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RADIAL MINIMIZER OF A VARIANT OF THE
P-GINZBURG-LANDAU FUNCTIONAL

YUTIAN LEI

ABSTRACT. We study the asymptotic behavior of the radial minimizer of a
variant of the p-Ginzburg-Landau functional when p > n. The location of the
zeros and the uniqueness of the radial minimizer are derived. We also prove
the WP convergence of the radial minimizer for this functional.

1. INTRODUCTION

Let n > 2, B = {z € R";|z| < 1}. Consider the minimizers of the variant for
the p-Ginzburg-Landau-type functional

1 1
B B) =+ [ 1vap+ 5 [ WP pP2 20
on the class functions
W = {u(z) = f(r)|;i| e WhP(B,RY): f(1) = 1,r = |z|}.
By the direct method in the calculus of variations we see that the minimizer wu.
exists. It will be called the radial minimizer.
When p = n = 2, the asymptotic behavior of the minimizer u. of E.(u, B) in the

class H g1 were studied in [5]. In this paper, we will study the asymptotic behavior
of the radial minimizer u.. We will prove the following theorems.

Theorem 1.1. Let u. be a radial minimizer of E.(u, B). Then for anyn € (0,1/2),
there exists a constant h = h(n) independent of € € (0,1) such that Z. = {x €
B; |lus(z)] <1 —n} C B(0, he). For any given € € (0,£¢), the radial minimizers ue
of E-(u, B) are unique on W.

Theorem 1.2. Let uc. be a radial minimizer of E.(u, B). Then as e — 0,

€T . _
ue = i Wil (B {0}, B).

Some basic properties of minimizers are given in §2. The proof of Theorem 1.1

is presented in §3. The proof of Theorem 1.2. is based uniform estimates proved in

§4.
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2. PRELIMINARIES
Let
V= {f e WEP(0,1];7"F f, € LP(0,1),r"""P)/7f € P(0,1), f(1) = 1}.
Then V = {f(r);u(x) = f(r)l%l € W}. As stated in [6, Proposition 2.1]7 we have
Proposition 2.1. The set V defined above is a subset of {f € C|0,1]; f(0) = 0}.

Proposition 2.2. The minimizer u. € W is a weak radial solution of

. _ 1 1
—div(|Vu[P~2Vu) = E—pu(l — |u)®)|ul* - gu(l —|ul*)?, on B, (2.1)

Proof. Denote u. by u. For any ¢ € [0,1) and ¢ = f(r)li—l € Wol’p(B, R"™), we have
u+tp € W as long as t is small sufficiently. Since u is a minimizer we obtain

dE. (utt¢,B)
dt

[t=0 = 0, namely,
1 1
0:/ |Vu|p_2VuV¢dm——/ u¢(1—|u|2)|u|2dx+—/ up(1— [uf?)2dz. (2.2)
B e? Jp 2e? Jp
O

Proposition 2.3. Let u. € W satisfying (2.2). Then |u.| <1 a.e. on B.

Proof. Let u = u. in (2.2) and set ¢ = u(|u|?> — 1), where for a positive constant
k, (Ju|?> = 1)1 = min(k, max(0, [u|> — 1)). Then

l/|Vuvum2—1p-+z/|Vuw-%uVuﬁ
b5 [l =02+ 5 [Pl = Dl = 12 = 0

from which it follows that
1 401,12 2
5 [P =12 <o,

Thus |u| = 0 or (Jul> —1); = 0 a.e. on B. Using proposition 2.1 we know that
lu| = |us] <1 a.e. on B. O

By the same argument as in [6, Proposition 2.5], we obtain the following state-
ment.

Proposition 2.4. Assume u. is a weak radial solution of (2.1). Then there exist
positive constants C1, p which are both independent of € such that

Vue (@) || (B (2,pe/8)) < Ciet, if ze€ B(0,1 — pe), (2.3)
29 —
lue ()] > =— 30° if xe€ B\ B(0,1—2pe). (2.4)

Proposition 2.5. Let u. be a radial minimizer of E.(u, B). Then there exists a
constant C' independent of € € (0,1) such that

E.(us, B) < Ce" P+ C;  forp>n, (2.5)
E (ue, B) < C|lne|+C, forp=n.
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Proof. Let
1 1
I(, R) = min {/ LIVl + (1= [u?)?)u e Wi,
B(O,R) P ep
where Wg = {u(z) = f(r)ﬁ € WHP(B(0, R), R™);r = |z|, f(R) = 1}. Then
I(e,1) = E-(ue, B)
1 1
_1 P 1 ol 1221, (2
p/B\VuE| dx+4€p /B(l |ue|”)? ue|*dx

1 1
—eop [ vy g [ @ Py
P JB(0,e1) 4 B(0,e-1)

=e""PI(1,e7Y).
Let u; be a solution of I(1,1) and define

{ul, ifo<|z/ <1
Ug =

2.7)

o if 1< |zl <e L

ma
Thus uy € W_.-1, and

_ 1 1
Mess [ g [ PP
P JBo.e) 4 I

1 1 1 x
:1/WMP+7/G—WﬁFmP+7/ v
P JB 4 /g pJBoesn\B |7l

— 1)p/2|gn—1 et
1,1+ P DS |/ P
p 1

Hence
(n —1)P/2|5m 1|
p(p—n)

_ 1)p/2|gn—1
11,7 < 11, 1) 4 = DS

I(1,e7 ) <I(1,1) + (1-eP ™) <C, forp>n;

|Ine|, for p=n.
Substituting this into (2.7) yields (2.5) and (2.6). O

3. PROOF OF THEOREM 1.1

Proposition 3.1. Let u. be a radial minimizer of E.(u, B). Then there exists a
positive constant €9 such that as e € (0, &p),

1
= [ PPy <c. )
en B

where C' is independent of €.

Proof. When p > n, the conclusion follows from multiplying (2.5) by ?~2. When
p = n, the proof is similar to the proof in [7, Theorem 1]. Thus we can obtain this
proposition by using (2.6). O

Proposition 3.2. Let u. be a radial minimizer of E.(u, B). Assume p > n. Then
for any n € (0,1/2), there exist positive constants A, independent of € € (0,1)
such that if

1

- Jue (1 = |ue[?)? < g, (32)
& BN B2le
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where B2 js some ball of radius 2le with [ > \, then
luc(x)] € [0,1 —n] Ul —n/2,1], Yz e BN Be.
Proof. First we observe that there exists a constant 8 > 0 such that for any z € B
and 0 < p <1, |BN B(x, p)| > Bp*.
From Proposition 2.3 and (2.5) it follows that ||uc|lyw1.»(5) < C=*2". By embed-

ding theorem we know that there exists a positive constant Cy which is independent
of &, such that for any z,xy € B,

2-p 1—2
lue(x) — ue(x0)] < Coe™® |z — | " 7.

To obtain the conclusion, we choose

Ui B 5

= = Zp2(1 — )2\~ .
0y M 1677( n)A (3.3)

Suppose that there is a point xo € BN B such that 1 —n < |uc(z0)| < 1 —n/2.
Then

|ue(z) — ues(xo)| < COE%TPM . x0|1_% < CoA = Z’ Vo € B(xg, A\e)

Hence (1 — |uc(z)[*)* > (4)?, for all & € B(xo, Ae), and

2 2
J (1= [uel?)? > J2 (L=n)|BO Blao, Ae)| 2 A1 (1 =) (A)" = pe”

B(zo,\e)NB 16 16
(3.4)

Since zg € B'* N B, and (B(xg, Ae) N B) C (B*¢ N B), (3.4) implies
Lo = Py > e
B2lenB

which contradicts (3.2) and thus proposition 3.2 is proved. (]

Let u. be a radial minimizer of E.(u, B), p > n . Given n € (0,1/2). Let A\, u
be constants in Proposition 3.2 corresponding to 7. If

1
en B(z¢,2\e)NB
then B(z°, Ae) is called good ball. Otherwise B(z%, A¢) is called bad ball.
Now suppose that {B(z5, Ae),i € I} is a family of balls satisfying
(1): z€B,iel;
(#3) : B C UerB(a, Xe) (3.6)
(4ii) :  B(xi,Ne/4) N B(x§,\e/4) =0,i #j

Jue* (1 = Juel*)* < (3.5)

Denote J. = {i € I; B(z5, Ae) is a bad ball}.

Proposition 3.3. Assume p > n, there exists a positive integer N independent of
e € (0,1), such that the number of bad balls satisfies Card J. < N.

Proof. Since (3.6) implies that every point in B can be covered by finite, say m
(independent of €) balls, from Proposition 3.1 and the definition of bad balls, we
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have
penCardJ. < 3 / (0 ey
ieJ. B(xz£,2Xe)N
<m Jue? (1 = Jucl?)*
UiEJEB(I:T-,Q)\E)ﬂB
< m/ \u6\2(1 - |u5\2)2 < mCe"
B
and hence Card J, < ’”TC < N. O

Similar to the argument in [1, Theorem IV.1], we have the following statement.

Proposition 3.4. Assume p > n, there exist a subset J C J. and a constant
h € [\, A9N] such that

UiEJEB(xz‘?v )‘E) - UiEJB(x§7 h€)7 |£Cf - x;‘ > 8h€7 Za] € Ju { 7é .7 (37)

Applying proposition 3.4, we may modify the family of bad balls such that the
new one, denoted by {B(x%, he);i € J}, satisfies

UieJEB(LL‘?, )\E) C Uie]B(fE?, h&‘),
A< h; CardJ < Card J.
|z§ — 25| > 8he,i,j€ Ji# .

The last condition implies that every two balls in the new family are not intersected.
Now we prove our main result of this section.

Theorem 3.5. Let u. be a radial minimizer of E.(u,B). Assume p > n. Then
for anyn € (0,1/2), there exists a constant h = h(n) independent of € € (0,1) such
that Z. = {x € B;luc(x)] < 1 —n} C B(0,he). In particular the zeroes of u. are
contained in B(0, he).

Proof. When p > n. Denote Yz = {x € B;1 —n < |u.(x)] < 1—1n/2}. Suppose
there exists a point xg € Y; such that 20€B(0, he). Then all points on the circle
So ={z € B; |z| = |zo|} satisty |uc(z)] < 1—n and hence by virtue of Proposition
3.3 all points on Sy are contained in bad balls. However, since |zg| > he, Sy can
not be covered by a single bad ball. Sy can be covered by at least two bad balls.
However this is impossible. This means Y. C B(0, he).

Furthermore, for any given yo satisfying |uc(yo)| = f(r0) < 1—n, where |yo| = 7o,
we claim yo € B(O he). In fact, From f(ro) <1—mn, f(1) =1>1—n/2, and the
continuity of f, it follows that there exists & € (rg,1) such that 1 —n < f(§) <
1-1n/2,s0 & €Y. C (0, he) which implies r € (0, he).

When p = n, The space W™ (B) does not embed into C%(B). Hence in the
proof of Proposition 3.2 we can not derive the similar conclusion in B globally.
Now, by virtue of Proposition 2.4, we may do argument on B(0,1 — pe) instead of
on B in the proof of Proposition 3.2 by using (2.3) and it is also true that we may

take )
= 021 Jue[2)? < g
€% JB(x%,2Xe)NB(0,1—pe)

as a ruler to distinguish the bad balls in B(0,1 — pe). Similarly, we also obtain
that the set {z € B(0,1 — pe);1 —n < |u.(x)] < 1 —n/2} must be covered by
finite disintersected bad balls for any n € (0,1/2). Moreover, it follows that the set
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{z € B(0,1—pe); |us(x)] <1—n} C B(0, he) by the same argument above. Noting
(2.4), we can see that the theorem holds. O

By Proposition 2.4, Proposition 3.2 and Theorem 3.5 we can see that

|ue(z)] > min(%, 1—-2n), Vxe€ B\ B(0,he). (3.8)

Theorem 3.6. For any given € € (0,¢¢), the radial minimizers u. of Ec(u, B) are
unique on W.

Proof. Fix ¢ € (0,1). Suppose uy(z) = fl(r)l;ﬂ—l and us(x) = fQ(T)I%I are both
radial minimizers of E.(u, B) on W, then they are both weak radial solutions of
(2.1). Namely, they satisfy

/B|vu|P—2vw¢+ %/B[(l + 3ul*) — 4ful’]p =

Taking ¢ = u1 —ug = (f1 — fg)ﬁ, we have
/ (|Vu1|P~2Vuy — |Vua [P 2Vug )V (uy — ug)da

w,(ﬁ RYPU+3(F+ [+ 5+ 5+ 12)
—4(ff+ f3 + frf2)ldz =0
Letting 7 in (3.8) be sufficiently small such that
2
1> fi, B> a on B\BOh))

for any given ¢ € (0,1). Hence
C
/ (\Vu1|p_2Vu1 — |V’LL2‘p_QVUQ)V(’U,1 — ’LLQ)de‘ < — (f1 — f2)2dl‘
B ep B(0,he)

Applying (2.11) of [8], we can see that there exists a positive constant v independent
of € and h such that

1
1 [ Ve —wfde< 5 [ (5 g, (39
B €Y JB(0,he)
which implies
/ V(fi = fo)Pda < 7 (1 — f2)dw. (3.10)
YEY JB(0,he)

When n > 2. Applying [4, Theorem 2.1], we have ||f‘|% < BIIV£ll2, where
8 = 2("7__21) Taking f = f1 — f2 and applying (3.10), we obtain f(|z|]) = 0 as

n

r € 0B and

[ [ 1] - < [ 1vsPde< gyt [ |rPdse,

where G = B(0, he). Using Holder inequality, we derive

2n — ﬁ
/|f| dz < |G- /mn 2d2)"5 < | B[ n2e /If\ dz.




EJDE-2003/35 RADIAL MINIMIZER OF A VARIANT ... 7

Hence for any given € € (0,1),

[ 11z < €. 1Bl [ |fPda. (3.11)
G @
Denote F(n) = fB(o hme) |f|?dz, then F(n) >0 and (3.11) implies that

F(n)(1—C(B,|Bl,v,e)h?) < 0. (3.12)
On the other hand, since C(,|B|,,¢) is independent of 7, we may take n so small
that i = h(n) < XY = 9N 5= (which is implied by (3.3)) satisfies
0<1- 0(67 |B‘777€)h2
for the fixed € € (0,1), which and (3.12) imply that F(n) = 0. Namely f = 0 a.e.
on G, or

fi=f2, a.e. on B(0,he).

Substituting this into (3.9), we know that u; — us = C a.e. on B. Noticing the
continuity of uy,us which is implied by Proposition 2.1, and u; = ug = x on 9B,
we can see at last that

U = uz, on E
When n = 2, applying [4, Theorem 2.1}, we have [|f|l¢ < BV f|l2/3, where 3
does not depend on 7. By the similar argument above, we may see the same
conclusion. (]

4. PROOF OF THEOREM 1.2

Let ue(z) = fg(r)ﬁ be a radial minimizer of E. (u, By ), namely f. be a minimizer
of E.(f) in V. From Proposition 2.5, we have

E.(f.) <Ce™ P, forp>n; E:(f.) <C|lne|, forp=n (4.1)

for some constant C' independent of € € (0,1). In this section we further prove that
for any given R € (0,1), there exists a constant C'(R) such that

E.(f; R) < C(R) (4.2)

for € € (0,e9) with 9 > 0 sufficiently small, where
1 1 1 1
BAfiR) = o [ (24 o= 02t oo [P0 et
PJr 4e? | p

Proposition 4.1. Assume p > n. Given T € (0,1). There exist constants T; €

[(jl\?j_)lT, 1\?—_{1], (N = [p]) and C;, such that

E.(f-;T;) < Cjei™ (4.3)
forj=n,n+1,...,N, where e € (0,e9) with o sufficiently small.

Proof. For j = n, the inequality (4.3) can be obtained by (4.1) easily. Suppose that
(4.3) holds for all j < m. Then we have, in particular,

E.(fe;Tm) < Crpe™ P, (4.4)

If m = N then we are done. Suppose m < N, we want to prove (4.3) for j = m+1.
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From (4.4) and integral mean value theorem, we can see that there exists T}, 41 €
[-mL (mH)T} such that

N1’ N+1
i(l - faQ)QlT:T +1 < LEE(“& 6B(O>Tm+1)) < Cmem_p (4~5)
e? T 2 (Te)

It is used that fo(Tm41) > 23 by virtue of (3.8) as long as £o and 7 sufficiently

small. Consider the minimizer p; of the functional
B To) = [ ey / 0
P JT, " 2eP T+

It is easy to prove that the minimizer p. of E(p,T,11) on W}g’p((TmH, 1),RT)
exists and satisfies

—eP(PD/2p ) =1 —p, in (Thy1,1), (4.6)
Plr=Tpr = fer plr=1 = fe(1) =1,
where v = p2 + 1. Since f. < 1, it follows from the maximum principle
pe < 1. (4.8)
Applying (4.1) we see easily that
E(pe; Tin41) < E(fe; Tng1) < CE(fe; Tingr) < Ce™7P. (4.9)

Now choosing a smooth function 0 < ((r) < 1 in (0,1] such that ( = 1 on
(OaTm-‘rl):C =0 near r =1 and |§7| < C(Tnb-l-l)v mlﬂtlplylng (46) by CPT(p = p&)
and integrating over (T;,+1,1) we obtain

1 1
) B 1
W@=2/2p2) +/ VP20, (Grpr + Cprr) dr = 57,/ (1= p)Cpr dr.

T,,L+1 Tm+1
(4.10)
Using (4.9) we have
1
| / U(%Q)/QPT(Q»P»” +Cprr) d""|
Ti1
1 1t 1
< / U(p72)/2|<7“|p72~ dr + 7| / (UP/ZC)T‘ dr — / UP/ZCT d’l“’
T P T Tntr (4.11)
1 1 C 1
SC/ vp/2+fvp/2| 7 +—/ vP/2dr
Tt D ThmAt D 1
< Cem P 4 lvp/2| .
p r=Im+1
and using (4.5),(4.7) and (4.9) we have
1 1
vy (1—p)Cprdr
ep /Tm+1 |
I !
— sl [ =ersar- [ a-picar (4.12)
2¢e Toin Tynin
1 2 c ' 2 m—p
< @(170) |T_Tm“+25p/Tm+1(1p) dr| < Ce™P.
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Combining (4.10) with (4.11), (4.12) yields

W22

1
< CemTP 4 P3|,
p

Hence for any § € (0,1),
WPy, = v(””")/g(p2 + D=1, 1

2)/2 2 —2)/2
(p )/ |7' T77L+1 +U(p )/ ‘T:T7n+1

seer F’p/ o=t 0D,

1
=Cem P (o + §)oP/?|,_r, . + C(6)

from which it follows by choosing § > 0 small enough that
vp/2| < Ce™P. (4.13)

r=Tpmi1 —

Now we multiply both sides of (4.6) by p — 1 and integrate. Then

1 1 1
75”/ [v(p*Q)ﬂpr(pfl)]Terrep/ v(P=2)/2 2dr+/ (p—1)%dr =0.
Tm+1 Tm+1

T,,L+1
From this, using(4.5), (4.7) and (4.13), we obtain
1
E(pe; Trm+1) < C| [U(p_2)/2/’r(/’ — D)} dr]

Tm, +1

= Cv(p_z)/2|pr”p — ].|7~:Tm+1 < C'l)(p_l)/2|/) - 1|T:Tm+1
< (Cem_p)(p_l)/p(CEm)l/Q < Cé‘m_p+1.

(4.14)

Define
v — fe forr e (0,Th41)
) pe forr € [Ty, 1]

Since f; is a minimizer of E.(f), we have E.(f.) < E.(w.). Thus, it follows that
1

1/t 1
Ee(fe: Tmyr) < 1;/ (P§+(n*1)r’2p2)”/27"”*1dr+@/ p*(1—p?)r"tdr

T,n+1 T7n+1
by virtue of I' < & < T, 41 since ¢ is sufficiently small. Noticing that

! 1
m.+1

Tt
-2 2
/ / P+ p°)s
Tt

+ (n—1)r2p*(1 — )| P=22dsp2r"ar

< C/ (F + (n = D=2 p?) =22 2y Ly
Trm41
+ C/ ((n— 1)r_2p2)(p_2)/2p?r”_1dr
m+1

1
< C/ (P2 + p2)dr
m+1
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and using (4.8) we obtain

Ea(fa; Tm+1)

1t 1 1
<o [ vy taree [ e o [ 0= prar
PJr, Tm+1 de Tm+1
1 1
<5 / ((n = 1r=2)/2" Y dr 4 CB(pes ).
pPJr,.,

Combining this with (4.14) yields (4.3) for j = m + 1. It is just (4.3) for j =
m+ 1. g

Proposition 4.2. Assume p > n. Given T € (0,1). There exist constants Tn11 €
(0,T] and C > 0 such that

Snfl 1
E . (ue;Tny1) — (n— l)p/2! PP e < CeNHLP, (p > n);
p TNyt
Snfl 1
E.(ue; Tns1) — (n— 1)”/2! r" P ldr < Cellnel, (p = n),
p TNy

where N = [p].

Proof. From (4.1) and (4.3) we can see E.(us;Ty) < CF(e), where F(g) = |In¢]
as p=mn, and F(¢) = eV =P as p > n. Hence by using integral mean value theorem
we know that there exists Tv41 € (0,7] such that

1 1
f/ |Vue|Pde + — luc2(1 — |uc|?)?de < CF(g).  (4.15)
P JoB©Txn i) 4€P JoB(0, T 1)

Note that ps is a minimizer of the functional

1 [t 1 [t
B Tyve) =3 [ by o [ - ptar

P
TN+1 25 TN+1

on W;E’p ((Tw4+1,1), RT U {0}). It is not difficult to prove by maximum principle
that

p2 < 1. (4.16)

As in the derivation of (4.14), from (4.3) and (4.15) it can be proved that

E(p2, Tn11) < CeF(e). (4.17)
Using that u. is a minimizer and pgﬁ € Ws, we also have
Eo(fs;Tny1) < Ee(p2; Tn11)

1 [t _ _ 1 [t
<o [ v o [ 20 e
PJryiy S SN
(4.18)
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On the other hand,

1 1
[t mene2rn e [ eyt ar

Tni1 TN+

1 1
=0 [ [ = e s - R (1 s
2 )ryin Jo
1

<C [07 + (n = 1)r=2p*|P=272 2Ly
TnN+1
1
+C [(n— 1)r=2p?| P22 p2r "y
TN+
1
<C (0% + p?]dr.
TN+1

Substituting this into (4.18), we have

Es(fs;TN—H)

1 1 1 C 1
=5 / (n—1)P2phrm =P~ Ydr + C (P, + p3,)dr + — (1= ps)2dr
PJrni, TN+1 ep TN+1

1
< - / (n — 1)P/2pbrm=P=Ldr 4+ CeF(e)

p TN+1

1 1
< —(n-— 1)p/2/ r" P~ ldr + CeF(e),

p TN41

using (4.16) and (4.17). This completes the proof. |
Theorem 4.3. Let u. = fg(r)ﬁ be a radial minimizer of E.(u, By). Then

limu, = —, in WYP(K, R")

e—0 ||’
for any compact subset K C By \ {0}.

Proof. Without loss of generality, we may assume K = Bj \ B(0,Tx.1). From
Proposition 4.2, we have

Ec(ue, K) = [S" Y Eo(fe; Tny1) < C, (4.19)

where C'is independent of e. This and |u.| < 1 imply the existence of a subsequence

ue, of ue and a function u, € WHP(K, R"), such that

lim wu,., = u,, weakly in Wl’p(K7 R™),

Ek—>0

lim wue, =wu., in LY(K,R), Vq>0, (4.20)

Ek—>0

limofgk(r) = |us|, in CY[ITn41,1,R), a>1-1/p.
Ep—

Inequality (4.19) implies |u.| € {0,1}. Using also (4.20) and f., (1) = 1 we see that
|ux] =1 or u, = ﬁ Hence, noticing that any subsequence of u. has a convergent
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subsequence and the limit is always z/|x|, we can assert

hn})ue =l weakly in WP (K, R™). (4.21)
E— €T
lirr(ljus =u,, in LIY(K,R), Vq>0. (4.22)
e—

From this and the weakly lower semicontinuity of || 1 |Vu|P, using Proposition 4.2,
it follows that

/|vilpghmmf/ IVuEI”<hmsup/ [Vaue|?
x|zl =0 JK

er—0

1
< |8 ((n — 1)r=2)P/2pn=1 gy

Tniy1
and hence
hH(l) |Vu5|p / |V 2] |
since .
/ VEP=15"Y [ (- Ve
k| Txi1
Combining this with (4.21)(4.22) completes the proof. O
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