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EXISTENCE OF SOLUTIONS TO HIGHER-ORDER DISCRETE
THREE-POINT PROBLEMS

DOUGLAS R. ANDERSON

Abstract. We are concerned with the higher-order discrete three-point boundary-
value problem

(∆nx)(t) = f(t, x(t + θ)), t1 ≤ t ≤ t3 − 1, −τ ≤ θ ≤ 1

(∆ix)(t1) = 0, 0 ≤ i ≤ n− 4, n ≥ 4

α(∆n−3x)(t)− β(∆n−2x)(t) = η(t), t1 − τ − 1 ≤ t ≤ t1

(∆n−2x)(t2) = (∆n−1x)(t3) = 0.

By placing certain restrictions on the nonlinearity and the distance between
boundary points, we prove the existence of at least one solution of the boundary
value problem by applying the Krasnoselskii fixed point theorem.

1. Introduction

We are concerned with the existence of solutions to the higher-order discrete
three-point problem

(∆nx)(t) = f(t, x(t + θ)), t1 ≤ t ≤ t3 − 1, −τ ≤ θ ≤ 1 (1.1)

(∆ix)(t1) = 0, 0 ≤ i ≤ n− 4, n ≥ 4

α(∆n−3x)(t)− β(∆n−2x)(t) = η(t), t1 − τ − 1 ≤ t ≤ t1

(∆n−2x)(t2) = (∆n−1x)(t3) = 0. (1.2)

Here we assume

(i) any interval [a, b] is the set of integers {a, a + 1, · · · , b− 1, b};
(ii) ti+1 > ti + n− 1 to avoid overlap in boundary conditions, i ∈ {1, 2};

(iii) f : [t1, t3 − 1]× [0,∞) → [0,∞);
(iv) α, β > 0, t3 − t1 ≥ τ ≥ −1, and θ ∈ [−τ, 1] is constant;
(v) η : [t1 − τ − 1, t1] → R with η(t1) = 0;

(vi) x is defined on [t1 − τ − 1, t3 + n− 1].

For the rest of this paper we also have the hypotheses
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(H1) G(t, s) on [t1, t3+n−1]×[t1, t3−1] is the Green’s function for the difference
equation

(∆nu)(t) = 0, t ∈ [t1, t3 − 1]
subject to the boundary conditions (1.2) with τ = −1.

(H2) g(t, s) on [t1, t3 + 2] × [t1, t3 − 1] is the Green’s function for the difference
equation

(∆3u)(t) = 0, t ∈ [t1, t3 − 1]
subject to the boundary conditions

αu(t1)− β(∆u)(t1) = 0
(∆u)(t2) = (∆2u)(t3) = 0 (1.3)

for α, β as in (iv).
(H3) ‖x‖[t1−τ−1,t3+2] := sup

t1−τ−1≤t≤t3+2
|(∆n−3x)(t)|.

(H4) For Ξ := {t ∈ [t1, t3 + n− 1] : t1 ≤ t + θ ≤ t3 − 1},
Ξh := {t ∈ Ξ : t2 − h ≤ t + θ ≤ t2 + h}

is nonempty for some h ∈ (0, t3 − t2 − 2), which is nonempty by (ii).
The corresponding Green’s function for the discrete homogeneous problem

(∆3u)(t) = 0 satisfying the boundary conditions (1.3), a slight generalization of
that in [1, 2, 3, 4], is given via

g(t, s) =



s ∈ [t1, t2 − 1] :

{
u1(t, s) : t ≤ s + 1
v1(t, s) : t ≥ s + 1

s ∈ [t2 − 1, t3 − 1] :

{
u2(t, s) : t ≤ s + 1
v2(t, s) : t ≥ s + 1

(1.4)

for t ∈ [t1, t3 + 2] and s ∈ [t1, t3 − 1], where

u1(t, s) :=
1
2
(t− t1)(2s− t− t1 + 3) +

β

α
(s− t1 + 1),

v1(t, s) :=
1
2
(s− t1 + 2)(s− t1 + 1) +

β

α
(s− t1 + 1),

u2(t, s) :=
1
2
(t− t1)(2t2 − t− t1 + 1) +

β

α
(t2 − t1),

v2(t, s) :=
1
2
(t−t1)(2t2 − t− t1 + 1) +

β

α
(t2−t1) +

1
2
(t−s−1)(t−s−2).

Remark 1.1. As in [2], it can be shown that if
β

α
(t2 − t1) + 1 >

1
2
(t3 − t1 + 2)(t3 + t1 − 2t2 + 1),

then
g(t, s) > 0

for all t ∈ [t1, t3 + 2], s ∈ [t1, t3 − 1]. Note that if the boundary points satisfy

t3 − t2 ≤ t2 − t1 − 1, (1.5)

then the above inequality holds for any choice of α, β > 0. Thus throughout
this paper we assume that (1.5) holds. Moreover, as in [3], we have the following
boundedness result.
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Lemma 1.2. For all t ∈ [t1, t3 + 2] and s ∈ [t1, t3 − 1],

`(t)g(t2, s) ≤ g(t, s) ≤ g(t2, s) (1.6)

where

`(t) := min
{

t− t1
t2 − t1

,
t3 − t + 2
t3 − t2 + 2

}
. (1.7)

Remark 1.3. The following discussion is similar to that found in [6] for a contin-
uous two-point problem on the unit interval. If x is a solution of (1.1), (1.2), it can
be written as

x(t) =


x(−τ ; t) : t1 − τ − 1 ≤ t ≤ t1
t3−1∑
s=t1

G(t, s)f(s, x(s + θ)) : t1 ≤ t ≤ t3 + n− 1

where, using standard first-order linear difference equation methods [7], x(−τ ; t)
satisfies

(∆n−3x)(−τ ; t) =
(

1 +
α

β

)t−t1

(∆n−3x)(t1) +
1
β

t1−1∑
s=t

(
1 +

α

β

)t−s−1

η(s)

for t ∈ [t1 − τ − 1, t1].
If u0 is the solution of (1.1), (1.2) with f ≡ 0, then u0 satisfies

(∆n−3u0)(t) =


1
β

t1−1∑
s=t

(
1 +

α

β

)t−s−1

η(s) : t1 − τ − 1 ≤ t ≤ t1

0 : t1 ≤ t ≤ t3 + 2;

(1.8)

note that actually, using the Green’s function, u0 ≡ 0 on [t1, t3 + n− 1]. If x is any
solution of (1.1), (1.2) set u(t) := x(t)− u0(t). Then u(t) ≡ x(t) on [t1, t3 + n− 1],
and u satisfies

(∆n−3u)(t) =


(
1 + α

β

)t−t1
(∆n−3u)(t1) : t1 − τ − 1 ≤ t ≤ t1

t3−1∑
s=t1

g(t, s)f(s, u(s + θ) + u0(s + θ)) : t1 ≤ t ≤ t3 + 2.

But this implies

u(t) =


(

β
α

)n−3 (
1 + α

β

)t−t1
(∆n−3u)(t1) : t1 − τ − 1 ≤ t ≤ t1

t3−1∑
s=t1

G(t, s)f(s, u(s + θ) + u0(s + θ)) : t1 ≤ t ≤ t3 + n− 1.

2. Existence of at Least One Solution

We are concerned with proving the existence of solutions of the higher-order dis-
crete nonlinear boundary value problem (1.1), (1.2). In light of the above discussion
in Remark 1.3, consider the fixed points of the operator A defined by

Au(t) =


(

β
α

)n−3 (
1 + α

β

)t−t1
(∆n−3u)(t1) : t1 − τ − 1 ≤ t ≤ t1

t3−1∑
s=t1

G(t, s)f(s, u(s + θ) + u0(s + θ)) : t1 ≤ t ≤ t3 + n− 1,
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with domain {u : [t1 − τ − 1, t3 + n − 1] → R}. If Au = u, then a solution x of
(1.1), (1.2) would be given by

x(t) =


(

β
α

)n−3 (
1 + α

β

)t−t1
(∆n−3u)(t1) + u0(t) : t1 − τ − 1 ≤ t ≤ t1

u(t) : t1 ≤ t ≤ t3 + n− 1,

where u0 satisfies (1.8).

Remark 2.1. In the following discussion we will need an h ∈ (0, t3 − t2 − 2); note
that for all t ∈ [t2 − h, t2 + h], we then have

`(t) ≥ `(t2 + h + 1) = 1− h + 1
t3 − t2 + 2

(2.1)

for all h ∈ (0, t3 − t2 − 2), where ` is given in (1.7). Moreover, let k,m > 0 such
that

k−1 : =
t3−1∑
s=t1

g(t2, s) (2.2)

=
1
6
(t2 − t1 + 1)(t2 − t1)(3t3 − 2t2 − t1 + 2)

+
β

2α
(t2 − t1)(2t3 − t2 − t1 + 1)

and

m−1 : = `(t2 + h + 1)
t2+h∑

s=t2−h

g(t2, s) (2.3)

=
1
6

(
1− h + 1

t3 − t2 + 2

) [
(t2 − t1 + 1)2 (t2 − t1 + 3h + 5)

−(t2 − t1 − h + 2)3 +
3β

α
(4ht2 + 2t2 − 4ht1 − 2t1 − h2 + h)

]
,

where we have used the so-called falling factorial power [7]

br := b(b− 1)(b− 2) · · · (b− r + 1).

Finally, set
M0 := ‖u0‖[t1−τ−1,t3+2] (2.4)

for u0 as in (1.8).

We will employ the following fixed point theorem due to Krasnoselskii [8].

Theorem 2.2. Let E be a Banach space, P ⊆ E be a cone, and suppose that Ω1,
Ω2 are bounded open balls of E centered at the origin with Ω1 ⊂ Ω2. Suppose further
that A : P ∩ (Ω2 \ Ω1) → P is a completely continuous operator such that either

(i) ‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2, or
(ii) ‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2

holds. Then A has a fixed point in P ∩ (Ω2 \ Ω1).

Theorem 2.3. Let k,m, M0 be as in (2.2), (2.3), (2.4), respectively, and suppose
the following conditions are satisfied.

(C1) There exists p > 0 such that f(t, w) ≤ kp for t ∈ [t1, t3 − 1] and 0 ≤ ‖w‖ ≤
p + M0.
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(C2) There exists q > 0 such that f(t, w) ≥ mq for t ∈ Ξh and q`(t2 + h + 1) ≤
‖w‖ ≤ q, for h ∈ (0, t3 − t2 − 2) and Ξh as in (H4).

Then (1.1), (1.2) has a solution x = u + u0 such that ‖x‖[t1−τ−1,t3+2] lies between
max{0, p−M0} and q + M0.

Proof. Many of the techniques employed here are as in [5, 6]. Let B denote the
Banach space {u : [t1 − τ − 1, t3 + n− 1] → R} with the norm

‖u‖[t1−τ−1,t3+2] = sup
t∈[t1−τ−1,t3+2]

|(∆n−3u)(t)|.

Define the cone P ⊂ B by

P = {u ∈ B : min
t∈[t2−h,t2+h]

(∆n−3u)(t) ≥ `(t2 + h + 1)‖u‖[t1−τ−1,t3+2]}.

Consider the mapping A : P → B via

Au(t) =


(

β
α

)n−3 (
1 + α

β

)t−t1
(∆n−3u)(t1) : t1 − τ − 1 ≤ t ≤ t1

t3−1∑
s=t1

G(t, s)f(s, u(s + θ) + u0(s + θ)) : t1 ≤ t ≤ t3 + n− 1.

Then

∆n−3(Au)(t) =


(
1 + α

β

)t−t1
t3−1∑
s=t1

g(t1, s)f(s, u(s + θ) + u0(s + θ))

t3−1∑
s=t1

g(t, s)f(s, u(s + θ) + u0(s + θ))

so that ∆n−3(Au)(t) ≤ ∆n−3(Au)(t1) for t1 − τ − 1 ≤ t ≤ t1. In other words,
‖Au‖[t1−τ−1,t3+2] = ‖Au‖[t1,t3+2]. It follows for h ∈ (0, t3 − t2 − 2) and t ∈ [t2 −
h, t2 + h] that

∆n−3(Au)(t) =
t3−1∑
s=t1

g(t, s)f(s, u(s + θ) + u0(s + θ))

≥ `(t)
t3−1∑
s=t1

g(t2, s)f(s, u(s + θ) + u0(s + θ))

≥ `(t2 + h + 1)‖Au‖[t1−τ−1,t3+2]

by properties of the Green’s function (1.6), so that A : P → P.
Without loss of generality, we may assume 0 < p < q. Define the bounded open

balls

Ωp = {u ∈ B : ‖u‖[t1−τ−1,t3+2] < p},

and

Ωq = {u ∈ B : ‖u‖[t1−τ−1,t3+2] < q};

then 0 ∈ Ωp ⊂ Ωq. If u ∈ P ∩ ∂Ωp, then ‖u‖ = p and

|(∆n−3u)(t) + (∆n−3u0)(t)| ≤ p + M0
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for all t ∈ [t1, t3 + 2]. As a result,

‖Au‖ =
t3−1∑
s=t1

g(t2, s)f(s, u(s + θ) + u0(s + θ))

≤ kp

t3−1∑
s=t1

g(t2, s)

= p

= ‖u‖
using (C1) and (2.2). Thus, ‖Au‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ωp.

Similarly, let u ∈ P ∩ ∂Ωq, so that ‖u‖ = q. Then for s ∈ Ξh,

(∆n−3u)(s + θ) ≥ min
t∈[t2−h,t2+h]

(∆n−3u)(t) ≥ ‖u‖`(t2 + h + 1)

for all h ∈ (0, t3 − t2 − 2) and `(·) as in (2.1). As a result,

q`(t2 + h + 1) ≤ (∆n−3u)(s + θ) + (∆n−3u0)(s + θ) ≤ q

for s ∈ Ξh, since ∆n−3u0 ≡ 0 on [t1, t3 + 2] by Remark 1.3. It follows that

‖Au‖ =
t3−1∑
s=t1

g(t2, s)f(s, u(s + θ) + u0(s + θ))

≥
∑
s∈Ξh

g(t2, s)f(s, u(s + θ) + u0(s + θ))

≥ mq`(t2 + h + 1)
t2+h∑

s=t2−h

g(t2, s)

= q

= ‖u‖
by (C2) and (2.3). Consequently, ‖Au‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ωq. By Theorem 2.2,
A has a fixed point u ∈ P ∩ (Ωq \ Ωp); i.e., p ≤ ‖u‖ ≤ q. Therefore the discrete
problem (1.1), (1.2) has a solution x = u + u0 such that p −M0 ≤ ‖x‖ ≤ q + M0,
if M0 < p. �
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