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RADIAL SOLUTIONS OF SINGULAR NONLINEAR
BIHARMONIC EQUATIONS AND APPLICATIONS TO

CONFORMAL GEOMETRY

P. J. MCKENNA & WOLFGANG REICHEL

Abstract. Positive entire solutions of the singular biharmonic equation ∆2u+

u−q = 0 in Rn with q > 1 and n ≥ 3 are considered. We prove that there

are infinitely many radial entire solutions with different growth rates close to
quadratic. If u(0) is kept fixed we show that a unique minimal entire solution

exists, which separates the entire solutions from those with compact support.

For the special case n = 3 and q = 7 the function U(r) =
√

1/
√

15 + r2 is the

minimal entire solution if u(0) = 15−1/4 is kept fixed.

1. Introduction

We consider positive C4-solutions of the equation

∆2u + u−q = 0 in D ⊂ Rn. (1.1)

A solution is called entire if it exists in all of Rn. In a recent paper [5] Choi and Xu
studied (1.1) in R3. They proved that under the restriction of exact linear growth
at infinity, i.e., limx→∞ u(x)/|x| = α > 0 and q = 7, problem (1.1) admits (up to
translation) only one kind of entire solution given by

U(x) = α

√
1/
√

15α8 + |x|2. (1.2)

Moreover Choi and Xu prove that (1.1) has no linear growth solution if 4 < q < 7.
Thus, (1.1) in dimension n = 3 and with q = 7 is a very distinguished case. Indeed,
notice that for this choice of parameters (1.1) amounts to

∆2u = (n− 4)u
n+4
n−4 .

This equation has explicit geometric relevance as explained in Section 2.
The remarkable result of Choi and Xu led to our present investigation, where we

analyze the global structure of the set of all radial solutions of (1.1). In our main
result of Theorem 3.1, Section 3, we prove that (1.1) possesses infinitely many
entire solutions with almost quadratic, superlinear growth rates. Moreover, one
entire solution is distinguished from the others: the minimal entire solution, which

coincides with the solution U(x) = α

√
1/
√

15α8 + |x|2 found by Choi and Xu.
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The existence of infinitely many entire solutions with different growth rates for
the conformally invariant equation ∆2u + u−7 = 0 in R3 is in striking contrast to
the conformally invariant equation ∆2u = u

n+4
n−4 in Rn with n ≥ 5 and the second

order equation −∆u = u
n+2
n−2 in Rn with n ≥ 3. In both cases there exists a unique

one-parameter family of positive entire solutions, cf. Juncheng Wei and Xingwang
Xu [9], and Wenxiong Chen and Congming Li [4].

2. Geometric relevance

2.1. Yamabe’s problem. Let g = (gij) be the standard Euclidean metric on Rn,
n ≥ 3 with gij = δij . Let ḡ = u4/(n−2)g be a second metric derived from g by the
positive conformal factor u : Rn → R. Then u satisfies Yamabe’s equation

−∆u =
n− 2

4(n− 1)
Rḡu

(n+2)/(n−2), (2.1)

where Rḡ is the scalar curvature of ḡ, cf. Aubin [1]. If one looks for constant scalar
curvature Rḡ = ±n(n− 1) then (2.1) has the following explicit solutions

U(r) =
( 2a

a2 ± r2

)(n−2)/2 with r = |x− x0|, a > 0.

The corresponding metric is

ḡij =
( 2a

a2 ± r2

)2
δij .

In case of “+” one finds that (Rn, ḡ) is isometrically isomorphic to a sphere Sn
a

of radius a equipped with standard Euclidian metric scaled by 1/a2. Moreover,
Wenxiong Chen and Congming Li showed in [4] that (2.1) has no other positive
solutions. In case of “−”, the solution U blows up on ∂Ba(x0) and one finds that
(Ba(x0), ḡ) is isometrically isomorphic to the hyperbolic space

Hn
a = {(y1, . . . , yn+1) ∈ Rn+1 : y2

1 + . . . + y2
n − y2

n+1 = −a2}

with standard Lorentz-Minkowski metric g(v, w) = 1
a2 (v1w1+. . . vnwn−vn+1wn+1).

The explicit form of these solutions and their uniqueness on balls Ba(0) was proved
by Loewner, Nirenberg [6].

2.2. A fourth order analog of Yamabe’s equation. For n 6= 4 let ḡ be given
as ḡij = u4/(n−4)δij . Then the conformal factor u : Rn → R satisfies

∆2u =
n− 4

2
Qḡu

n+4
n−4 , (2.2)

where

Qḡ =
−1

2n− 2
∆Rḡ +

n3 − 4n2 + 16n− 16
8(n− 1)2(n− 2)2

R2
ḡ −

2
(n− 2)2

|Ricḡ|2

and Rḡ, Ricḡ are scalar curvature and Ricci curvature of ḡ, respectively. Generaliza-
tions of (2.2) to the case where g, ḡ are conformally related Riemannian metrics on
a Riemannian manifold lead to more complicated fourth order equations involving
the Paneitz operator instead of ∆2, cf. Chang [2] and Chang, Yang [3].
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The quantity Qḡ is a curvature term with Qḡ ≡ 0 in dimension n = 2. If we
assume Qḡ ≡ 1

8n(n2 − 4) then via a scaling (1.1) and (2.2) are equivalent. In this
case (2.2) has the following explicit solutions

U(r) =
( 2a

a2 ± r2

)(n−4)/2 with r = |x− x0|, a > 0

producing the same metrics as before, i.e, the metrics representing Sn and Hn. For
the case of “+” and n ≥ 5, uniqueness of the above family was shown by Juncheng
Wei and Xingwang Xu [9]. In the case n = 3 uniqueness fails, as it follows from
our main result Theorem 3.1. For the case of “−” uniqueness for (2.2) on a ball is
open to the best of our knowledge.

2.3. The uniqueness result of Choi and Xu. The uniqueness result of Choi and
Xu in dimension n = 3 has the following geometric meaning: if u is asymptotically
linear as |x| → ∞ then (R3, ḡ) is isometrically isomorphic to a standard sphere S3.
The requirement of u being asymptotically linear means that the metric ḡ = u−4δij

on R3 can be pulled back via inverse stereographic projection to a metric on S3.
However our main result shows that many other radial solutions u of (2.2) exist –
in striking contrast to (2.1) for n ≥ 3 and (2.2) for n ≥ 5. These metrics cannot be
realized as metrics on S3 but only on S3 \ {P}, i.e., on the sphere with one point
removed.

A second Theorem of Choi and Xu states the following: if u is an arbitrary entire
solution of (1.1) such that the scalar curvature Rḡ of the metric ḡij = u4/(n−4)δij

is everywhere non-negative then u must be of the form (1.2). Geometrically this
means: if u induces a metric ḡ with everywhere non-negative scalar curvature then
(R3, ḡ) is isometrically isomorphic to a standard sphere S3.

This shows also, that the special solution U(r) of type (1.2) is distinguished from
the infinitely many other solutions u(r) found in Theorem 3.1, since they induce
metrics on R3 with sign-changing scalar curvature.

3. Radial solutions of ∆2u = −u−q for n ≥ 3

We restrict our analysis to radial solutions of (1.1). For this class of solutions
the biharmonic operator simplifies to ( d2

dr2 + n−1
r

d
dr )2. Therefore we investigate the

initial value problem( d4

dr4
+

2(n− 1)
r

d3

dr3
+

(n− 1)(n− 3)
r2

(
d2

dr2
− 1

r

d

dr
)
)
u + u−q = 0, (3.1)

u(0) = 1, u′(0) = 0, u′′(0) = δ, u′′′(0) = 0. (3.2)

In contrast to entire solutions, which exist on (0,∞), we say that a solution u has
compact support if u is positive on some interval (0, R) and u(R) = 0, since then
the solution stops to exist. In the following we will say that a real-valued function
f(s), s ∈ R is increasing if s1 < s2 implies f(s1) ≤ f(s2). It is strictly increasing
if s1 < s2 implies f(s1) < f(s2). Similarly we use the word decreasing and strictly
decreasing. We have the following results:

Theorem 3.1. All solutions of (3.1)-(3.2) are strictly ordered with respect to δ.
For n ≥ 3 and q > 1 the following types of solutions are known: there exists a value
δ0 > 0 such that

(a) for −∞ < δ < δ0 every solution has compact support,
(b) for δ ≥ δ0 every solution is entire,
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(c) the entire solution u0 with u′′0(0) = δ0 is a separatrix, i.e.,

u0 = sup{u : u is a compact support solution}
= inf{u : u is an entire solution},

(d) if R(δ) is the first zero of the solution u with u′′(0) = δ, −∞ < δ < δ0 then
R(δ) is a continuous, strictly monotone function with R(δ) →∞ as δ → δ0

and R(δ) → 0 as δ → −∞,
(e) for ε > 0 sufficiently small there exist solutions which grow faster than r2−ε,
(f) no solution grows faster than r2.

Our proof depends on the construction of suitable sub-, supersolutions and the
use of the comparison principle. This technique depends on the fact that (3.1) can
be rewritten as a second-order system

(rn−1u′)′ = rn−1U, (rn−1U ′)′ + rn−1u−q = 0. (3.3)

Notice that U(0) = nu′′(0), U ′(0) = n+1
2 u′′′(0). The next lemma is a compar-

ison result between upper and lower solutions of (3.3). In spirit it follows from
corresponding comparison results of Walter [8] for quasimonotone systems.

Lemma 3.2 (Comparison Principle). Let (v, V ) and (w,W ) be two pairs of C2-
functions on the interval [0, R) with v, w > 0 on [0, R) and with

(rn−1v′)′ = rn−1V, (rn−1w′)′ = rn−1W,

(rn−1V ′)′ + rn−1v−q ≤ 0, (rn−1W ′)′ + rn−1w−q ≥ 0

on (0, R). Then the following holds:
(a) (Weak comparison) If v(0) ≤ w(0), v′(0) = w′(0) = 0 and V (0) ≤ W (0),

V ′(0) = W ′(0) = 0 then v ≤ w, v′ ≤ w′, V ≤ W and V ′ ≤ W ′ on [0, R).
(b) (Strong comparison) If for some ρ > 0 we have v < w on the interval (0, ρ)

then v < w, v′ < w′, V < W , V ′ < W ′ on (0, R). A simple way to achieve
v < w initially is to have one strict inequality in the initial conditions.

Proof. We begin with proving part (b). Suppose v < w initially on a small interval
(0, ρ). By the second differential inequality we find (rn−1V ′)′ < (rn−1W ′)′ on (0, ρ).
By a double integration we get V < W on (0, ρ). Now let (0, c) be the largest interval
on which V < W , and suppose for contradiction that c < R. Using V < W and the
first differential inequality we get (rn−1v′)′ < (rn−1w′)′ on (0, c) and by a double
integration v′ < w′ and v < w on (0, c). Inserting this into the second differential
inequality and integrating twice we get V ′ < W ′ on (0, c) and hence V < W on the
semi-closed interval (0, c]. This contradicts the assumption that (0, c) is the largest
interval for which V < W . Therefore we have strict inequalities between v, v′, V, V ′

and w,w′,W,W ′ on the entire interval (0, R).
Part (a) follows from (b) in the following way. Let f := (rn−1V ′)′ + v−q be the

defect in the differential inequality for V , and let (vε, Vε) be the solution of the
initial value problem

(rn−1v′ε)
′ = rn−1Vε, vε(0) = v(0)− ε, v′ε(0) = 0,

(rn−1V ′
ε )′ + rn−1v−q

ε = f ≤ 0, Vε(0) = V (0), V ′
ε (0) = 0.

Note that for ε = 0 the uniqueness of the initial value problem gives (v0, V0) =
(v, V ). Moreover, for ε > 0 the pairs (vε, Vε) and (w,W ) satisfy the hypotheses
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of part (b), and we can deduce that (vε, v
′
ε, Vε, V

′
ε ) < (w,w′,W, W ′) on (0, R).

Letting ε tend to 0, the strict inequality becomes a weak inequality. This proves
the lemma. �

Lemma 3.2 will be applied to problem (3.1)-(3.2) in the following way. Suppose
two positive C4-functions v(r), w(r) are given with

∆2v + v−q ≤ 0, v(0) ≤ 1, v′(0) = 0, v′′(0) ≤ δ, v′′′(0) = 0

∆2w + w−q ≥ 0, w(0) ≥ 1, w′(0) = 0, w′′(0) ≥ δ, w′′′(0) = 0

then v, w are called a sub,- supersolutions relative to the initial value problem

∆2u + u−q = 0, u(0) = 1, u′(0) = 0, u′′(0) = δ, u′′′(0) = 0.

Lemma 3.2 applied to (u, u′′+ n−1
r u′) with either (v, v′′+ n−1

r v′) or (w,w′′+ n−1
r w′)

yields the conclusion that v ≤ u ≤ w, v′ ≤ u′ ≤ w′ on their common interval of
existence. Moreover, strict inequality holds as soon as one strict inequality holds
in the initial conditions for the function or its second derivative.

Lemma 3.3. There exists a value δ̃ > 0 such that for all δ ≤ δ̃ the solution of
(3.1)-(3.2) has compact support.

Proof. Consider the function w(r) = εr2(A− r2) + 1 for ε, A > 0, which is positive
on (0,

√
A). Then ∆2w = −8εn(n + 2). In order to have w as a compact-support

supersolution we need ∆2w + w−q ≥ 0, i.e.

−8εn(n + 2) +
(
εr2(A− r2) + 1

)−q ≥ 0 on (0,
√

A).

The maximum of w over (0,
√

A) is obtained at
√

A/2. Therefore the above equation
is satisfied provided

ε
A2

4
+ 1 ≤

(
8εn(n + 2)

)−1/q
.

For a given value of ε such that 0 < ε < 1/(8n(n− 2)) the largest possible value of
of A is given by

A(ε) :=
2√
ε

√
(8εn(n + 2))−1/q − 1

and clearly A(ε) → ∞ for ε → 0 and A(ε) → 0 as ε → 1/(8n(n + 2)). Fur-
thermore w(0) = 1, w′(0) = w′′′(0) = 0, and w′′(0) = 2εA(ε) has the properties
that w′′(0) → 0 as ε → 0 and as ε → 1/(8n(n + 2)). The second derivative of
w at 0 is maximal for ε = (1 − 1/q)q 1/(8n(n + 2)) and the value of w′′(0) is
δ̃ := 4

√
(1− 1/q)q/(8n(n + 2)(q − 1)). As a result we have that every solution of

(3.1)-(3.2) with δ ≤ δ̃ stays below w(r), and hence it has compact support. �

Lemma 3.4. No entire solution of (3.1)-(3.2) grows faster than r2.

Proof. Let w(r) = Ar2 + 1. Then ∆2w = 0 and hence w is a supersolution. Given
an arbitrary entire solution u of (3.1)-(3.2) we can choose 2A > u′′(0). Hence u < w
by the comparison principle of Lemma 3.2. �

Lemma 3.5. There exists ε0 = ε0(n) > 0 such that for every ε ∈ (0, ε0) there exists
a value δ̄ = δ̄(ε) with the property that every solution of (3.1)-(3.2) with δ ≥ δ̄ is
entire and grows faster than r2−ε.
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Proof. For the construction of an entire subsolution we consider v(r) = (1 +
b2r2)1−

ε
2 . Let p(r) be the function such that

∆2v + p(r)v−q = 0 on (0,∞).

With the help of MAPLE we compute

p(r) = 2b4ε(1− ε/2)(1 + b2r2)−3− ε
2 (1+q)+qρ(r)

where

ρ(r) =
(
b4r4(ε2 − 2nε + 2ε− 2n + n2) + b2r2(−4ε− 2nε + 2n2 − 8) + n2 + 2n

)
For small ε < ε0(n) and for n ≥ 3 we see that

c(1 + b2r2)2 ≤ ρ(r) ≤ C(1 + b2r2)2 on (0,∞)

for two constants c, C independent of b and ε. Hence

p(r) ≥ 2cb4ε(1− ε/2)(1 + b2r2)−1− ε
2 (1+q)+q ≥ 1

if we ensure that ε < 2(q − 1)/(1 + q) and if we choose b sufficiently large. For this
choice of the parameters ε and b we find

∆2v + v−q ≤ 0 on (0,∞),

i.e., v is indeed a subsolution with v(0) = 1, v′(0) = v′′′(0) = 0 and v′′(0) = b2(2−ε).
Together with the supersolution w = Ar2 + 1 for large A from Lemma 3.4, they
give rise to an entire solution with growth rate larger than r2−ε. �

Proof of Theorem 3.1. Part (a): By Lemma 3.3 there is a δ̃ > 0 such that the
solution of (3.1)-(3.2) with u′′(0) = δ̃ has compact support. Via the comparison
principle we see that for −∞ < δ < δ̃ the solutions also have compact support.
Therfore, we may define

δ0 := sup
{
δ : the solution with u′′(0) = δ has compact support.

}
By the entire solution found in Lemma 3.5 the value δ0 is finite and positive, and
any solution with u′′(0) > δ must be entire. As we will see in the proof of Part (d),
the first zero R(δ) tends to ∞ as δ → δ0. Therefore the separatrix-solution u with
u′′(δ0) must be entire, too. Hence Part (b) and (c) are established. Part (e) follows
from Lemma 3.5, Part (f) from Lemma 3.4.

Part (d): Let R(δ) be the first zero of the solution u with u′′(0) = δ. Notice
that u(r) = −

∫ R(δ)

r
u′(t) dt and that u is absolutely continuous on [0, R(δ)]. We

want to show that R is a continuous function of δ with R → 0 as δ → −∞ and
R → ∞ as δ → δ0. By the comparison principle the function R(δ) is monotone
in δ. Moreover, for two solution u1, u2 with u′′1(0) = δ1 < δ2 = u′′2(0) we find by
the comparison principle that (u2 − u1)′ > 0, i.e. the gap between the solutions is
increasing. Therefore R(δ) is a strictly monotone function of δ, and hence continuity
can only fail if R(δ) has jump-discontinuities, which are excluded by the continuous
dependence of the solution on initial values. Next we assume for contradiction that
R(δ) tends to a finite limit as δ → δ0. Since the solutions u with u′′(0) > δ0 must
be entire by the definition of δ0 we get again a contradiction to the continuous
dependence principle. Similarly, R(δ) cannot approach a positive limit as δ →
−∞. �
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4. Entire solutions of ∆2u = −u−q for n = 3

Since radially symmetric functions in R3 satisfy ∆2u(r) = u(iv) + 4u′′′/r we can
prove the following variant of the comparison principle of Lemma 3.2:

Lemma 4.1 (Comparison principle for n = 3). Let (v, w) be a pair of C4-functions
on the interval [0, R) with v, w > 0 on [0, R) and with

v(iv) +
4
r
v′′′ + v−q ≤ 0, w(iv) +

4
r
w′′′ ≥ 0 on (0, R).

Then the following holds:
(a) (Weak comparison) If v(0) ≤ w(0), v′(0) = w′(0) = 0, v′′(0) ≤ w′′(0),

v′′′(0) = w′′′(0) = 0 then v ≤ w, v′ ≤ w′, v′′ ≤ w′′ and v′′′ ≤ w′′′ on [0, R).
(b) (Strong comparison) If for some ρ > 0 we have v < w on the interval (0, ρ)

then v < w, v′ < w′, v′′ < w′′, v′′′ < w′′′ on (0, R). A simple way to achieve
v < w initially is to have one strict inequality in the initial conditions.

Proof. First we notice that the differential inequality for v is equivalent to

v′1 = v2, v1(0) = 1,

v′2 = v3, v2(0) = 0,

v′3 = v4, v3(0) = δ,

v′4 ≤ −v4/r − v−q
1 , v4(0) = 0,

(4.1)

with a similar system for w. System (4.1) is of quasimonotone type, i.e., the j-th
right-hand side, j = 1, . . . , 4 is increasing in the variables vk for all k ∈ {1, . . . , 4} \
{j}. Thus the comparison theorem from Walter [8] for quasimonotone systems of
ordinary differential equations applies. �

Let u : [0,∞) → R and let a, b, A,B be positive constants (depending on u). We
say that u has

linear growth if ar + b ≤ u(r) ≤ Ar + B,
exactly linear growth if limr→∞ u(r)/r > 0,
at least linear growth if u(r) ≥ ar + b,
superlinear growth if u(r) ≥ ar + b, but u does not have linear growth.

The following theorem gives a more detailed picture of the entire radial solutions
in dimension n = 3. A stronger version of part (b) including non-radial solutions
has been obtained by Choi and Xu [5] as part of their main result. Here we give a
different proof. To the best of our knowledge, part (a) is new for q > 7.

Theorem 4.2. For n = 3 entire solutions of (3.1)-(3.2) have the following proper-
ties:

(a) For q ≥ 7 a unique solution with linear growth exist. It coincides with
the separatrix and has exactly linear growth. For q = 7 it is given by√

1 + r2/
√

15.
(b) For 4 < q < 7 there is no solution with linear growth.
(c) For 4 < q < 7 the separatrix has superlinear growth.
(d) For 1 < q ≤ 4 the separatrix has at least linear growth.

It is unknown whether in (b) and (c) the condition 4 < q < 7 can be weakened
to 0 < q < 7.
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Interpretation. To understand Part (b) of Theorem 4.2 let us say that u
2n

n−4 =
u−6 has “critical growth” and set F (u) = u1−q/(1−q). Then F (u)/u−6 is decreasing
for 1 < q < 7. In other words u−q for 1 < q < 7 has “subcritical growth”. For
“subcritical growth” it is well known that (2.1) and (2.2) with positive exponents
have no entire positive solution. Part (b) of Theorem 4.2 is such a subcritical
non-existence result for certain solution classes.

It was observed by Choi and Xu that the uniqueness of the explicit solution√
1 + r2/

√
15 can also be obtained by a geometric condition different to the linear

growth condition:

Corollary 4.3 (Choi and Xu). For n = 3 and q = 7 the uniqueness result of Part
(a) of Theorem 4.2 holds in the class of functions u such that the scalar curvature
of ḡ = u

4
n−4 δij is everywhere positive.

Proof. The scalar curvature of ḡ is given as (see Section 2.1)

Rḡ = −4
n− 1
n− 2

u
n+2
4−n ∆u

n−2
n−4 (4.2)

which reduces in dimension n = 3 and for a radial function u to

Rḡ =
8
r2

u5(r2u′u−2)′. (4.3)

Hence, positivity of Rḡ implies that r2u′u−2 is increasing. Integration of the
inequality r2u′u−2 ≥ c0 for r ≥ r0 implies 1/u(r) − 1/u(s) ≥ c0/r − c0/s for
r0 < r < s. Letting s → ∞ we obtain u(r) ≤ r/c0 for r ≥ r0. Since u is also
convex, cf. Lemma 4.4, this implies that u has linear growth, and Theorem 4.2
applies. �

For radially symmetric functions in R3 we find

∆2u(r) = u(iv) + 4u′′′/r = r−4(r4u′′′)′.

Lemma 4.4. For n = 3 a solution u of (3.1)-(3.2) is entire if and only if it is
convex.

Remark. It is unknown whether this classification of entire solutions also holds
for n ≥ 4.

Proof of Lemma 4.4. If u is convex then u is entire. Now suppose there exists r0

such that u′′(r0) < 0. Since (r4u′′′)′ ≤ 0 and u′′′(0) = 0 we find that u′′′ ≤ 0,
i.e. u′′ is decreasing. Therefore u′′ stays negative once it is negative at r0. Thus u
cannot be entire. �

Lemma 4.5. Suppose n = 3. Let u(r) be an entire solution of (3.1)-(3.2) with
linear growth. Then there exists a constant C > 0 such that 0 ≤ u′(r) ≤ C if q > 3
and moreover:

0 ≤ u′′ ≤


C(1 + r)−3 if q > 5,

C(1 + r)−3 log(2 + r) if q = 5,

C(1 + r)−q+2 if 2 < q < 5,

0 ≥ u′′′ ≥


−C(1 + r)−4 if q > 5,

−C(1 + r)−4 log(2 + r) if q = 5,

−C(1 + r)−q+1 if 1 < q < 5.
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Proof. We begin with the estimate for u′′′. Since (r4u′′′)′ ≤ 0 and u′′′(0) = 0 we
see that u′′′ ≤ 0. Hence

0 ≥ u′′′(r) =
−1
r4

∫ r

0

s4u(s)−q ds ≥ −C

r4

∫ r

0

(as + b)4−q ds.

The estimate follows by performing the integration. Likewise, since

u′′(r)− u′′(s) =
∫ r

s

u′′′(t) dt

and since
∫∞

u′′′(t) dt converges for q > 2 we have that limr→∞ u′′(r) exists and
vanishes due the assumption of linear growth. Moreover u′′ > 0 by Lemma 4.4.
Thus

0 ≤ u′′(s) =
∫ ∞

s

−u′′′(t) dt,

and the estimate for u′′ follows by integrating the one for u′′′. A final integration
leads to 0 ≤ u′(r) =

∫ r

0
u′′(t) dt < ∞ provided q > 3. �

Lemma 4.6. Suppose n = 3. Let q > 4 and suppose u is a solution of (3.1)-(3.2)
with linear growth. Then limr→∞ u− ru′ exists.

Proof. Integration by parts yields

1
2

∫ r

0

u−qs3 ds =
−1
2

∫ r

0

(s4u′′′)′
1
s

ds

= −r3

2
u′′′(r)− r2

2
u′′(r) + ru′(r)− u(r) + u(0).

By the assumption q > 4 we find that the left-hand side converges as r → ∞.
Moreover, by Lemma 4.5, r3u′′′, r2u′′ → 0 as r →∞. Hence

lim
r→∞

u− ru′ = u(0)− 1
2

∫ ∞

0

u−qr3 dr,

as claimed. �

Lemma 4.7. Suppose n = 3. Let q > 4 and suppose u is a solution of (3.1)-(3.2)
with linear growth. Then u− ru′ ≥ 0 on [0,∞).

Proof. Let h = u− ru′. We derive a differential inequality for h. By direct compu-
tation

∆2h = −7u(iv) − ru(v) − 8
r
u′′′.

Differentiation of (3.1) and multiplication by r yields

ru(v) + 4u(iv) − 4
r
u′′′ = rqu−1−qu′.

Substituting this into the expression for ∆2h and using (3.1) again we get

∆2h = −rqu−1−qu′ + 3u−q

= 3u−1−qh + (3− q)ru−1−qu′ (4.4)
≤ 3u−1−qh

since q > 4 by assumption. Notice that h is decreasing since h′ = −ru′′ < 0.
Suppose for contradiction that h(r) < 0 for r ≥ r0. Then (4.4) implies ∆2h < 0 on
(r0,∞), i.e., h′′′r4 is decreasing on (r0,∞). Now we distinguish two cases:
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Case (a): h′′′ is negative somewhere in (r0,∞). Then h′′′ stays negative, say, on
(r1,∞), i.e. h′ is a concave, negative function on (r1,∞). This implies that h is
unbounded below, which is impossible by Lemma 4.6.

Case (b): h′′′ ≥ 0 in (r0,∞). Then h′′′ is decreasing on (r0,∞), i.e., h′′ is concave
on (r0,∞). For large enough r1 we have either case (b1) h′′ < 0 on (r1,∞) or case
(b2) h′′ > 0 on (r1,∞). In case (b1) h is a concave decreasing function contradicting
Lemma 4.6. Hence we can assume case (b2), i.e., h′′ > 0 on (r1,∞). Thus h′′ is
a positive concave function on (r1,∞) and hence increasing at ∞. However, by
Lemma 4.5, we have r2h′′(r) → 0 as r → ∞. This is incompatible with the fact
that h′′ is positive increasing at ∞, and finishes the discussion of case (b). �

Lemma 4.8 (Pohožaev’s identity). Suppose n ≥ 3. Let u be an entire solution of
(3.1)-(3.2). Then the following identity holds∫ ρ

0

u1−q
( n

1− q
− n− 4

2

)
rn−1 dr

= −ρn

2
(u′′)2 +

ρn

1− q
u1−q +

n

2
ρn−1u′u′′ +

(n− 1)(n− 4)
2

ρn−2uu′′

+
n− 4

2
ρn−1uu′′′ + ρnu′u′′′ − n− 1

2
ρn−2(u′)2 − (n− 1)(n− 4)

2
ρn−3uu′

for every ρ > 0.

Proof. The result follows from a general identity of Pucci, Serrin [7], Proposition 4,
for the one-dimensional Lagrangian F = (1

2 (u′′ + n−1
r u′)2 + 1

1−q u1−q)rn−1. �

Proof of Theorem 4.2. Part (a): For q ≥ 7 the function U(r) =
√

1 + r2/
√

15 is a
subsolution. Therefore every compact support solution stays below U(r), and thus
the separatrix must stay below U(r). Hence, the separatrix S(r) has linear growth.
Let t(r) be the slope of the tangent of S(r). By convexity, t(r) is increasing,
and by the upper bound U(r) we see that t(r) is bounded, i.e. convergent with
t = limr→∞ t(r). Hence the separatrix S(r) has exactly linear growth with slope t.

Let u be an entire, linear growth solution with u(0) = 1. If u′′(0) < S′′(0) then
by Lemma 4.5 we have u′′′(r) < S′′′(r), and hence c := (S − u)′′(0) < (S − v)′′(r),
i.e. u′′(r) ≤ S′′(r) − c. However, since S′′(r) → 0 as r → ∞ by Lemma 4.5, we
get that u′′(r) < 0 for large r. Hence u becomes concave eventually, stays concave,
and hence cannot be entire. Now suppose u′′(0) > S′′(0). Then u′′(r) ≥ S′′(r) +
u′′(0)− S′′(0) > 0, i.e. lim infr→∞ u′′(r) > 0. This contradicts Lemma 4.5. Hence,
among all solutions with linear growth, S(r) is unique. This uniqueness shows that

in case q = 7 the separatrix S(r) must have the explicit form
√

1 + r2/
√

15.
Part (b): Suppose 4 < q < 7. Then in the right-hand side of Pohožaev’s identity

all terms except the last two converge individually to 0 as ρ → ∞. The last two
terms are

uu′ − ρ(u′)2 = u′(u− ρu′) ≥ 0

by Lemma 4.7. Hence the lim inf of the entire right hand side is ≥ 0. In contrast,
the left-hand side is negative. Hence no linear growth solution exists.

Part (c): For 4 < q < 7 the separatrix cannot have linear growth. By convexity
it has a least linear growth, i.e, it has superlinear growth.
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Part (d): The reasoning of Part (c) shows that the separatrix has at least linear
growth. However, linear growth itself can no longer be excluded. �

5. Compact support solutions of ∆2u = −u−q for n = 3

Let u be a function with support [0, R] and let a,A be a positive constants
(depending on u). We say that u has

square root growth if a
√

R− r ≤ u(r) ≤ A
√

R− r
exactly square root growth if limr→R u(r)/

√
R− r > 0,

at least square root growth if a
√

R− r ≤ u(r).

Theorem 5.1. For n = 3 compact support solutions of (3.1)-(3.2) have the follow-
ing properties:

(a) for 6 < q < 7 there is no compact support solution with square-root growth
at its zero,

(b) for 1 < q ≤ 6 there is no compact support solution with a least square-root
growth at its zero.

(c) For q = 7 there are compact support solutions with exactly square root

growth given by α

√
1/
√

15α8 − |x|2, α > 0 (here we have dropped the re-
quirement u(0) = 1).

Unlike the entire solution situation, we do not know how to uniquely select the
special solutions of Theorem 5.1(c). In fact, the requirement of negative scalar
curvature is not enough:

Corollary 5.2. For q = 7 there are infinitely many solutions with support [0, R]
which generate a metric with negative scalar curvature. Each of them can be pulled
back by stereographic projection to a metric on hyperbolic space H3

R.

One might conjecture that exact square root growth near its zero uniquely selects
the explicit solution of Theorem 5.1(c). So far, we do not know whether this holds
true. Geometrically the square root condition means that ḡ = u−4δij can be pulled
back to H3 via inverse stereographic projection and the resulting metric ĝ on H3

has the property that ĝ/gH3 → const. at ∞.

Lemma 5.3. Suppose n = 3. Let u(r) be a compact support solution of (3.1)-(3.2)
with at least square-root growth. Then there exists a constant C > 0 such that

|u′| ≤


C(R− r)3−

q
2 if q > 6,

C| log(R− r)| if q = 6,

C if 1 < q < 6,

|u′′| ≤


C(R− r)2−

q
2 if q > 4,

C| log(R− r)| if q = 4,
C if 1 < q < 4,

|u′′′| ≤


C(R− r)1−

q
2 if q > 2,

C| log(R− r)| if q = 2,

C if 1 < q < 2.
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Proof. We begin with the estimate for u′′′. As in Lemma 4.5 we see that u′′′ ≤ 0.
Hence

0 ≥ u′′′(r) =
−1
r4

∫ r

0

s4u(s)−q ds ≥ −C

∫ r

0

(R− r)−q/2 ds.

The estimate follows by performing the integration. Likewise,

|u′′(r)| ≤ C +
∫ r

0

|u′′′(t)| dt

leads to the estimate on u′′, and a further integration leads to

|u′(r)| ≤
∫ r

0

|u′′(t)| dt < ∞

and its subsequent estimate. �

Proof of Theorem 5.1. Part (b): If 1 < q < 6 then u′ is bounded, which is incom-
patible with the assumption that u has at least square root growth. The same holds
if q = 6 since integration of the u′ estimates yields |u| ≤ C(R−r)| log(R−r)|, which
is again incompatible with the square root lower bound.

Part (a): Assume q > 6. We use again Pohožaev’s identity for ρ ∈ (0, R). For the
terms in the right-hand side we find (u′′)2 ≤ C(R − ρ)4−q, |u′′u′| ≤ C(R − ρ)5−q,
|u′u′′′| ≤ C(R − ρ)4−q, |uu′′| ≤ C(R − ρ)(5−q)/2, |uu′′′| ≤ C(R − ρ)(3−q)/2. It
turns out that the most singular term is (R− ρ)4−q. However, the remaining term
u1−q ≈ (R − ρ)(1−q)/2 is more singular provided q < 7. Here we use that u is
bounded above by multiples of

√
R− r. Hence, the right-hand side converges to

−∞ with rate −(R − ρ)(1−q)/2 as ρ → R. The left-hand side is also negative for
q < 7. If we use that u is bounded below by multiples of

√
R− r then we see that

the left hand side converges to −∞ with the less singular rate −(R − ρ)(3−q)/2.
Hence there is no solution with square root growth for 6 < q < 7. �

Proof of Corollary 5.2. If we prescribe u(0) = α > 0 then by Theorem 3.1 there
exists δ0 > 0 such that every solution with u′′(0) = δ < δ0 has compact support.
Moreover, the zero R(δ) ranges continuously between 0 and +∞ if δ ranges between
−∞ and δ0. Hence for α and R > 0 there exists δ∗ such that the solution with
u′′(0) = δ∗(α) has exactly support [0, R]. If α →∞ then necessarily δ∗(α) → −∞,
i.e. the solutions are concave and decreasing. Hence u′r2/u2 is decreasing and thus
u generates a metric with negative scalar curvature, cf. (4.3). �

6. Open questions

We finish with a selection of questions which remain open.
(1) For n ≥ 4 the equation ∆2u = −u−q in Rn has non-radial positive entire

solutions given by u(x′, xn) = v(|x′|), where v(r) is a radial positive entire
solution satisfying ∆2v = −v−q in Rn−1. This leaves the question whether
in R3 non-radial positive entire solution exist. The above construction does
not work, since Theorem 3.1 requires n−1 ≥ 3 for the existence of a solution
v.

(2) Do there exist positive entire solutions of ∆2u = −u−q in R2? A positive
answer would resolve question (1).

(3) Can one find an explicit formula for the growth rate of the separatrix in
terms of q?

(4) For n = 3, can one drop the assumption q > 4 in Theorem 4.2?
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(5) Suppose q = 7 and n = 3. Are the explicit compact support solutions

α

√
1/
√

15α8 − |x|2 unique in the class of solutions having square root
growth near their zero?

(6) In R3 the equation ∆2u = u−7 arises from (2.2) by assuming Qḡ = const. <

0. The function U(r) = 4
√

4/3
√

r is a solution, and the generated metric
ḡ = U−4δij has constant scalar curvature 8/3. In what class of solutions is
U(r) unique?

(7) In what class of solutions are u(r) =
(

2a
a2−r2

)n−4
2

unique boundary-blow up

solutions of ∆2u = n
16 (n− 4)(n2 − 4)u

n+4
n−4 in balls Ba(0) ⊂ Rn for n ≥ 5?
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