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LARGE-TIME DYNAMICS OF DISCRETE-TIME NEURAL
NETWORKS WITH MCCULLOCH-PITTS NONLINEARITY

BINXIANG DAI, LIHONG HUANG, & XIANGZHEN QIAN

Abstract. We consider a discrete-time network system of two neurons with

McCulloch-Pitts nonlinearity. We show that if a parameter is sufficiently small,
then network system has a stable periodic solution with minimal period 4k,

and if the parameter is large enough, then the solutions of system converge to

single equilibrium.

1. Introduction

We consider the following discrete-time neural network system

x(n) = λx(n− 1) + (1− λ)f(y(n− k)),

y(n) = λy(n− 1)− (1− λ)f(x(n− k),
(1.1)

where the signal function f is given by the following McCulloch-Pitts nonlinearity

f(ζ) =

{
−1, ζ > σ,

1, ζ ≤ σ.
(1.2)

in which λ ∈ (0, 1) represents the internal decay rate, the positive integer k is the
synaptic transmission delay,and σ is the threshold. System (1.1) can be regarded
as the discrete analog of the following artificial neural network of two neurons with
delayed feedback and McCulloch-Pitts nonlinearity signal function

dx

dt
= −x(t) + f(y(t− τ)),

dy

dt
= −y(t)− f(x(t− τ)).

(1.3)

where dx
dt and dy

dt are replaced by the backward difference x(n) − x(n − 1) and
y(n)− y(n− 1) respectively.

Model (1.3) has interesting applications in, for example, image processing of
moving objects, and has been extensively studied in the literature (see [1-3] and
reference herein). But, to the best of our knowledge, the dynamics of the discrete
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model (1.1) are less studied (see [4,5] ).For other discrete neural networks, we refer
to [6,7].

For the sake of convenience, let Z denote the set of all integers. For any a, b ∈ Z,
a ≤ b define N(a) = {a, a+1, · · · }, N(a, b) = {a, a+1, · · · , b},and N = N(0). Also,
let X = {φ|φ = (ϕ,ψ) : N(−k,−1) → R2}. For the given σ ∈ R, let

R+
σ = {ϕ | ϕ : N(−k,−1) → R and ϕ(i)− σ > 0, for i ∈ N(−k,−1)},

R−σ = {ϕ | ϕ : N(−k,−1) → R and ϕ(i)− σ ≤ 0, for i ∈ N(−k,−1)},
X±,±

σ = {φ ∈ X | φ = (ϕ,ψ), ϕ ∈ R±σ and ψ ∈ R±σ },
Xσ = X+,+

σ ∪X+,−
σ ∪X−,+

σ ∪X−,−
σ .

By a solution of (1.1), we mean a sequence {(x(n), y(n))} of points in R2 that
is defined for all n ∈ N(−k) and satisfies (1.1) for n ∈ N .Clearly, for any φ =
(ϕ,ψ) ∈ Xσ ,system (1.1) has an unique solution (xφ(n), yφ(n)) satisfying the
initial conditions

xφ(i) = ϕ(i), yφ(i) = ψ(i), for i ∈ N(−k,−1).

Our goal is to determine the large time behaviors of (xφ(n), yφ(n)) for every φ ∈
Xσ.Our analysis shows that for all φ = (ϕ,ψ) ∈ Xσ, the behaviors of (xφ(n), yφ(n))
as n → ∞ are completely determined by the value (ϕ(−1), ψ(−1)) and the size of
σ.
The main results of this paper as follows.

Theorem 1.1. Let |σ| ≤ 1+λ2k+1−2λ
1−λ2k+1 , φ = (ϕ,ψ) ∈ Xσ satisfy:

(1) ϕ(−1) ≤ σ+1
λ − 1, ψ(−1) ≤ σ+1−2λ

λk+1 + 1 for φ ∈ X+,+
σ ;

(2) ϕ(−1) > σ−1
λk+1 + 1, ψ(−1) ≤ σ+1

λ − 1 for φ ∈ X−,+
σ ;

(3) ϕ(−1) > σ−1
λ + 1, ψ(−1) > σ−1+2λ

λk+1 − 1 for φ ∈ X−,−
σ ;

(4) ϕ(−1) ≤ σ+1
λk+1 − 1, ψ(−1) > σ−1

λ + 1 for φ ∈ X+,−
σ .

Then there exists φ0 = (ϕ0, ψ0) ∈ Xσ such that the solution {xφ0(n), yφ0(n)} of
(1.1) with initial value φ0 = (ϕ0, ψ0) is 4k periodic. Moreover, for any solutions
{(xφ(n), yφ(n))} of (1.1) with initial value φ ∈ Xσ, we have

lim
n→∞

[xφ(n)− xφ
0 (n)] = 0 lim

n→∞
[yφ(n)− yφ

0 (n)] = 0.

Theorem 1.2. Let |σ| > 1 and φ = (ϕ,ψ) ∈ Xσ. Then limn→∞(xφ(n), yφ(n)) =
(1,−1), if σ > 1; and limn→∞(xφ(n), yφ(n)) = (−1, 1), if σ < −1.

Theorem 1.3. Let σ = 1, Then limn→∞(xφ(n), yφ(n)) = (1,−1), if φ ∈ X+,+
σ ∪

X−,+
σ ∪X−,−

σ ; and limn→∞(xφ(n), yφ(n)) = (1, 1), if φ ∈ X+,−
σ .

Theorem 1.4. Let σ = −1, Then limn→∞(xφ(n), yφ(n)) = (−1, 1), if φ ∈ X+,+
σ ∪

X+,−
σ ∪X−,−

σ ; and limn→∞(xφ(n), yφ(n)) = (−1,−1). if φ ∈ X−,+
σ .

For the sake of simplicity, in the remaining part of this paper, for a given n ∈ N
and a sequence z(n) defined on N(−k), we define zn : N(−k,−1) → R by zn(m) =
z(n+m) for all m ∈ N(−k,−1).

2. Preliminary Lemmas

In this section, we establish several technical lemmas, important in the proofs of
our main results. Assume n0 ∈ N , we first note the difference equation

x(n) = λx(n− 1)− 1 + λ, n ∈ N(n0) (2.1)
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with initial condition x(n0 − 1) = a is given by

x(n) = (a+ 1)λn−n0+1 − 1, n ∈ N(n0). (2.2)

And that the solution of the difference equation

x(n) = λx(n− 1) + 1− λ, n ∈ N(n0) (2.3)

with initial condition x(n0 − 1) = a is given by

x(n) = (a− 1)λn−n0+1 + 1, n ∈ N(n0). (2.4)

Let (x(n), y(n)) be a solution of (1.1) with a given initial value φ = (ϕ,ψ) ∈
Xσ.Then we have the following:

Lemma 2.1. Let −1 < σ ≤ 1. If there exists n0 ∈ N such that (xn0 , yn0) ∈
X+,+

σ , then there exists n1 ∈ N(n0) such that (xn1+k, yn1+k) ∈ X−,+
σ . Moreover, if

x(n0 − 1) ≤ σ+1
λ − 1,then (xn0+k, yn0+k) ∈ X−,+

σ .

Proof. Since (xn0 , yn0) ∈ X+,+
σ , for n ∈ N(n0, n0 + k − 1) we have

x(n) = λx(n− 1)− 1 + λ,

y(n) = λy(n− 1) + 1− λ,
(2.5)

By (2.2) and (2.4), for n ∈ N(n0, n0 + k − 1), we get

x(n) = [x(n0 − 1) + 1]λn−n0+1 − 1,

y(n) = [y(n0 − 1)− 1]λn−n0+1 + 1.
(2.6)

We claim that there exists a n1 ∈ N(n0) such that x(n) > σ for n ∈ N(n0−k, n1−1)
and x(n1) ≤ σ. Assume, for the sake of contradiction, that x(n) > σ for all
n ∈ N(n0 − k). From (1.1) and (1.2), we have

y(n) = λy(n− 1) + 1− λ, n ∈ N(n0),

which yield that

y(n) = [y(n0 − 1)− 1]λn−n0+1 + 1 > (σ − 1)λn−n0+1 + 1 > σ, n ∈ N(n0).

Therefore, for all n ∈ N(n0 − k), we have y(n) > σ. By(1.1), then

x(n) = λx(n− 1)− 1 + λ, n ∈ N(N0),

which implies that

x(n) = [x(n0 − 1) + 1]λn−n0+1 − 1, n ∈ N(N0).

Therefore, limn→∞ x(n) = −1, which contradicts limn→∞ x(n) ≥ σ > −1. This
proofs our claim. ¿From (1.1) and (1.2), we have

y(n) = λy(n− 1) + 1− λ, n ∈ N(n0, n1 + k − 1),

which implies that

y(n) = [y(n0 − 1)− 1]λn−n0+1 + 1, n ∈ N(n0, n1 + k − 1).

Note that yn0 ∈ R+
σ and σ < 1 implies

y(n) > σ, n ∈ N(n0 − k, n1 + k − 1), (2.7)

that is yn1+k ∈ R+
σ . This, together with (2.1) and (2.2), implies that x(n) ≤ σ

for n ∈ N(n1, n1 + 2k − 1), that is xn1+k ∈ R−σ . So (xn1+k, yn1+k) ∈ X−,+
σ .

In addition, if x(n0 − 1) ≤ σ+1
λ − 1, then from (2.6) we get yn0+k ∈ R+

σ and
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x(n0) = (x(n0− 1)+1)λ− 1 ≤ σ, Note that x(n0− 1)+1 > σ+1 > 0,(2.6) implies
that

x(n0 + k − 1) ≤ x(n0 + k − 2) ≤ · · · ≤ x(n0) ≤ σ,

that is xn0+k ∈ R−σ . So (xn0+k, yn0+k) ∈ X−,+
σ . This completes the proof. �

Lemma 2.2. Let σ > −1. If there exists n0 ∈ N such that (xn0 , yn0) ∈ X−,+
σ ,then

there exists n1 ∈ N(n0),such that (xn1+k, yn1+k) ∈ X−,−
σ . Moreover, if y(n0−1) ≤

σ+1
λ − 1, then (xn0+k, yn0+k) ∈ X−,−

σ .

Proof. Since (xn0 , yn0) ∈ X−,+
σ , from (1.1) and (1.2), it follows that for n ∈

N(n0, n0 + k − 1),
x(n) = λx(n− 1)− 1 + λ,

y(n) = λy(n− 1)− 1 + λ.
(2.8)

So
x(n) = [x(n0 − 1) + 1]λn−n0+1 − 1,

y(n) = [y(n0 − 1) + 1]λn−n0+1 − 1.
(2.9)

Note that (xn0 , yn0) ∈ X−,+
σ implies x(n0 − 1) ≤ σ, y(n0 − 1) > σ. Similar to the

proof of Lemma 2.1, we know that there exists n1 ∈ N(n0) such that y(n) > σ
for n ∈ N(n0 − k, n1 − 1) and y(n1) ≤ σ. Then (2.8) and (2.9) hold for n ∈
N(n0, n1 + k − 1). So (xn1+k, yn1+k) ∈ X−,−

σ .
Moreover, if y(n0 − 1) ≤ σ+1

λ − 1, then x(n) ≤ σ for n ∈ N(n0, n0 + k− 1), that
is xn0+k ∈ R−σ , and

y(n0) = (y(n0 − 1) + 1)λ− 1 ≤ σ.

By (2.9) we get

y(n0 + k − 1) ≤ y(n0 + k − 2) ≤ · · · ≤ y(n0) ≤ σ,

which implies yn0+k ∈ R−σ . So (xn0+k, yn0+k) ∈ X−,−
σ . �

By a similar argument as that in the proofs of Lemmas 2.1 and 2.2, we obtain
the following result.

Lemma 2.3. Let −1 ≤ σ < 1, if there exists n0 ∈ N such that (xn0 , yn0) ∈ X−,−
σ ,

then there exists n1 ∈ N(n0), such that (xn1+k, yn1+k) ∈ X+,−
σ . Moreover, if

x(n0 − 1) > σ−1
λ + 1, then (xn0+k, yn0+k) ∈ X+,−

σ .

Lemma 2.4. Let σ < 1,if there exists n0 ∈ N such that (xn0 , yn0) ∈ X+,−
σ ,

then there exists n1 ∈ N(n0), such that (xn1+k, yn1+k) ∈ X+,+
σ . Moreover, if

y(n0 − 1) > σ−1
λ + 1, then (xn0+k, yn0+k) ∈ X+,+

σ .

3. Proofs of Main Results

Proof of Theorem 1.1. In view of Lemmas 1-4, it suffices to consider the solution
{(x(n), y(n))} of (1.1) with initial value φ = (ϕ,ψ) ∈ X+,+

σ . ¿From Lemma1, we
obtain (xk, yk) ∈ X−,+

σ , which implies that for n ∈ N(0, k − 1),

x(n) = [ϕ(−1) + 1]λn+1 − 1,

y(n) = [ψ(−1)− 1]λn+1 + 1 .
(3.1)

It follows that

x(k − 1) = [ϕ(−1) + 1]λk − 1,

y(k − 1) = [ψ(−1)− 1]λk + 1.
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Using ψ(−1) ≤ σ+1−2λ
λk+1 , then y(k − 1) ≤ σ+1

λ − 1.
Again by Lemma 2.2, we get (x2k, y2k) ∈ X−,−

σ , which implies that for n ∈
N(k, 2k − 1),

x(n) = [x(k − 1) + 1]λn−k+1 − 1,

y(n) = [y(k − 1) + 1]λn−k+1 − 1 .
(3.2)

It follows that

x(2k − 1) = [x(k − 1) + 1]λk − 1,

y(2k − 1) = [y(k − 1) + 1]λk − 1.

Note that x(k − 1) > (σ + 1)λk − 1 and σ ≤ 1+λ2k+1−2λ
1−λ2k+1 yield

x(2k − 1) > (σ + 1)λ2k − 1 ≥ σ − 1
λ

+ 1.

By Lemma 2.3, we obtain (x3k, y3k) ∈ X+,−
σ , which implies that for n ∈ N(2k, 3k−

1),
x(n) = [x(2k − 1)− 1]λn−2k+1 + 1,

y(n) = [y(2k − 1) + 1]λn−2k+1 − 1 .
(3.3)

It follows that

x(3k − 1) = [x(2k − 1)− 1]λk + 1,

y(3k − 1) = [y(2k − 1) + 1]λk − 1.

Note that y(2k − 1) > (σ + 1)λk − 1 and σ ≤ 1+λ2k+1−2λ
1−λ2k+1 , we have

y(3k − 1) > (σ + 1)λ2k − 1 ≥ σ − 1
λ

+ 1.

By Lemma 2.4, we obtain (x4k, y4k) ∈ X+,+
σ , which implies that for n ∈ N(3k, 4k−

1),
x(n) = [x(3k − 1)− 1]λn−3k+1 + 1,

y(n) = [y(3k − 1)− 1]λn−3k+1 + 1 .
(3.4)

It follows that

x(4k − 1) = [x(3k − 1)− 1]λk + 1,

y(4k − 1) = [y(3k − 1)− 1]λk + 1.

Note that x(3k − 1) ≤ (σ − 1)λk + 1 and σ ≥ −1+λ2k+1−2λ
1−λ2k+1 , we have

x(4k − 1) ≤ (σ − 1)λ2k + 1 ≤ σ + 1
λ

− 1.

Again by Lemma1, we obtain (x5k, y5k) ∈ X−,+
σ , which implies that for n ∈

N(4k, 5k − 1),
x(n) = [x(4k − 1) + 1]λn−4k+1 − 1,

y(n) = [y(4k − 1)− 1]λn−4k+1 + 1 .
(3.5)

It follows that

x(5k − 1) = [x(4k − 1) + 1]λk − 1,

y(5k − 1) = [y(4k − 1)− 1]λk + 1.
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In general, for i ∈ N(1), we can get:

x(n) = [ϕ(−1) + 1]λn+1 + 2λn+1λ
−4(i−1)k − 1
λ2k + 1

− 1,

y(n) = [ψ(−1)− 1]λn+1 + 2λn+k+1λ
−(4i−2)k + 1
λ2k + 1

− 1

for n ∈ N((4i− 3)k, (4i− 2)k − 1);

x(n) = [ϕ(−1) + 1]λn+1 − 2λn+1λ
−(4i−2)k + 1
λ2k + 1

+ 1,

y(n) = [ψ(−1)− 1]λn+1 + 2λn+k+1λ
−(4i−2)k + 1
λ2k + 1

− 1

for n ∈ N((4i− 2)k, (4i− 1)k − 1);

x(n) = [ϕ(−1) + 1]λn+1 − 2λn+1λ
−(4i−2)k + 1
λ2k + 1

+ 1,

y(n) = [ψ(−1)− 1]λn+1 − 2λn+k+1λ
−4ik − 1
λ2k + 1

+ 1,

for n ∈ N((4i− 1)k, 4ik − 1);

x(n) = [ϕ(−1) + 1]λn+1 + 2λn+1λ
−4ik − 1
λ2k + 1

− 1,

y(n) = [ψ(−1)− 1]λn+1 − 2λn+k+1λ
−4ik − 1
λ2k + 1

+ 1,

for n ∈ N(4ik, (4i+ 1)k − 1).

Let φ0 = (ϕ0, ψ0) ∈ X+,+
σ , with

ϕ0(−1) =
1− λ2k

1 + λ2k
, ψ0(−1) =

1 + λ2k − 2λk

1 + λ2k
.

Then

xφ0(n) =
2

1 + λ2k
λn−4(i−1)k+1 − 1,

yφ0(n) =
2

1 + λ2k
λn−(4i−3k)+1 − 1

for n ∈ N((4i− 3)k, (4i− 2)k − 1);

xφ0(n) = − 2
1 + λ2k

λn−(4i−2)k+1 + 1,

yφ0(n) =
2

1 + λ2k
λn−(4i−3k)+1 − 1

for n ∈ N((4i− 2)k, (4i− 1)k − 1);

xφ0(n) = − 2
1 + λ2k

λn−(4i−2)k+1 + 1,

yφ0(n) = − 2
1 + λ2k

λn−(4i−1)k+1 + 1
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for n ∈ N((4i− 1)k, 4ik − 1);

xφ0(n) =
2

1 + λ2k
λn−4ik+1 − 1,

yφ0(n) = − 2
1 + λ2k

λn−(4i−1)k+1 + 1,

for n ∈ N(4ik, (4i+ 1)k − 1).
Clearly, {(xφ0(n), yφ0(n))} is periodic with minimal period 4k, and as n→∞,

xφ(n)− xφ0(n) = [ϕ(−1) + 1]λn+1 − 2λn+1

1 + λ2k
→ 0,

yφ(n)− yφ0(n) = [ψ(−1)− 1]λn+1 +
2λn+k+1

1 + λ2k
→ 0.

This completes the proof of Theorem 1.1. �

Proof of Theorem 1.2. We prove only the case where σ > 1, the case where σ < −1
is similar. We distinguish several cases.
Case 1 φ = (ϕ,ψ) ∈ X−,−

σ . In view of (1.1), for n ∈ N(0, k − 1) we have

x(n) = λx(n− 1) + 1− λ,

y(n) = λy(n− 1)− 1 + λ .
(3.6)

which yields that for n ∈ N(0, k − 1),

x(n) = [ϕ(−1)− 1]λn+1 + 1,

y(n) = [ψ(−1) + 1]λn+1 − 1 .
(3.7)

This implies that xk(m) ≤ σ, yk(m) ≤ σ for m ∈ N(−k,−1), therefore (xk, yk) ∈
X−,−

σ . Repeating the above argument onN(0, k−1), N(k, 2k−1), · · · ,consecutively,
we can obtain that (xn, yn) ∈ X−,−

σ for all n ∈ N . Therefore, (3.7) holds for all
n ∈ N , and hence

lim
n→∞

(x(n), y(n)) = (1,−1).

Case 2 φ = (ϕ,ψ) ∈ X−,+
σ ∪X+,−

σ ∪X+,+
σ . By (1.1), for n ∈ N , we have

x(n) ≤ λx(n− 1) + 1− λ,

y(n) ≤ λy(n− 1) + 1− λ .

By induction, this implies

x(n) ≤ [ϕ(−1)− 1]λn+1 + 1,

y(n) ≤ [ψ(−1)− 1]λn+1 + 1 .
(3.8)

Since

lim
n→∞

[(ϕ(−1)− 1)λn+1 + 1] = 1 < σ,

lim
n→∞

[(ψ(−1)− 1)λn+1 + 1] = 1 < σ,

then there exists m ∈ N(1), such that x(n) < σ, y(n) < σ for n ∈ N(m). This
implies that (xn+k, yn+k) ∈ X−,−

σ for all n ∈ N(m). Thus, by case 1, we have

lim
n→∞

(x(n), y(n)) = (1,−1).

This completes the proof of Theorem 1.2. �
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Proof of Theorem 1.3. We distinguish several cases.
Case 1 φ = (ϕ,ψ) ∈ X−,−

σ . Using a similar argument to that in Case 1 for the
proof of Theorem 1.2, we can show the conclusion is true.
Case 2 φ = (ϕ,ψ) ∈ X−,+

σ . By lemma 2, there exists n0 ∈ N such that
(xn0+k, yn0+k) ∈ X−,−

σ . Thus, it follows from Case 1 that conclusion is true.
Case 3 φ = (ϕ,ψ) ∈ X+,+

σ . By Lemma 2.1, there exists n0 ∈ N , such that
(xn0+k, yn0+k) ∈ X−,+

σ . Thus, it follows from Case 2 that the conclusion is true.
Case 4 φ = (ϕ,ψ) ∈ X+,−

σ . By (1.1) and (1.2) we have that for n ∈ N(0, k − 1),

x(n) = λx(n− 1) + 1− λ,

y(n) = λy(n− 1) + 1− λ

which implies that for i ∈ N(−k,−1),

xk(i) = [ϕ(−1)− 1]λi+k+1 + 1,

yk(i) = [ψ(−1)− 1]λi+k+1 + 1 .
(3.9)

Since ϕ(−1) > σ = 1, ψ(−1) ≤ σ = 1, then (3.9) implies that xk(i) > 1, yk(i) ≤ 1
for i ∈ N(−k,−1), and so (xk, yk) ∈ X+,−

σ . Repeating the above argument on
N(k, 2k − 1), N(2k, 3k − 1), . . . , consecutively, we can get, for all n ∈ N ,

x(n) = [ϕ(−1)− 1]λn+1 + 1,

y(n) = [ψ(−1)− 1]λn+1 + 1 .

Therefore, limn→∞(x(n), y(n)) = (1, 1). This completes the proof of Theorem
1.3. �

The proof of Theorem 1.4 is similar to that of Theorem 1.3 and we omit it.
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