groups associated with the operators Hn(λ~a) and HGn

(λ~a); instead of the set W we
will now have Wn = {ω ; ω(0) = x, ∀s ∈ [0, t) : ω(s) ∈ Bn, ∃s ∈ [0, t) : ω(s) ∈ Ω},
which consists of those paths ω starting at x that do not leave Bn and that enter
Ω before time t. The corresponding difference of semi-groups will be denoted as
Dλ;n.

For the difference Dλ −Dλ;n, the paths ω that remain in the play are given by
the set

W \Wn = {ω ; ∃s1, s2 ∈ [0, t) : ω(s1) ∈ Ω, ω(s2) /∈ Bn}. (7.7)



22 RAINER HEMPEL & ALEXANDER BESCH EJDE–2003/48

Taking the Laplace-transform, we find for a.e. x

|H(λ~a)−1f(x)−HM (λ~a)−1f(x)−
(
Hn(λ~a)−1f(x)−HGn(λ~a)−1f(x)

)
|

≤
∫ ∞

0

∣∣∣Ex{eiΦ(λ~a,ω)−
∫ t
0 V (ω(s))dsχW\Wn

(ω)f(ω(t))}
∣∣∣ dt

≤
∫ ∞

0

Ex

{
e−tχW\Wn

(ω)f(ω(t))
}

dt,

(7.8)

as |eiΦ(~a,ω)| = 1 and e−
∫ t
0 V (ω(s))ds ≤ e−t (recall that V ≥ 1). By the Feynman-Kac

formula, we can rewrite the last line of (7.8):∫ ∞

0

Ex

{
e−tχW\Wn

(ω)f(ω(t))
}

dt

= (−∆ + 1)−1f(x)− (−∆M + 1)−1f(x)

−
(
(−∆n + 1)−1f − (−∆Gn

+ 1)−1f
)
(x).

(7.9)

The result now follows from Lemma 7.3 and Proposition 7.1. �

8. Appendix C

In this appendix we show that the difference of the operators H̃Gn
(λ~a) and

ĤGn(λ~a) is small for n large. We prove here a result that is slightly more general
than what we need in the preceding sections: we compare two magnetic Schrödinger
operators on open sets Gn, G′n ⊂ Bn such that Gn, G

′
n ⊃ Bn \ BR, for some 0 <

R < n. These operators have bounded magnetic and electric potentials ~a, V and
~a′, V ′, respectively, which are defined on all of Rd and which satisfy ~a(x) = ~a′(x),
V (x) = V ′(x), for x ∈ BC

R . We write hn = (−i∇−~a)2 + V , acting in L2(Gn), with
Dirichlet boundary conditions (cf. the definition of HGn(λ~a) in (2.19)); h′n is defined
accordingly. Note that we need not assume that ~a, ~a′ tend to zero at infinity nor
that the associated magnetic fields have support inside BR. Furthermore, the result
of Proposition 8.1 does not depend on the presence of a spectral gap of −∆ + V .
For simplicity of notation, we again assume V, V ′ ≥ 1. We then have:

Proposition 8.1. Let hn, h′n be as above and let p ∈ C0([1,∞)), the space of
continuous functions on [0,∞) tending to 0 at infinity. Then

‖ψn (p(hn)− p(h′n))ψn‖ → 0, n→∞. (8.1)

Furthermore, for any κ > 0 fixed, (8.1) holds uniformly for µ~a, µ~a′ in place of ~a,
~a′, provided 0 ≤ µ ≤ κ.

As in Section 7, we first use the Feynman-Kac-Itô formula to eliminate the
magnetic vector potentials. In the following lemma, we write −∆n = −∆Bn and
−∆R,n = −∆Bn\BR

.

Lemma 8.2. With the notation and assumptions of Proposition 8.1, we have for
t > 0∣∣e−thnf(x)− e−th′

nf(x)
∣∣ ≤ 2

(
e−t(−∆n+1)|f |(x)− e−t(−∆R,n+1)|f |(x)

)
, (8.2)

for all f ∈ C∞c and a.e. x ∈ Rd.
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Proof. It is enough to consider f ≥ 0. Writing down the Feynman-Kac-Itô formula
for e−thnf(x) and for e−th′

nf(x) (cf. (15.2) in [31], e.g.) and taking the difference,
we see that all paths drop out from the integration that do not enter the set BR,
for s ∈ [0, t). We write for fixed x ∈ Bn

W = {ω;ω(0) = x, ∃s ∈ [0, t) : ω(s) ∈ BR, ∀τ ∈ [0, t) : ω(τ) ∈ Bn} (8.3)

and obtain for f ≥ 0∣∣e−thnf(x)− e−th′
nf(x)

∣∣
≤ Ex

{
(
∣∣eiΦ(~a,ω)−

∫ t
0 V (ω(s))ds

∣∣ +
∣∣eiΦ(~a′,ω)−

∫ t
0 V ′(ω(s))ds

∣∣)χW (ω)f(ω(t))
}
.

(8.4)

As in the proof of Proposition 7.2, we find∣∣e−thnf(x)− e−th′
nf(x)

∣∣ ≤ 2Ex

{
e−tχW (ω)f(ω(t))

}
= 2

(
e−t(−∆n+1) − e−t(−∆R,n+1)

)
f(x),

(8.5)

by the Feynman-Kac-formula for e−t(−∆n+1) and e−t(−∆R,n+1). �

As before, we employ the Laplace-transform to pass from the semi-group esti-
mates of Lemma 8.2 to resolvent estimates:

Lemma 8.3. Under the above assumptions, we have for k ∈ N
‖ψn

(
h−k

n − (h′n)−k
)
ψn‖ ≤ 2 ‖ψn

(
(−∆n + 1)−k − (−∆R,n + 1)−k

)
ψn‖. (8.6)

Lemma 8.4. With the above notation and assumptions, there exist constants α >
0, c ≥ 0 such that

‖ψn

(
(−∆n + 1)−k − (−∆R,n + 1)−k

)
ψn‖ ≤ c e−α(n−R). (8.7)

Proof. We first consider k = 1. For u ∈ C∞c (Bn), write

v =
(
(−∆n + 1)−1 − (−∆R,n + 1)−1

)
ψnu. (8.8)

Fix k0 ∈ N such that φk0 = 1 on BR and consider n large enough to have ψnψk0 =
ψn. We then have ψk0v ∈ D(−∆n) and (−∆n + 1)(ψk0v) = −2∇ψk0 · ∇v−∆ψk0v,
or

ψnv = ψnψk0v = ψn(−∆n + 1)−1 (−2∇ψk0 · ∇v −∆ψk0v) . (8.9)
By construction, the set {x;∇ψk0 6= 0} has distance c(n − R) from the support
of ψn. By the maximum principle, the Green’s function of −∆n + 1 is pointwise
bounded by the Green’s function of −∆ + 1, which decays exponentially off the
diagonal. This implies the desired estimate. The proof for k > 1 is similar and
omitted. �

Proof of Proposition 8.1. If p is a polynomial in 1/x, then (8.1) holds by Lemmas
8.3, 8.4. The general result follows via the Stone-Weierstraß-theorem. �

In the following proposition we combine an estimate from Section 6 with Propo-
sition 8.1.

Proposition 8.5. Under the assumptions of Proposition 2.2 (in particular, ~b→ 0
at ∞), we have for P as in (2.11) and Hn(~b) as in (2.10),

‖ψn

(
P(Hn(0))− P(Hn(~b))

)
ψn‖ → 0, n→∞. (8.10)

Since ~b decays at infinity, it is natural to expect that, for n large, there shouldn’t
be much difference between the various correction terms.
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Proof. Given ε > 0, it follows from (6.7) that we can find k ∈ N and n0 = n0(ε, k)
such that

‖P(Hn(ψk
~b))− P(Hn(0))‖ < ε, n ≥ n0. (8.11)

On the other hand, Proposition 8.1 yields that

‖ψn

(
P(Hn(~b))− P(Hn(ψk

~b))
)
ψn‖ → 0, n→∞, (8.12)

and the result follows. �
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