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HARDY INEQUALITIES WITH BOUNDARY TERMS

ZHI-QIANG WANG & MEIJUN ZHU

Abstract. In this note, we present some Hardy type inequalities for functions

which do not vanish on the boundary of a given domain. We establish these
inequalities for both bounded and unbounded domains and also obtain the best

embedding constants in these inequalities for special domains. Our results are

motivated by and building upon some recent work in [5, 6, 9, 12].

1. Introduction

The standard Hardy inequality states that for N ≥ 3,

(N − 2)2

4

∫
RN

u2

|x|2
dx ≤

∫
RN

|∇u|2dx (1.1)

for any u ∈ C∞
0 (RN ). Here (N−2)2/4 is the best possible constant. This inequality

can be extended to functions in the space D1,2(RN ) which is the completion of
C∞

0 (RN ) with respect to the norm

‖u‖2 =
∫

R
|∇u|2dx.

There are many generalizations of this inequality, see for example, [2, 3, 4, 6, 7, 8,
10, 11] and references therein. The weighted version of this inequality was given
in [4]. In this paper we will consider another type of generalizations (motivated by
recent work of Li and Zhu [9] and Zhu [12]). Let Ω ⊂ RN be a bounded domain
and u ∈ D1,2

0 (Ω). Since we can trivially extend u to a new function in D1,2(RN )
which vanishes outside Ω, we obtain the following Hardy inequality on a bounded
domain:

(N − 2)2

4

∫
Ω

u2

|x|2
dx ≤

∫
Ω

|∇u|2dx. (1.2)

Naturally, one may ask whether there are some analogous inequalities that hold
for function u ∈ H1(Ω) (Notice that u(x) may not vanish on the boundary of Ω).
Since (1.2) does not hold for any constant function, we shall expect, like in the case
of Sobolev inequality (see, for example, [9]), the right hand side may include some
lower order terms.
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We shall consider a more general version of the Hardy inequality – the weighted
version ([4]): for a < N−2

2 , it holds for all u ∈ C∞
0 (RN )

(N − 2− 2a)2

4

∫
RN

|x|−2(a+1)u2dx ≤
∫

RN

|x|−2a|∇u|2dx.

Recently, in [5, 6] a new formulation of this inequality has been given by using a
conformal transformation. Based on this conformal transformation we first establish
weighted Hardy type inequalities with boundary terms in two specific domains.
Denote B1(0) = {x ∈ RN : |x| < 1}, and Bc

1(0) = RN \ B1(0). We assume below
N ≥ 2 when we treat the weighted version of the Hardy inequality and N ≥ 3 when
we treat the classical Hardy inequality. Let us define the weighted Sobolev space
D1,2

a (RN ) to be the completion of C∞
0 (RN ) with respect to the following norm

‖u‖2a =
∫

R
|x|−2a|∇u|2dx.

In the following, for simplicity of notations we omit the integration variables when
the situation is clear.

Theorem 1.1. Let a < N−2
2 . Then for all u ∈ D1,2

a (RN )

(N − 2− 2a)2

4

∫
B1(0)

u2

|x|2(a+1)
<

∫
B1(0)

|x|−2a|∇u|2 +
N − 2− 2a

2

∫
∂B1(0)

u2,

(1.3)
and

(N − 2− 2a)2

4

∫
Bc

1(0)

u2

|x|2(a+1)
<

∫
Bc

1(0)

|x|−2a|∇u|2 − N − 2− 2a

2

∫
∂B1(0)

u2.

(1.4)

Remark 1.2. The strict inequalities are due to the non-existence of extremal
functions in (1.3) and (1.4). The constants involved in the above inequalities are
sharp in the sense that

(N − 2− 2a)2

4
= inf

u∈D1,2
a (RN )\{0}

∫
B1(0)

|x|−2a|∇u|2 + N−2−2a
2

∫
∂B1(0)

u2∫
B1(0)

u2

|x|2(a+1)

,

and a similar statement holds for (1.4).

Using similar arguments we obtain a Hardy inequality on any C1 smooth domains
with bounded boundary and 0 /∈ ∂Ω.

Theorem 1.3. Let a < N−2
2 . If Ω ⊂ RN is a smooth domain with ∂Ω being

bounded and 0 /∈ ∂Ω, then there is a constant Ch (depending on Ω), such that for
all u ∈ D1,2

a (RN )

(N − 2− 2a)2

4

∫
Ω

u2

|x|2(a+1)
≤

∫
Ω

|x|−2a|∇u|2 + Ch

∫
∂Ω

u2. (1.5)

If in addition Ω ⊂ RN is bounded and star-shaped with respect to the origin, then
there is a constant C ′

h > 0 (depending on Ω), such that for all u ∈ D1,2
a (RN )

(N − 2− 2a)2

4

∫
Ωc

u2

|x|2(a+1)
≤

∫
Ωc

|x|−2a|∇u|2 − C ′
h

∫
∂Ω

u2. (1.6)
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A natural question following the theorem is what may happen if Ω is convex
(thus star-shaped with respect to any interior point) but the origin lies outside Ω?
Based on a new integral inequality established in [12], we have the following result.

Theorem 1.4. Let Ω ⊂ RN be a bounded piecewise smooth domain which contains
the origin. Assume that ∂Ω consists of two smooth hyper-surfaces Γ1 and Γ2. If Γ2

is concave with respect to the domain Ω and is part of the boundary of a rotationally
symmetric convex domain, then

2−2/N (N − 2)2

4

∫
Ω

u2

|x|2
≤

∫
Ω

|∇u|2 (1.7)

holds for any u ∈ D1,2(RN ) with u = 0 on Γ1.

Remark 1.5. Let Ω ⊂ RN be a smooth convex revolution solid which does not
contain the origin. As a simple corollary of Theorem 1.4, we see that for any
u ∈ D1,2(RN ),

2−2/N (N − 2)2

4

∫
Ωc

u2

|x|2
≤

∫
Ωc

|∇u|2. (1.8)

For any domain Ω and any u ∈ D1,2(RN ) \ {0}, let

I(u, Ω) :=

∫
Ω
|∇u|2∫

Ω
u2

|x|2
.

We will give an example of a domain that Ω satisfies the conditions in Theorem
1.4,

inf
u∈D1,2(RN )\{0},u=0 on Γ1

I(u, Ω) <
(N − 2)2

4
. (1.9)

Quite similar to the case of Sobolev inequality, we have the following theorem.

Theorem 1.6. Let Ω ⊂ RN be a smooth domain such that ∂Ω is bounded and
0 /∈ ∂Ω. If 0 < infu∈D1,2(RN )\{0} I(u, Ω) < (N−2)2/4, then the infimum is achieved
by a function ū ∈ D1,2(RN ).

Remark 1.7. Assume that Ω satisfies the conditions in Theorem 1.4. Following
the proof of Theorem 1.6, we easily prove that if

inf
u∈D1,2(RN )H1(Ω)\{0}, u=0 on Γ1

I(u, Ω) < (N − 2)2/4,

then infu∈D1,2(RN )\{0}, u=0 on Γ1 I(u, Ω) is achieved by some functions. This indi-
cates that if Ω ⊂ RN is a convex domain which does not contain the origin, then
there might be no uniform lower bound for infu∈D1,2(RN )\{0} I(u, Ωc).

2. Proofs of Theorems

The proofs of Theorem 1.1–1.3 are based on the following conformal transfor-
mation which was used in [5, 6] to give a new formulation of a family of weighted
Sobolev inequalities due to Caffarelli-Kohn-Nirenberg in [4]. This family of inequal-
ities include the weighted version of the Hardy inequalities.

We define ϕ : RN → C := R× SN−1 as the conformal transformation

ϕ(x) = (− ln |x|, x

|x|
). (2.1)
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Here we use (t, θ) ∈ R× SN−1. And we define

u(x) = |x|−
N−2−2a

2 v(− ln |x|, x

|x|
), ∀x ∈ RN . (2.2)

Due to the density lemma in [6, Lemma 2.1], we need to prove Theorem 1.1–1.3
only for functions in C1

0 (RN ).

Proof of Theorem 1.1. Let u ∈ C1(B1(0)), and v be given by (2.2). By [6, Propo-
sition 2.2], we know that v ∈ H1(C+), where C+ = {(t, θ) ∈ R × SN−1 : t > 0}.
Denote S := 0× SN−1, we have∫

B1

|x|−2a|∇u|2 =
∫
C+

(|∇θv|2 + (vt +
N − 2− 2a

2
v)2)dµ

=
∫
C+

(|∇v|2 + (N − 2)vtv + (
N − 2− 2a

2
)2v2)dµ

=
∫
C+

(|∇v|2 + (
N − 2− 2a

2
)2v2)dµ +

∫
C+

N − 2− 2a

2
(v2)tdµ,

(2.3)
and∫

C+

N − 2− 2a

2
(v2)tdµ =

∫ ∞

0

∫
St

N − 2− 2a

2
(v2)tdθdt = −N − 2− 2a

2

∫
S

v2dθ,

where St := t× SN−1 and dµ = dθdt. Also, it is easy to check that∫
∂B1

u2dθ =
∫

∂B1

|x|−N+2+2av2dθ =
∫
S

v2dθ.

Therefore, we have∫
B1

|x|−2a|∇u|2 +
N − 2− 2a

2

∫
∂B1

u2dθ =
∫
C+

(|∇v|2 + (
N − 2− 2a

2
)2v2)dµ.

On the other hand ∫
B1

u2

|x|2(a+1)
dx =

∫
C+

|v|2dµ.

It follows that∫
B1
|x|−2a|∇u|2dx + N−2−2a

2

∫
∂B1

u2dθ∫
B1

u2

|x|2(a+1) dx
=

∫
C+

(|∇v|2 + (N−2−2a
2 )2v2)dµ∫

C+
|v|2dµ

> (
N − 2− 2a

2
)2

which yields (1.3). The last inequality in the above expression follows from v being
in H1(C+). The inequality (1.4) can be proved in the same spirit, and we shall omit
the details. �

Proof of Theorem 1.3. Without loss of generality, we can assume that ∂Ω ⊂ B1(0).
For any u(x) ∈ C1(Ω), let ϕ be the transformation given by (2.1), and v(x) be
given by (2.2). Denote Cω = ϕ(Ω). Thus ∂Cω ⊂ C+. Similar to (2.3), we have∫

Ω

|x|−2a|∇u|2 =
∫
Cω

(|∇θv|2 + (vt +
N − 2− 2a

2
v)2)dµ

=
∫
Cω

(|∇v|2 + (
N − 2− 2a

2
)2v2)dµ +

∫
Cω

N − 2− 2a

2
(v2)tdµ.
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But due to Green’s formula∫
Cω

N − 2− 2a

2
(v2)tdµ =

N − 2− 2a

2

∫
∂Cω

(v2, 0)η̄dSω,

where η̄ is the unit out norm vector of ∂Cω and dSω is the volume element on ∂Cω.
Then∣∣N − 2− 2a

2

∫
∂Cω

(v2, 0)η̄dSω

∣∣ ≤ N − 2− 2a

2

∫
∂Cω

v2dSω

=
N − 2− 2a

2

∫
∂Cω

|x|(N−2−2a)u2(− ln |x|, x/|x|)dSω

=
N − 2− 2a

2

∫
∂Ω

|x|−1−2au2

≤ N − 2− 2a

2
C0

∫
∂Ω

u2,

where

C0 =

{
(max{|x| : x ∈ ∂Ω})−1−2a if − 1− 2a ≥ 0,

(min{|x| : x ∈ ∂Ω})−1−2a if − 1− 2a < 0.

Therefore,∫
Ω

|x|−2a|∇u|2 +
N − 2− 2a

2
C0

∫
∂Ω

u2 ≥
∫
Cω

(|∇v|2 + (
N − 2− 2a

2
)2v2)dµ.

On the other hand, ∫
Ω

u2

|x|2(a+1)
dx =

∫
Cω

|v|2dµ.

Above two inequalities yield (1.5). (1.6) can be proved in the same spirit, and we
shall omit details here. �

Proof of Theorem 1.4. We need to prove the inequality only for non-negative smooth
functions. Suppose that u ∈ C1(Ω) is a non-negative function satisfying u = 0 on
Γ1. Let Ω∗ be the ball centered at the origin which has the same volume as Ω. Let
u∗ be the Schwartz symmetrization of u. Namely, we define

u∗(x) = sup{t : µ(t) > ωN |x|N},

where ωN is the volume of the unit ball in RN , and µ(t) is the Lebesgue measure
of the set {x ∈ Ω : u(x) > t}. Then, it is well-known (see, e.g., Bandle [1]) that∫

Ω

u2

|x|2
≤

∫
Ω∗

(u∗)2

|x|2
.

On the other hand, from Zhu [12] (this is the place where we use the assumption
on Γ2) we know that ∫

Ω∗
|∇u∗|2 ≤ 22/N

∫
Ω

|∇u|2.

Since u∗ = 0 on ∂Ω∗, we know from the standard Hardy inequality that

(
N − 2

2
)2

∫
Ω∗

(u∗)2

|x|2
≤

∫
Ω∗
|∇u∗|2.

These three inequalities yield Theorem 1.4. �
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There might be a guess that for Ω satisfying the condition in Theorem 1.4,

inf
u∈D1,2(RN )\{0},u=0 on Γ1

I(u, Ω)

will always be larger than or equal to (N − 2)2/4. However, we present an example
to show that this is not the case.

An example. Let RN
−1 = {(x′, xN ) ∈ RN : xN > −1}. We are going to show that

inf
u∈D1,2(RN )\{0}

∫
RN
−1
|∇u|2∫

RN
−1

u2

|x|2
<

(N − 2)2

4
.

Let ϕ be the transformation given by (2.1), and v(x) be given by (2.2) for x ∈ RN
−1.

Denote C−1 = ϕ(RN
−1). Then∫

RN
−1
|∇u|2∫

RN
−1

u2

|x|2
=

∫
C−1

(|∇v|2 + (N−2
2 )2v2)dµ + N−2

2

∫
C−1

(v2)tdµ∫
C−1

v2dµ
.

Now, we choose

ṽ(t, θ) =



0, t ≤ −R−R0

(t + R + R0)/R0, −R−R0 ≤ t ≤ −R

1, −R ≤ t ≤ R

(R + R0 − t)/R0, R ≤ t ≤ R + R0

0, t ≥ R + R0,

where R0 > 4/(N−2), and R will be chosen sufficiently large. A simple calculation
shows that∫

C−1

(|∇ṽ|2 + (
N − 2

2
)2ṽ2)dµ +

N − 2
2

∫
C−1

(ṽ2)tdµ

=
∫
C−1

(
N − 2

2
)2ṽ2dµ + (

3
2

+ o(1))
|SN−1|

R0
− (

1
2

+ o(1))
N − 2

2
|SN−1|,

where o(1) → 0 as R → ∞. Let ũ(x) = |x|−N−2
2 ṽ(− ln |x|, x

|x| ). It is easy to see
that ũ ∈ D1,2(RN ). Thus for sufficiently large R

inf
u∈D1,2(RN )\{0}

∫
RN
−1
|∇u|2∫

RN
−1

u2

|x|2
≤

∫
RN
−1
|∇ũ|2∫

RN
−1

ũ2

|x|2
< (

N − 2
2

)2.

When Ω = RN
−1 ∩ (supp ũ)o, where (supp ũ)o is the set of interior points of supp ũ,

we easily see that

inf
u∈D1,2(RN )\{0},u=0 on Γ1

I(u, Ω) < (N − 2)2/4.

Proof of Theorem 1.6. Let um ∈ D1,2(RN ) be a minimizing sequence such that∫
Ω

u2
m/|x|2 = 1. Then∫

Ω

|∇um|2 → inf
u∈D1,2(RN )\{0}

I(u, Ω) := ξ < (
N − 2

2
)2.
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If Ω is bounded,
∫
Ω

u2
m ≤ C

∫
Ω

u2
m/|x|2 = C. Thus um is uniformly bounded in

H1(Ω). It follows that um → ū weakly in H1(Ω), thus

ξ + om(1) =
∫

Ω

|∇um|2 =
∫

Ω

|∇um −∇ū|2 +
∫

Ω

|∇ū|2 + om(1), (2.4)

where om(1) → 0 as m →∞. If Ω is unbounded, since ∂Ω is bounded, Ω contains
the exterior of some ball domain. Then we may check that X = {u|Ω | u ∈
D1,2(RN )} is a Hilbert space with a norm ‖u‖2X =

∫
Ω
|∇u|2dx, this is due to the

Sobolev inequality. Then um is bounded in X and has a weak limit ū and we again
have (2.4). By the weak convergence of um

|x| to ū
|x| in L2(Ω), we also have∫

Ω

ū2

|x|2
=

∫
Ω

u2
m

|x|2
−

∫
Ω

(um − ū)2

|x|2
+ om(1). (2.5)

Therefore, we have

ξ + om(1) =
∫

Ω

|∇um −∇ū|2 +
∫

Ω

|∇ū|2 + om(1) by (2.4)

≥ (
N − 2

2
)2

∫
Ω

|um − ū|2

|x|2
− Ch

∫
∂Ω

|um − ū|2 + ξ

∫
Ω

ū2

|x|2
+ om(1)

(by Theorem 1.3 and the definition of ξ)

≥ (
N − 2

2
)2

∫
Ω

|um − ū|2

|x|2
+ ξ

∫
Ω

ū2

|x|2
+ om(1)

(by Sobolev embedding)

= [(
N − 2

2
)2 − ξ]

∫
Ω

|um − ū|2

|x|2
+ ξ + om(1) (by (2.5)),

which implies
∫
Ω
|um−ū|2
|x|2 → 0 as m →∞. It follows that

∫
Ω
|ū|2/|x|2 = 1, thus ū

is the minimizer of I(u, Ω). �

Notes Added in Proof. After this paper was accepted we found a paper by
Adimurthi: Hardy-Sobolev inequality in H1(Ω) and its applications, Comm. Con-
tem. Math., 4 (2002), 409-434, which contains related results and uses different
methods.
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