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SYNCHRONIZATION OF NONAUTONOMOUS DYNAMICAL
SYSTEMS

PETER E. KLOEDEN

Abstract. The synchronization of two nonautonomous dynamical systems

is considered, where the systems are described in terms of a skew-product

formalism, i. e., in which an inputed autonomous driving system governs
the evolution of the vector field of a differential equation with the passage

of time. It is shown that the coupled trajectories converge to each other

as time increases for sufficiently large coupling coefficient and also that the
component sets of the pullback attractor of the coupled system converges upper

semi continuously as the coupling parameter increases to the diagonal of the

product of the corresponding component sets of the pullback attractor of a
system generated by the average of the vector fields of the original uncoupled

systems.

1. Introduction

Synchronization of coupled dissipative systems is a well known phenomenon in
biology and physics. It has been investigated mathematically in the case of au-
tonomous systems by Rodrigues and his coauthors [1, 2, 6], who not only show
that the coupled trajectories converge to each other as time increases for suffi-
ciently large coupling coefficient but also that the global attractor of the coupled
system converges upper semi continuously as the coupling parameter increases to
the diagonal of the product of the global attractor of a system generated by the
average of the vector fields of the original uncoupled systems. An important prop-
erty of the systems here is their ultimate boundedness or dissipativity, which can
be characterized through Lyapunov functions.

Afraimovich and Rodrigues [1] also considered the synchronization of nonau-
tonomous systems. They could show that the coupled trajectories converge to each
other with increasing time, but did not say anything about the attractors of the
systems under consideration. Here we use a new concept of pullback attractor for
nonautonomous systems [3] to make analogous statements about the attractors of
the coupled system and limiting averaged system in the nonautonomous case. For
this we use the skew-product formalism of the differential equations, that is, with
an inputed autonomous driving system governing the evolution of the vector field of
the system with the passage of time. Such a formalism is typical, for example, for
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almost periodic differential equations, for which the driving system is the shift op-
erator on a set of admissible vector fields called the hull of the differential equation
[4, 7, 8, 9]. In order to focus on the structure of the nonautonomous attractors we
assume a simple uniform global dissipativity condition of the differential equations.
Technical generalizations as in [1, 2, 6] are possible.

The paper is structured as follows. In the next section we recall the basic ideas
on nonautonomous dynamical systems and their attractors. Then in Section 3 we
formulate our main results on the synchronization of nonautonomous dynamical
systems generated by ordinary differential equations. We present a simple example
in terms of scalar differential equations in Section 4, with some additional remarks
on generalizations to infinite dimensional reaction diffusion equations. Our proofs
of the theorems formulated in section 3 are then given in the remaining sections of
the paper.

We need some notation. Let H∗
Z denote the Hausdorff distance (semi-metric)

between two nonempty sets of a complete metric space (Z, dZ), that is

H∗
Z(A,B) := sup

a∈A
distZ(a,B),

where distZ(a,B) = infb∈B dZ(a, b), and let

HZ(A,B) = max {H∗
Z(A,B),H∗

Z(B,A)}

be the Hausdorff metric on the space K(Z) of nonempty compact subsets of (Z, dZ).
Finally, let BZ [z̄, R] := {z ∈ Z : dZ(z, z̄) ≤ R} be the closed ball in Z centered on
z̄ with radius R. When Z = Rd we will write BZ [z̄, R] as Bd[z̄, R].

2. Attractors of nonautonomous dynamical systems

Following [3] and the papers cited therein, we define a nonautonomous dynamical
system (θ, φ) in terms of a cocycle mapping φ on a state space X which is driven by
an autonomous dynamical system θ acting on a base or parameter space P . Here
we assume that (X, dX) and (P, dP ) are complete metric spaces.

Specifically, θ = {θt : t ∈ R} is a dynamical system on P , i.e., a group of
homeomorphisms under composition on P with the properties that

(1) θ0(p) = p for all p ∈ P ;
(2) θs+t = θs(θt(p)) for all s, t in R;
(3) The mapping (t, p) 7→ θt(p) is continuous,

The cocycle mapping φ : R+ × P ×X → X satisfies
(1) φ(0, p, x) = x for all (p, x) ∈ P ×X;
(2) φ(s+ t, p, x) = φ(s, θt(p), φ(t, p, x)) for all s, t, in R+, (p, x) ∈ P ×X;
(3) The mapping (t, p, x) 7→ φ(t, p, x) is continuous.

A family Â = {Ap : p ∈ P} of nonempty compact subsets Ap of X, which is
invariant under the the cocycle mapping in the sense that φ(t, p, Ap) = Aθt(p) for
all t ≥ 0 and which is pullback attracting in the sense that

lim
t→∞

H∗
X (φ (t, θ−t(p), D) , Ap) = 0 (2.1)

for any nonempty bounded subset D of X and p ∈ P is called a pullback attractor
of (θ, φ). It is called a forward attractor if the forward convergence

lim
t→∞

H∗
X(φ(t, p,D), Aθt(p))) = 0 (2.2)
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holds instead of the pullback convergence (2.1). Obviously, any uniform pullback
attractor is also a uniform forward attractor, and vice versa, where uniformity is
with respect to p ∈ P . (See [3] for a detailed discussion on such attractors and
the relationship of the subset A := ∪p∈P {p} ×Ap of P ×X with a possible global
attractor of the autonomous skew–product system π on the product space Y =
P×X, i.e., the mapping π : R+×Y → Y defined by π(t, (p, x)) := (θt(p), φ(t, p, x));
the name skew–product is due to the fact that the driving system acts independently
of the state space dynamics).

The existence of a uniform pullback attractor follows from the assumed asymp-
totic compactness of the cocycle mapping and the existence of a uniform absorbing
set B, which is a nonempty compact subset of X and uniformly absorbs nonempty
bounded subsets D of X, i.e., there exists a TD ≥ 0 independent of p ∈ P , such
that

φ(t, p,D) ⊂ B for all t ≥ TD.

If, in addition, B is φ–positively invariant i.e., with φ(t, p, B) ⊂ B for all t ≥ 0 and
p ∈ P , then the nonautonomous dynamical system (θ, φ) has a uniform pullback
attractor Â = {Ap : p ∈ P} with component sets given by

Ap =
⋂
t≥0

φ (t, θ−t(p), B) (2.3)

for each p ∈ P .

3. Dynamics of synchronized systems

Consider two dissipative nonautonomous dynamical systems in Rd, given by

dx

dt
= f(p, x), p ∈ P, (3.1)

with driving system θt : P → P , and

dy

dt
= g(q, x), q ∈ Q, (3.2)

with driving system ψt : Q→ Q.
Suppose that both systems are sufficiently regular to ensure the forwards ex-

istence and uniqueness of solutions, so they generate nonautonomous dynamical
systems on P × Rd and Q × Rd, respectively. In particular, suppose that both
satisfy a uniform dissipativity condition〈

x, f(p, x)〉 ≤ K − L|x|2, p ∈ P, 〈x, g(q, x)
〉
≤ K − L|x|2, q ∈ Q, (3.3)

From these conditions we obtain the differential inequalities

1
2
d

dt
|x(t)|2 ≤ K − L|x(t)|2, 1

2
d

dt
|y(t)|2 ≤ K − L|y(t)|2

uniformly in p ∈ P and q ∈ Q, respectively. Thus in both cases the closed ball

Bd[0,
√

(K + 1)/L] := {x ∈ Rd ; |x|2 ≤ (K + 1)/L}

is uniformly absorbing, and positively invariant, so both systems have uniform
pullback attractors in Rd, respectively

Â(f) = {A(f)
p : p ∈ P}, Â(g) = {A(g)

q : q ∈ Q}.
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Consider now the dissipatively coupled system

dx

dt
= f(p, x) + ν(y − x),

dy

dt
= g(q, x) + ν(x− y) (3.4)

with the product driving system (θt, ψt) : P × Q → P × Q. Here ν > 0. By the
uniform dissipativity condition (3.3) we have

d

dt

(
|x|2(t) + |y|2(t)

)
= 2〈x(t), d

dt
x(t))〉+ 2〈y(t), d

dt
y(t))〉

= 2〈x(t), f(θtp, x(t))〉+ 2〈x(t), ν(y(t)− x(t)〉
+2〈y(t), g(ψt, y(t))〉+ 2〈x(t), ν(x(t)− y(t)〉

≤ 4K − 2L
(
|x(t)|2 + |y(t)|2

)
from which it follows that the closed ball

B2d[0,
√

(2K + 1)/L] := {x ∈ R2d ; |x|2 ≤ (2K + 1)/L}

in R2d is a uniform absorbing and positively invariant for the coupled system (3.4),
so the coupled system (3.4) has a uniform pullback attractor in R2d for each ν > 0
which will be denoted by

Â(ν) = {A(ν)
(p,q) : (p, q) ∈ P ×Q}.

In addition, writing(
x(ν)(t), y(ν)(t)

)
=

(
x(ν)(t, p, q, x0, y0), y(ν)(t, p, q, x0, y0)

)
for the solution of the coupled system (3.4) with initial parameter value (p, q) and
initial state (x0, y0) we obtain

Theorem 3.1. For all finite T2 ≥ T1 > 0, all (x0, y0) ∈ B2d[0,
√

(2K + 1)/L] and
all (p, q) we have

lim
ν→∞

∣∣∣x(ν)(t)− y(ν)(t)
∣∣∣ = 0 uniformly in t ∈ [T1, T2] (3.5)

The proof will be given in Section 5.
From this and the fact that a pullback attractor consists of the entire trajectories

of a system it follows the statement of the next theorem.

Theorem 3.2. Let Diag
(
Rd × Rd

)
=

{
(x, x) x ∈ Rd

}
. Then

lim
ν→∞

H∗
2d

(
A

(ν)
(p,q),Diag

(
Rd × Rd

) ⋂
B2d[0,

√
(2K + 1)/L]

)
= 0. (3.6)

The proof will be given in Section 6.
In fact, we can say much more about the dynamics inside the pullback attractor

Â(ν) and what happens as ν →∞. Let(
x(ν)(t), y(ν)(t)

)
=

(
x(ν)(t, p, q, x0, y0), y(ν)(t, p, q, x0, y0)

)
be an entire trajectory of the coupled system inside the pullback attractor Â(ν) =
{A(ν)

(p,q) : (p, q) ∈ P ×Q}, so(
x(ν)(t), y(ν)(t)

)
∈ A(ν)

(θtp,ψtq)
for all t ∈ R.
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Theorem 3.3. For any entire trajectory
(
x(ν)(t), y(ν)(t)

)
of the coupled system

inside the pullback attractor Â(ν) there exists convergent subsequences

lim
ν′→∞

x(ν′)(t) = z(t), lim
ν′→∞

y(ν′)(t) = z(t)

uniformly on compact time subintervals in R, where z(t) is a solution of the nonau-
tonomous differential equation

dz

dt
=

1
2

(f(p, z) + g(q, z)) (3.7)

with the product driving system (θt, ψt) : P ×Q→ P ×Q.

The proof will be given in Section 7.
It follows from the uniform dissipativity condition (3.3) that the closed ball

Bd[0,
√

(K + 1)/L] := {x ∈ Rd ; |x|2 ≤ (K + 1)/L}

is uniformly absorbing, and positively invariant for the limiting system (3.7), so the
limiting system (3.7) has a uniform pullback attractor

Â(∞) = {A(∞)
(p,q) : (p, q) ∈ P ×Q}

in Rd. From Theorems 3.2 and 3.3 we thus have the following statement.

Corollary 3.4. Let Diag
(
A

(∞)
(p,q) ×A

(∞)
(p,q)

)
=

{
(x, x) ; x ∈ A(∞)

(p,q)

}
. Then

lim
ν→∞

H∗
2d

(
A

(ν)
(p,q),Diag

(
A

(∞)
(p,q) ×A

(∞)
(p,q)

))
= 0. (3.8)

The proof will be given in Section 7.

Remark 3.5. Similar results hold for parabolic partial differential equations. This
was shown for the autonomous case in [2, 6]. The main difference in the nonau-
tonomous case is the use of nonautonomous pullback attractors as above. For
example, consider two nonautonomous reaction-diffusion equations

∂u

∂t
= ∆u+ f(p, u),

∂v

∂t
= ∆v + g(q, v)

on a bounded domain Ω in Rn and, say, Dirichlet boundary conditions for which the
driving systems are, respectively, θt : P → P and ψt : Q→ Q. Assuming the same
properties of f and g as above, the solutions generate asymptotic compact cocycle
mappings in an appropriate Banach space Xα. Similarly, the coupled system

∂u

∂t
= ∆u+ f(p, u) + ν(v − u),

∂v

∂t
= ∆v + g(q, v) + ν(u− v)

on the bounded domain Ω in Rn with the same boundary condition and coupled
driving system (θt, ψt) : P ×Q→ P ×Q generates an asymptotic compact cocycle
mapping in the product Banach space Xα ×Xα with a pullback attractor Â(ν) =
{A(ν)

(p,q) : (p, q) ∈ P ×Q}, where the components sets A(ν)
(p,q) are nonempty compact

subsets of Xα×Xα. These component sets are close to the diagonal product of the
corresponding component sets of the pullback attractor Â(ν) = {A(∞)

(p,q) : (p, q) ∈
P ×Q} in Xα of the limiting system

∂z

∂t
= ∆z +

1
2

(f(p, z) + g(q, z))
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and appropriate counterparts of the above results in Rd can be established using
similar technical details to those in [1, 2, 6].

4. An Example

Consider the scalar nonautonomous differential equations
dx

dt
= −x+ α(t),

dy

dt
= −y + β(t), (4.1)

where α and β are bounded functions. Here the driving systems are defined by the
shift operators defined by θtα(·) = α(·+ t) and ψtβ(·) = β(·+ t) for all t ∈ R and
the base spaces P and Q are, respectively, the closed hulls of the functions α and
β as in [4, 8, 9].

We note that both systems are strongly dissipative with

|x1(t)− x2(t)| ≤ e−t|x0,1 − x0,2|, |y1(t)− y2(t)| ≤ e−t|y0,1 − y0,2|
for any pair of initial values. Thus both systems have singleton trajectory pullback
attractors defined via

x̄(t) = e−t
∫ t

−∞
esα(s) ds, ȳ(t) = e−t

∫ t

−∞
esβ(s) ds,

i.e. with A(f)
p = {x̄(0)} and A(g)

q = {ȳ(0)}.
The limiting system

dz

dt
= −z +

1
2

(α(t) + β(t))

is also strongly dissipative with a singleton trajectory pullback attractor given by

z̄(t) =
1
2
e−t

∫ t

−∞
es (α(s) + β(s)) ds =

1
2

(x̄(t) + ȳ(t))

i.e., the average of x̄ and ȳ (which is due to the linearity of the equations).
The synchronized system here is

dx

dt
= −x+ α(t) + ν(y − x),

dy

dt
= −y + β(t) + ν(x− y)

has general solution(
x(ν)(t)
y(ν)(t)

)
= eAν(t−t0)

(
x0

y0

)
+

∫ t

t0

eAν(t−s)
(
α(s)
β(s)

)
ds,

where

Aν =
[
−1− ν −ν
−ν −1− ν

]
, eAνt =

[
e−t + e−(1+ν)t e−t − e−(1+ν)t

e−t − e−(1+ν)t e−t + e−(1+ν)t

]
,

so(
x(ν)(t)
y(ν)(t)

)
=

1
2

(
e−(t−t0)(x0 + y0) + e−(1+ν)(t−t0)(x0 − y0)
e−(t−t0)(x0 + y0)− e−(1+ν)(t−t0)(x0 − y0)

)
+

1
2

∫ t

t0

(
e−(t−s)(α(s) + β(s)) + e−(1+ν)(t−s)(α(s)− β(s))
e−(t−s)(α(s) + β(s))− e−(1+ν)(t−s)(α(s)− β(s))

)
ds,

Taking the pullback convergence limit t0 → −∞ we obtain the singleton trajec-
tory in the pullback attractor, namely(

x(ν)(t)
y(ν)(t)

)
=

1
2

∫ t

−∞

(
e−(t−s)(α(s) + β(s)) + e−(1+ν)(t−s)(α(s)− β(s))
e−(t−s)(α(s) + β(s))− e−(1+ν)(t−s)(α(s)− β(s))

)
ds.
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Thus as ν →∞ we obtain(
x̄(ν)(t)
ȳ(ν)(t)

)
→ 1

2

∫ t

t0

e−(t−s)(α(s) + β(s)) ds
(

1
1

)
= z̄(t)

(
1
1

)
Since the attractors here each consist of a single trajectory we in fact have

continuous convergence of the attractors.

5. Proof of Theorem 3.1

As above we consider the solution(
x(ν)(t), y(ν)(t)

)
=

(
x(ν)(t, p, q, x0, y0), y(ν)(t, p, q, x0, y0)

)
of the coupled system (3.4) with initial parameter value (p, q) ∈ P ×Q and initial
state (x0, y0) ∈ B2d[0,

√
(2K + 1)/L]. For the remainder of this section the index

ν will be omitted. Then, from (3.4), it follows that U(t) := x(t)− y(t) satisfies the
equation

d

dt
U(t) = −2νU(t) + f(θtp, x(t))− g(ψtq, y(t)),

so

U(t) = U(0)e−2νt + e−2νt

∫ t

0

e2νs (f(θsp, x(s))− g(ψsq, y(s))) ds

and hence

|U(t)| ≤ |U(0)|e−2νt + e−2νt

∫ t

0

e2νs (|f(θsp, x(s))|+ |g(ψsq, y(s))|) ds.

Now B2d[0,
√

(2K + 1)/L] is positively invariant for the synchronized system, so
if (x0, y0) ∈ B2d[0,

√
(2K + 1)/L], then x(t) − y(t) ∈ B2d[0,

√
(2K + 1)/L] for all

t ≥ 0. Moreover B2d[0,
√

(2K + 1)/L], P and Q are compact, so by the continuity
of f and g there exists a finite constant M such that

|f(p, x)|+ |g(q, y)| ≤M for all (x, y) ∈ B2d[0,
√

(2K + 1)/L], p ∈ P, q ∈ Q.

Thus

|U(t)| ≤ |U(0)|e−2νt + e−2νt

∫ t

0

e2νsM ds.

from which it follows that

|U(t)| ≤ |U(0)|e−2νt +
M

2ν
(
1− e−2νt

)
.

Thus, reinserting the index ν,∣∣∣x(ν)(t)− y(ν)(t)
∣∣∣ = |U(t)| → 0 as ν →∞

for all t ∈ (0, T ] with an arbitrary finite T > 0, and hence for any t ∈ [T1, T2] for
arbitrary finite T2 ≥ T1 > 0.
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6. Proof of Theorem 3.2

Let
(
x

(ν)
0 , y

(ν)
0

)
∈ A(ν)

(p,q). Then there exists an entire trajectory
(
x(ν)(t), y(ν)(t)

)
∈

A
(ν)
(θtp,ψtq)

for all t ∈ R with
(
x(ν)(0), y(ν)(0)

)
=

(
x

(ν)
0 , y

(ν)
0

)
.

We apply Theorem 3.1 to this trajectory on a time interval [−1, 1], say, i.e.
considering it as starting at time −1 with parameters (θ−1p, ψ−1q) instead of time
0 with parameters (p, q). Thus we have convergence

∣∣x(ν)(t)− y(ν)(t)
∣∣ → 0 as

ν →∞ on the time interval t ∈ [0, 1], and in particular at time t = 0, that is∣∣∣x(ν)
0 − y

(ν)
0

∣∣∣ → 0 as ν →∞.

Since
(
x

(ν)
0 , y

(ν)
0

)
∈ B2d[0,

√
(2K + 1)/L], which is compact, we have

lim
ν→∞

H∗
2d

(
A

(ν)
(p,q),Diag

(
Rd × Rd

) ⋂
B2d[0,

√
(2K + 1)/L]

)
= 0,

where Diag
(
Rd × Rd

)
=

{
(x, x) ; x ∈ Rd

}
.

7. Proof of Theorem 3.3 and Corollary 3.4

Let
(
x(ν)(t), y(ν)(t)

)
be an entire trajectory of the coupled system inside the

pullback attractor Â(ν) for each ν ≥ 0 with
(
x(ν)(0), y(ν)(0)

)
=

(
x

(ν)
0 , y

(ν)
0

)
∈

A
(ν)
(p,q). Define

z(ν)(t) =
1
2

(
x(ν)(t) + y(ν)(t)

)
for all t ∈ R.

Then
d

dt
z(ν)(t) =

1
2

(
f

(
θtp, x

(ν)(t)
)

+ g
(
ψtq, x

(ν)(t)
))

=
1
2

(
f

(
θtp, 2z(ν)(t)− y(ν)(t)

)
+ g

(
ψtq, 2z(ν)(t)− x(ν)(t)

))
(7.1)

Thus ∣∣ d
dt
z(ν)(t)

∣∣ ≤ 1
2

(∣∣f(
θtp, x

(ν)(t)
)∣∣ +

∣∣g(ψtq, y(ν)(t)
)∣∣) ≤M

where M is a finite bound on |f(p, x)| + |g(q, y)| on the compact set P × Q ×
B2d[0,

√
(2K + 1)/L]. Thus the sequence of functions z(ν) is equicontinuous on any

compact time interval and has a uniformly convergent subsequence on this interval.
By a diagonal sequence argument this can be extended to uniform convergence on
all time intervals of the form [−N,N ]. Thus

z(ν′)(t) → z(t) as ν′ →∞ for all t ∈ R,

where z(t) is continuous. Now, by Theorem 3.1,

z(ν)(t)− y(ν)(t) =
1
2
(
x(ν)(t)− y(ν)(t)

)
→ 0,

z(ν)(t)− x(ν)(t) =
1
2
(
y(ν)(t)− x(ν)(t)

)
→ 0

as ν →∞ for all t ∈ R. Hence

2z(ν′)(t)− y(ν′)(t) → z(t), 2z(ν′)(t)− x(ν′)(t) → z(t)
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as well as
x(ν′)(t) → z(t), y(ν′)(t) → z(t)

as ν′ → ∞ for all t ∈ R. (There convergences here are in fact uniform on any
compact interval in R). Writing the differential equation (7.1) with ν′ in integral
form, i.e., as

z(ν′)(t)

= z(ν′)(t0) +
1
2

∫ t

t0

(
f
(
θsp, 2z(ν′)(s)− y(ν′)(s)

)
+ g

(
ψsq, 2z(ν′)(s)− x(ν′)(s)

))
ds,

by continuity it follows that

z(t) = z(t0) +
1
2

∫ t

t0

(f (θsp, z(s)) + g (ψsq, z(s))) ds,

i.e., z is a solution of the nonautonomous differential equation (3.7), namely

dz

dt
=

1
2

(f(p, z) + g(q, z))

with the product driving system (θt, ψt) : P ×Q→ P ×Q.
Finally, the assertion of Corollary 3.4 holds because z(t) constructed above is an

entire trajectory of the limiting system (3.7), so belongs to its pullback attractor.
Specifically

z(t) ∈ A(∞)
(θtp,ψtq)

for all t ∈ R.

In particular, this means that

lim
ν→∞

H∗
2d

(
A

(ν)
(p,q),Diag

(
A

(∞)
(p,q) ×A

(∞)
(p,q)

))
= 0,

where Diag
(
A

(∞)
(p,q) ×A

(∞)
(p,q)

)
=

{
(x, x) ; x ∈ A(∞)

(p,q)

}
.
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