\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2003(2003), No. 35, pp. 1--12. \newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \thanks{\copyright 2003 Southwest Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE--2003/35\hfil Radial minimizer of a variant \dots ] {Radial minimizer of a variant of the p-Ginzburg-Landau functional} \author[Yutian Lei\hfil EJDE--2003/35\hfilneg] {Yutian Lei} \address{Yutian Lei \hfill\break Department of Mathematics, Nanjing Normal University, Nanjing, Jiangsu 210097, China} \email{lythxl@163.com} \date{} \thanks{Submitted December 30, 2002. Published April 3, 2003.} \subjclass[2000]{35J70, 49K20} \keywords{Radial minimizer, variant of p-Ginzburg-Landau functional} \begin{abstract} We study the asymptotic behavior of the radial minimizer of a variant of the p-Ginzburg-Landau functional when $p \geq n$. The location of the zeros and the uniqueness of the radial minimizer are derived. We also prove the $W^{1,p}$ convergence of the radial minimizer for this functional. \end{abstract} \maketitle \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}[theorem]{Proposition} \numberwithin{equation}{section} \section{Introduction} Let $n \geq 2$, $B=\{x \in R^n;|x|<1\}$. Consider the minimizers of the variant for the p-Ginzburg-Landau-type functional $$ E_\varepsilon(u,B)= \frac{1}{p}\int_B|\nabla u|^p +\frac{1}{4\varepsilon^p}\int_B|u|^2(1-|u|^2)^2 ,\quad (p \geq n) $$ on the class functions $$ W=\big\{u(x)=f(r)\frac{x}{|x|} \in W^{1,p}(B,R^n); f(1)=1, r=|x|\big\}. $$ By the direct method in the calculus of variations we see that the minimizer $u_{\varepsilon}$ exists. It will be called the {\it radial minimizer}. When $p=n=2$, the asymptotic behavior of the minimizer $u_{\varepsilon}$ of $E_\varepsilon(u,B)$ in the class $H_g^1$ were studied in [5]. In this paper, we will study the asymptotic behavior of the radial minimizer $u_\varepsilon$. We will prove the following theorems. \begin{theorem} \label{thm1.1} Let $u_\varepsilon$ be a radial minimizer of $E_\varepsilon(u,B)$. Then for any $\eta \in (0,1/2)$, there exists a constant $h=h(\eta)$ independent of $\varepsilon \in (0,1)$ such that $ Z_\varepsilon=\{x \in B; |u_\varepsilon(x)|<1-\eta\} \subset B(0,h\varepsilon)$. For any given $\varepsilon\in (0,\varepsilon_0)$, the radial minimizers $u _{\varepsilon}$ of $E_{\varepsilon}(u,B)$ are unique on $W$. \end{theorem} \begin{theorem} \label{thm1.2} Let $u_\varepsilon$ be a radial minimizer of $E_\varepsilon(u,B)$. Then as $\varepsilon \to 0$, $$ u_\varepsilon \to \frac{x}{|x|},\quad \mbox{in } W_{\rm loc}^{1,p}(\overline{B}\setminus \{0\},R^n). $$ \end{theorem} Some basic properties of minimizers are given in $\S2$. The proof of Theorem 1.1 is presented in $\S3$. The proof of Theorem 1.2. is based uniform estimates proved in $\S4$. \section{ Preliminaries } %2 Let \[ V=\big\{f \in W_{\rm loc}^{1,p}(0,1];r^{\frac{n-1}{p}}f_r\in L^p(0,1), r^{(n-1-p)/p}f\in L^p(0,1), f(1)=1\big\}\,. \] Then $V=\{f(r);u(x)=f(r)\frac{x}{|x|} \in W\}$. As stated in [6, Proposition 2.1], we have \begin{proposition} \label{prop2.1} The set $V$ defined above is a subset of $\{f \in C[0,1];f(0)=0\}$. \end{proposition} \begin{proposition} \label{prop2.2} The minimizer $u_{\varepsilon}\in W$ is a weak radial solution of \[ -\mathop{\rm div}(|\nabla u|^{p-2}\nabla u)=\frac{1}{\varepsilon^p}u(1-|u|^2)|u|^2 -\frac{1}{2\varepsilon^p}u(1-|u|^2)^2, \quad on \quad B, \tag{2.1} \] \end{proposition} \begin{proof} Denote $u_{\varepsilon}$ by $u$. For any $t \in [0,1)$ and $\phi=f(r)\frac{x}{|x|} \in W_0^{1,p} (B,R^n)$, we have $u+t\phi \in W$ as long as $t$ is small sufficiently. Since $u$ is a minimizer we obtain $\frac{dE_{\varepsilon}(u+t\phi,B)}{dt}|_{t=0}=0$, namely, \[ 0=\int_B|\nabla u|^{p-2} \nabla u \nabla \phi dx -\frac{1}{\varepsilon^p}\int_Bu\phi (1-|u|^2)|u|^2 dx +\frac{1}{2\varepsilon^p}\int_Bu\phi (1-|u|^2)^2 dx. \tag{2.2} \] \end{proof} \begin{proposition} \label{prop2.3} Let $u_\varepsilon \in W$ satisfying (2.2). Then $|u_{\varepsilon}| \leq 1$ a.e. on $\overline{B}$. \end{proposition} \begin{proof} Let $u=u_\varepsilon$ in (2.2) and set $\phi=u(|u|^2-1)_+$, where for a positive constant $k$, $(|u|^2-1)_+=\min(k,\max(0,|u|^2-1))$. Then \begin{align*} & \int_B|\nabla u|^p(|u|^2-1)_++2\int_B|\nabla u|^{p-2}(u\nabla u)^2 \\ & +\frac{1}{\varepsilon^p} \int_B |u|^4(|u|^2-1)_+^2 +\frac{1}{2\varepsilon^p} \int_B |u|^2(|u|^2-1)_+(|u|^2-1)^2 =0 \end{align*} from which it follows that $$ \frac{1}{\varepsilon^p} \int_B |u|^4(|u|^2-1)_+^2 =0. $$ Thus $|u|=0$ or $(|u|^2-1)_+=0$ a.e. on $B$. Using proposition \ref{prop2.1} we know that $|u|=|u_\varepsilon| \leq 1$ a.e. on $B$. \end{proof} By the same argument as in \cite[Proposition 2.5]{l3}, we obtain the following statement. \begin{proposition} \label{prop2.4} Assume $u_{\varepsilon}$ is a weak radial solution of (2.1). Then there exist positive constants $C_1,\rho$ which are both independent of $\varepsilon$ such that \begin{gather} \|\nabla u_{\varepsilon}(x)\|_{L(B(x,\rho\varepsilon/8))}\leq C_1\varepsilon^{-1}, \quad if \quad x \in B(0,1-\rho\varepsilon), \tag{2.3} \\ |u_{\varepsilon}(x)|\geq \frac{29}{30}, \quad if \quad x \in \overline{B}\setminus B(0,1-2\rho\varepsilon). \tag{2.4} \end{gather} \end{proposition} \begin{proposition} \label{prop2.5} Let $u_\varepsilon$ be a radial minimizer of $E_\varepsilon(u,B)$. Then there exists a constant $C$ independent of $\varepsilon \in (0,1)$ such that \begin{gather} E_\varepsilon(u_\varepsilon,B) \leq C\varepsilon^{n-p}+C;\quad \mbox{for } p>n, \tag{2.5} \\ E_\varepsilon(u_\varepsilon,B) \leq C|\ln\varepsilon|+C, \quad \mbox{for } p=n. \tag{2.6} \end{gather} \end{proposition} \begin{proof} Let $$ I(\varepsilon,R)=\min\big\{\int_{B(0,R)} [\frac{1}{p}|\nabla u|^p +\frac{1}{\varepsilon^p}(1-|u|^2)^2]; u \in W_R\big\}, $$ where $W_R=\{u(x)=f(r)\frac{x}{|x|} \in W^{1,p}(B(0,R),R^n); r=|x|, f(R)=1\}$. Then \[ \begin{aligned} I(\varepsilon,1)&=E_{\varepsilon}(u_{\varepsilon},B)\\ &=\frac{1}{p}\int_B |\nabla u_{\varepsilon}|^pdx +\frac{1}{4\varepsilon^p} \int_B (1-|u_{\varepsilon}|^2)^2|u_\varepsilon|^2 dx\\ &=\varepsilon^{n-p}[\frac{1}{p} \int_{B(0,\varepsilon^{-1})} |\nabla u_{\varepsilon}|^pdy +\frac{1}{4} \int_{B(0,\varepsilon^{-1})} (1-|u_{\varepsilon}|^2)^2|u_\varepsilon|^2dy\\ &=\varepsilon^{n-p}I(1,\varepsilon^{-1}). \end{aligned} \tag{2.7} \] Let $u_1$ be a solution of $I(1,1)$ and define $$ u_2=\begin{cases} u_1,&\mbox{if }0<|x|<1\\ \frac{x}{|x|}, &\mbox{if } 1 \leq |x|\leq \varepsilon^{-1}. \end{cases} $$ Thus $u_2 \in W_{\varepsilon^{-1}}$, and \[ \begin{aligned} I(1,\varepsilon^{-1}) &\leq \frac{1}{p} \int_{B(0,\varepsilon^{-1})}|\nabla u_2|^p +\frac{1}{4} \int_{B(0,\varepsilon^{-1})}(1-|u_2|^2)^2|u_2|^2 \\ &=\frac{1}{p}\int_B|\nabla u_1|^p +\frac{1}{4}\int_B(1-|u_1|^2)^2|u_1|^2 +\frac{1}{p} \int_{B(0,\varepsilon^{-1})\setminus B}|\nabla \frac{x}{|x|}|^p\\ &=I(1,1)+\frac{(n-1)^{p/2}|S^{n-1}|}{p} \int_1^{\varepsilon^{-1}}r^{n-p-1}dr \end{aligned} \] Hence $$ I(1,\varepsilon^{-1})\leq I(1,1)+\frac{(n-1)^{p/2}|S^{n-1}|}{p(p-n)} (1-\varepsilon^{p-n}) \leq C,\quad \mbox{for } p>n; $$ $$ I(1,\varepsilon^{-1})\leq I(1,1)+\frac{(n-1)^{p/2}|S^{n-1}|}{p} |\ln\varepsilon|,\quad \mbox{for } \quad p=n. $$ Substituting this into (2.7) yields (2.5) and (2.6). \end{proof} \section{ Proof of Theorem \ref{thm1.1}} %sec. 3 \begin{proposition} \label{prop3.1} Let $u_\varepsilon$ be a radial minimizer of $E_\varepsilon(u,B)$. Then there exists a positive constant $\varepsilon_0$ such that as $\varepsilon \in (0,\varepsilon_0)$, \[ \frac{1}{\varepsilon^n} \int_B|u_\varepsilon|^2(1-|u_\varepsilon|^2)^2 \leq C, \tag{3.1} \] where $C$ is independent of $\varepsilon$. \end{proposition} \begin{proof} When $p>n$, the conclusion follows from multiplying (2.5) by $\varepsilon^{p-2}$. When $p=n$, the proof is similar to the proof in \cite[Theorem 1]{s1}. Thus we can obtain this proposition by using (2.6). \end{proof} \begin{proposition} \label{prop3.2} Let $u_\varepsilon$ be a radial minimizer of $E_\varepsilon(u,B)$. Assume $p>n$. Then for any $\eta \in (0,1/2)$, there exist positive constants $\lambda, \mu$ independent of $\varepsilon \in (0,1)$ such that if \[ \frac{1}{\varepsilon^p}\int_{B \cap B^{2l\varepsilon}}|u_\varepsilon|^2(1-|u_\varepsilon|^2)^2 \leq \mu, \tag{3.2} \] where $B^{2l\varepsilon}$ is some ball of radius $2l\varepsilon$ with $l \geq \lambda$, then $$ |u_\varepsilon(x)| \in [0,1-\eta]\cup [1-\eta/2,1], \quad \forall x \in B \cap B^{l\varepsilon}. $$ \end{proposition} \begin{proof} First we observe that there exists a constant $\beta>0$ such that for any $x \in B$ and $0<\rho \leq 1$, $|B \cap B(x,\rho)| \geq \beta \rho^2$. From Proposition \ref{prop2.3} and (2.5) it follows that $\|u_\varepsilon\|_{W^{1,p}(B)}\leq C\varepsilon^{\frac{2-p}{2}}$. By embedding theorem we know that there exists a positive constant $C_0$ which is independent of $\varepsilon$, such that for any $x, x_0\in B$, $$ |u_{\varepsilon}(x)-u_{\varepsilon}(x_0)| \leq C_0\varepsilon^{\frac{2-p}{p}}|x-x_0|^{1-\frac{2}{p}}. $$ To obtain the conclusion, we choose \[ \lambda=\frac{\eta}{4C_0},\quad \mu=\frac{\beta}{16}\eta^2(1-\eta)^2\lambda^n. \tag{3.3} \] Suppose that there is a point $x_0 \in B \cap B^{l\varepsilon}$ such that $1-\eta<|u_\varepsilon(x_0)| < 1-\eta/2$. Then \[ |u_\varepsilon(x)-u_\varepsilon(x_0)| \leq C_0\varepsilon^{\frac{2-p}{p}} |x-x_0|^{1-\frac{2}{p}} \leq C_0\lambda=\frac{\eta}{4}, \quad \forall x \in B(x_0,\lambda \varepsilon) \] Hence $(1-|u_\varepsilon(x)|^2)^2 > (\frac{\eta}{4})^2$, for all $x \in B(x_0,\lambda \varepsilon)$, and \[ \int_{B(x_0,\lambda \varepsilon) \cap B}|u_\varepsilon|^2(1-|u_\varepsilon|^2)^2 > \frac{\eta^2}{16}(1-\eta)^2 |B \cap B(x_0,\lambda \varepsilon)| \geq \beta \frac{\eta^2}{16}(1-\eta)^2(\lambda \varepsilon)^n =\mu \varepsilon^n \tag{3.4} \] Since $x_0 \in B^{l\varepsilon} \cap B$, and $(B(x_0,\lambda \varepsilon) \cap B) \subset (B^{2l\varepsilon} \cap B)$, (3.4) implies $$ \int_{B^{2l\varepsilon} \cap B}|u_\varepsilon|^2(1-|u_\varepsilon|^2)^2> \mu \varepsilon^n $$ which contradicts (3.2) and thus proposition \ref{prop3.2} is proved. \end{proof} Let $u_\varepsilon$ be a radial minimizer of $E_\varepsilon(u,B)$, $p>n$ . Given $\eta \in (0,1/2)$. Let $\lambda,\mu$ be constants in Proposition \ref{prop3.2} corresponding to $\eta$. If \[ \frac{1}{\varepsilon^n} \int_{B(x^{\varepsilon},2\lambda \varepsilon) \cap B}|u_\varepsilon|^2(1-|u_\varepsilon|^2)^2 \leq \mu \tag{3.5} \] then $B(x^{\varepsilon},\lambda \varepsilon)$ is called good ball. Otherwise $B(x^{\varepsilon},\lambda\varepsilon)$ is called bad ball. Now suppose that $\{B(x_i^{\varepsilon},\lambda \varepsilon), i \in I\}$ is a family of balls satisfying \[ \begin{aligned} &(i):\quad x_i^{\varepsilon} \in B,i \in I;\\ &(ii):\quad B \subset\cup_{i \in I}B(x_i^{\varepsilon},\lambda \varepsilon)\\ &(iii):\quad B(x_i^{\varepsilon},\lambda \varepsilon /4) \cap B(x_j^{\varepsilon},\lambda \varepsilon /4)=\emptyset,i \neq j \end{aligned} \tag{3.6} \] Denote $J_\varepsilon=\{i \in I; B(x_i^{\varepsilon}, \lambda \varepsilon) \mbox{ is a bad ball}\}$. \begin{proposition} \label{prop3.3} Assume $p>n$, there exists a positive integer $N$ independent of $\varepsilon \in (0,1)$, such that the number of bad balls satisfies $\mathop{\rm Card} J_\varepsilon \leq N$. \end{proposition} \begin{proof} Since (3.6) implies that every point in $B$ can be covered by finite, say m (independent of $\varepsilon$) balls, from Proposition \ref{prop3.1} and the definition of bad balls, we have \begin{align*} \mu \varepsilon^n CardJ_\varepsilon &\leq \sum_{i \in J_\varepsilon} \int_{B(x_i^{\varepsilon},2\lambda \varepsilon) \cap B}|u_\varepsilon|^2(1-|u_\varepsilon|^2)^2\\ &\leq m\int_{\cup_{i \in J_\varepsilon} B(x_i^{\varepsilon},2\lambda \varepsilon) \cap B}|u_\varepsilon|^2(1-|u_\varepsilon|^2)^2\\ &\leq m\int_B|u_\varepsilon|^2(1-|u_\varepsilon|^2)^2 \leq mC\varepsilon^n \end{align*} and hence $\mathop{\rm Card}J_\varepsilon \leq \frac{mC}{\mu} \leq N$. \end{proof} Similar to the argument in \cite[Theorem IV.1]{b1}, we have the following statement. \begin{proposition} \label{prop3.4} Assume $p>n$, there exist a subset $J \subset J_{\varepsilon}$ and a constant $h\in[\lambda,\lambda 9^N]$ such that \[ \cup_{i \in J_{\varepsilon}}B(x_i^{\varepsilon},\lambda \varepsilon) \subset \cup_{i \in J}B(x_j^{\varepsilon},h \varepsilon), \quad \hfill |x_i^{\varepsilon}-x_j^{\varepsilon}|> 8h\varepsilon,\quad i,j \in J,\quad i \neq j. \tag{3.7} \] \end{proposition} Applying proposition \ref{prop3.4}, we may modify the family of bad balls such that the new one, denoted by $\{B(x_i^{\varepsilon},h\varepsilon);i \in J\}$, satisfies \begin{gather*} \cup_{i \in J_\varepsilon}B(x_i^{\varepsilon},\lambda \varepsilon) \subset \cup_{i \in J}B(x_i^{\varepsilon},h\varepsilon), \\ \lambda \leq h; \quad \mathop{\rm Card}J \leq \mathop{\rm Card}J_\varepsilon \\ |x_i^{\varepsilon}-x_j^{\varepsilon}|>8h\varepsilon,i,j \in J,i \neq j\,. \end{gather*} The last condition implies that every two balls in the new family are not intersected. Now we prove our main result of this section. \begin{theorem} \label{thm3.5} Let $u_\varepsilon$ be a radial minimizer of $ E_\varepsilon(u,B)$. Assume $p\geq n$. Then for any $\eta \in (0,1/2)$, there exists a constant $h=h(\eta)$ independent of $\varepsilon \in (0,1)$ such that $ Z_\varepsilon=\{x \in B; |u_\varepsilon(x)|<1-\eta\} \subset B(0,h\varepsilon)$. In particular the zeroes of $u_\varepsilon$ are contained in $B(0,h\varepsilon)$. \end{theorem} \begin{proof} When $p>n$. Denote $Y_\varepsilon=\{x\in B;1-\eta\leq |u_\varepsilon(x)|\leq 1-\eta/2\}$. Suppose there exists a point $x_0 \in Y_\varepsilon$ such that $x_0 \overline{\in}B(0,h\varepsilon)$. Then all points on the circle $S_0=\{x \in B;~|x|=|x_0|\}$ satisfy $|u_\varepsilon(x)|<1-\eta$ and hence by virtue of Proposition \ref{prop3.3} all points on $S_0$ are contained in bad balls. However, since $|x_0| \geq h\varepsilon,S_0$ can not be covered by a single bad ball. $S_0$ can be covered by at least two bad balls. However this is impossible. This means $Y_\varepsilon \subset B(0,h\varepsilon)$. Furthermore, for any given $y_0$ satisfying $|u_\varepsilon(y_0)|=f(r_0)< 1-\eta$, where $|y_0|=r_0$, we claim $y_0 \in B(0,h\varepsilon)$. In fact, From $f(r_0) < 1-\eta$, $f(1)=1>1-\eta/2$, and the continuity of $f$, it follows that there exists $\xi \in (r_0,1)$ such that $1-\eta2$. Applying \cite[Theorem 2.1]{l1}, we have $\|f\|_{\frac{2n}{n-2}} \leq \beta \|\nabla f\|_2$, where $\beta=\frac{2(n-1)}{n-2}$. Taking $f=f_1-f_2$ and applying (3.10), we obtain $f(|x|)=0$ as $x \in \partial B$ and $$ \Big[\int_B|f|^{\frac{2n}{n-2}}dx\Big]^{\frac{n-2}{n}} \leq \beta^2 \int_B|\nabla f|^2dx \leq \beta^2 \gamma^{-1} \int_G|f|^2dx \varepsilon^{-p}, $$ where $G=B(0,h\varepsilon)$. Using Holder inequality, we derive $$ \int_G|f|^2dx \leq |G|^{1-\frac{n-2}{n}} [\int_G|f|^{\frac{2n}{n-2}}dx]^{\frac{n-2}{n}} \leq |B|^{1-\frac{n-2}{n}}h^2 \varepsilon^{2-p}\frac{\beta^2}{\gamma} \int_G|f|^2dx. $$ Hence for any given $\varepsilon \in (0,1)$, \[ \int_G|f|^2dx \leq C(\beta,|B|,\gamma,\varepsilon) h^2\int_G|f|^2dx. \tag{3.11} \] Denote $F(\eta)=\int_{B(0,h(\eta)\varepsilon)}|f|^2dx$, then $F(\eta)\geq 0$ and (3.11) implies that \[ F(\eta)(1-C(\beta,|B|,\gamma,\varepsilon) h^2) \leq 0. \tag{3.12} \] On the other hand, since $C(\beta,|B|,\gamma,\varepsilon)$ is independent of $\eta$, we may take $\eta$ so small that $h=h(\eta)\leq \lambda 9^N=9^N\frac{\eta}{2C_0}$ (which is implied by (3.3)) satisfies $$ 0<1-C(\beta,|B|,\gamma,\varepsilon)h^2 $$ for the fixed $\varepsilon \in (0,1)$, which and (3.12) imply that $F(\eta)=0$. Namely $f=0$ a.e. on $G$, or $$ f_1=f_2, \quad a.e. \quad on \quad B(0,h\varepsilon). $$ Substituting this into (3.9), we know that $u_1-u_2=C$ a.e. on $B$. Noticing the continuity of $u_1,u_2$ which is implied by Proposition \ref{prop2.1}, and $u_1=u_2=x$ on $\partial B$, we can see at last that $$ u_1=u_2,\quad \mbox{on }\overline{B}. $$ When $n=2$, applying \cite[Theorem 2.1]{l1}, we have $\|f\|_{6} \leq \beta \|\nabla f\|_{2/3}$, where $\beta$ does not depend on $\eta$. By the similar argument above, we may see the same conclusion. \end{proof} \section{Proof of Theorem \ref{thm1.2}} %sec. 4 Let $u_\varepsilon(x)=f_\varepsilon(r) \frac{x}{|x|}$ be a radial minimizer of $E_\varepsilon(u,B_1)$, namely $f_\varepsilon$ be a minimizer of $E_\varepsilon(f)$ in $V$. From Proposition \ref{prop2.5}, we have \[ E_\varepsilon(f_\varepsilon) \leq C \varepsilon^{n-p},\quad\mbox{for } p>n; \quad E_\varepsilon(f_\varepsilon) \leq C|\ln\varepsilon|,\quad \mbox{for } p=n \tag{4.1} \] for some constant $C$ independent of $\varepsilon \in (0,1)$. In this section we further prove that for any given $R \in (0,1)$, there exists a constant $C(R)$ such that \[ E_\varepsilon(f_\varepsilon;R) \leq C(R) \tag{4.2} \] for $\varepsilon \in (0,\varepsilon_0)$ with $\varepsilon_0>0$ sufficiently small, where $$ E_\varepsilon(f;R) =\frac{1}{p}\int_{R}^1 (f_r^2+(n-1)r^{-2}f^2)^{p/2}r^{n-1}\,dr +\frac{1}{4\varepsilon^p} \int_{R}^1f^2(1-f^2)^2r^{n-1}\,dr. $$ \begin{proposition} \label{prop4.1} Assume $p>n$. Given $T \in (0,1)$. There exist constants $T_j \in [\frac{(j-1)T}{N+1}, \frac{jT}{N+1}],(N=[p])$ and $C_j$, such that \[ E_{\varepsilon}(f_{\varepsilon}; T_j) \leq C_j\varepsilon^{j-p} \tag{4.3} \] for $j=n,n+1,\dots,N$, where $\varepsilon \in (0,\varepsilon_0)$ with $\varepsilon_0$ sufficiently small. \end{proposition} \begin{proof} For $j=n$, the inequality (4.3) can be obtained by (4.1) easily. Suppose that (4.3) holds for all $j\leq m$. Then we have, in particular, \[ E_{\varepsilon}(f_{\varepsilon}; T_m) \leq C_m\varepsilon^{m-p}. \tag{4.4} \] If $m=N$ then we are done. Suppose $m0$ small enough that \[ v^{p/2}\big|_{r=T_{m+1}} \leq C \varepsilon^{m-p}. \tag{4.13} \] Now we multiply both sides of (4.6) by $\rho-1$ and integrate. Then \[ -\varepsilon^p\int_{T_{m+1}}^1 [v^{(p-2)/2}\rho_r(\rho-1)]_r\,dr +\varepsilon^p\int_{T_{m+1}}^1 v^{(p-2)/2}\rho_r^2\,dr +\int_{T_{m+1}}^1 (\rho-1)^2\,dr=0. \] From this, using(4.5), (4.7) and (4.13), we obtain \[\begin{aligned} E(\rho_{\varepsilon};T_{m+1})&\leq C |\int_{T_{m+1}}^1 [v^{(p-2)/2}\rho_r(\rho-1)]_r\,dr|\\ &=Cv^{(p-2)/2}|\rho_r||\rho-1|_{r=T_{m+1}} \leq Cv^{(p-1)/2}|\rho-1|_{r=T_{m+1}}\\ &\leq (C \varepsilon^{m-p})^{(p-1)/p} (C\varepsilon^m)^{1/2} \leq C\varepsilon^{m-p+1}. \end{aligned} \tag{4.14} \] Define $$w_\varepsilon=\begin{cases} f_\varepsilon &\mbox{for } r \in (0,T_{m+1})\\ \rho_{\varepsilon} &\mbox{for } r \in [T_{m+1},1] \end{cases} $$ Since $f_\varepsilon$ is a minimizer of $E_\varepsilon(f)$, we have $E_\varepsilon(f_\varepsilon) \leq E_\varepsilon(w_\varepsilon)$. Thus, it follows that $$ E_\varepsilon(f_\varepsilon;T_{m+1}) \leq \frac{1}{p}\int_{T_{m+1}}^1(\rho_r^2+(n-1)r^{-2}\rho^2)^{p/2}r^{n-1}\,dr +\frac{1}{4\varepsilon^p}\int_{T_{m+1}}^1 \rho^2(1-\rho^2)^2r^{n-1}\,dr $$ by virtue of $\Gamma \leq \varepsilon0$ such that \begin{gather*} E_{\varepsilon}(u_{\varepsilon};T_{N+1}) - (n-1)^{p/2}\frac{|S^{n-1}|}{p}\int_{T_{N+1}}^1r^{n-p-1}dr \leq C\varepsilon^{N+1-p},(p>n);\\ E_{\varepsilon}(u_{\varepsilon};T_{N+1}) - (n-1)^{p/2}\frac{|S^{n-1}|}{p} \int_{T_{N+1}}^1r^{n-p-1}dr \leq C\varepsilon|\ln\varepsilon|,(p=n), \end{gather*} where $N=[p]$. \end{proposition} \begin{proof} From (4.1) and (4.3) we can see $E_{\varepsilon}(u_{\varepsilon};T_N) \leq CF(\varepsilon)$, where $F(\varepsilon)=|\ln\varepsilon|$ as $p=n$, and $F(\varepsilon)= \varepsilon^{N-p}$ as $p>n$. Hence by using integral mean value theorem we know that there exists $T_{N+1}\in (0,T]$ such that \[ \frac{1}{p}\int_{\partial B(0,T_{N+1})}|\nabla u_\varepsilon|^p dx+\frac{1}{4\varepsilon^p} \int_{\partial B(0,T_{N+1})}|u_\varepsilon|^2(1-|u_\varepsilon|^2)^2 dx \leq CF(\varepsilon). \tag{4.15} \] Note that $\rho_2$ is a minimizer of the functional $$ E(\rho,T_{N+1})=\frac{1}{p} \int_{T_{N+1}}^1(\rho_r^2+1)^{p/2}dr +\frac{1}{2\varepsilon^p} \int_{T_{N+1}}^1(1-\rho)^2dr $$ on $W_{f_{\varepsilon}}^{1,p}((T_{N+1},1), R^+\cup \{0\})$. It is not difficult to prove by maximum principle that \[ \rho_2 \leq 1. \tag{4.16} \] As in the derivation of (4.14), from (4.3) and (4.15) it can be proved that \[ E(\rho_2,T_{N+1}) \leq C\varepsilon F(\varepsilon). \tag{4.17} \] Using that $u_{\varepsilon}$ is a minimizer and $\rho_2\frac{x}{|x|}\in W_2$, we also have \[ \begin{aligned} E_{\varepsilon}(f_{\varepsilon};T_{N+1}) &\leq E_{\varepsilon}(\rho_2;T_{N+1})\\ &\leq \frac{1}{p} \int_{T_{N+1}}^1 [\rho_{2r}^2+\rho_2^2(n-1)r^{-2}]^{p/2}r^{n-1}dr +\frac{1}{2\varepsilon^p} \int_{T_{N+1}}^1\rho^2(1-\rho_2)^2dr. \end{aligned} \tag{4.18} \] On the other hand, \[ \begin{aligned} & \int_{T_{N+1}}^1 [\rho_r^2+(n-1)r^{-2}\rho^2]^{p/2}r^{n-1}dr -\int_{T_{N+1}}^1 [(n-1)r^{-2}\rho^2]^{p/2}r^{n-1}dr\\ &=\frac{p}{2}\int_{T_{N+1}}^1 \int_0^1 [\rho_r^2+(n-1)r^{-2}\rho^2]^{(p-2)/2}s +(n-1)r^{-2}\rho^2(1-s)ds\rho_r^2r^{n-1}dr\\ &\leq C\int_{T_{N+1}}^1 [\rho_r^2+(n-1)r^{-2}\rho^2]^{(p-2)/2}\rho_r^2r^{n-1}dr\\ &\quad+C\int_{T_{N+1}}^1[(n-1)r^{-2}\rho^2] ^{(p-2)/2}\rho_r^2r^{n-1}dr\\ &\leq C\int_{T_{N+1}}^1[\rho_r^p+\rho_r^2]dr. \end{aligned} \] Substituting this into (4.18), we have \[\begin{aligned} &E_{\varepsilon}(f_{\varepsilon};T_{N+1})\\ &\leq \frac{1}{p} \int_{T_{N+1}}^1 (n-1)^{p/2}\rho_2^pr^{n-p-1}dr +C\int_{T_{N+1}}^1(\rho_{2r}^p+\rho_{2r}^2)dr +\frac{C}{\varepsilon^p} \int_{T_{N+1}}^1(1-\rho_2)^2dr\\ &\leq \frac{1}{p}\int_{T_{N+1}}^1 (n-1)^{p/2}\rho_2^pr^{n-p-1}dr+C\varepsilon F(\varepsilon)\\ &\leq \frac{1}{p} (n-1)^{p/2}\int_{T_{N+1}}^1r^{n-p-1}dr +C\varepsilon F(\varepsilon), \end{aligned} \] using (4.16) and (4.17). This completes the proof. \end{proof} \begin{theorem} \label{thm4.3} Let $u_\varepsilon=f_\varepsilon(r)\frac{x}{|x|}$ be a radial minimizer of $E_\varepsilon(u,B_1)$. Then $$ \lim_{\varepsilon \rightarrow 0}u_\varepsilon= \frac{x}{|x|}, \quad \mbox{in } W^{1,p}(K,R^n) $$ for any compact subset $K \subset \overline{B_1} \setminus \{0\}$. \end{theorem} \begin{proof} Without loss of generality, we may assume $K=\overline{B_1} \setminus B(0,T_{N+1})$. From Proposition \ref{prop4.2}, we have \[ E_\varepsilon(u_\varepsilon,K) =|S^{n-1}| E_\varepsilon(f_\varepsilon;T_{N+1}) \leq C\,, \tag{4.19} \] where $C$ is independent of $\varepsilon$. This and $|u_\varepsilon| \leq 1$ imply the existence of a subsequence $u_{\varepsilon_k}$ of $u_\varepsilon$ and a function $u_* \in W^{1,p}(K,R^n)$, such that \[ \begin{gathered} \lim_{\varepsilon_k \rightarrow 0} u_{\varepsilon_k}=u_*, \quad \mbox{weakly in }W^{1,p}(K,R^n),\\ \lim_{\varepsilon_k \rightarrow 0} u_{\varepsilon_k}=u_*, \quad \mbox{in }L^{q}(K,R), \quad\forall q>0, \\ \lim_{\varepsilon_k \rightarrow 0} f_{\varepsilon_k}(r)=|u_*|, \quad \mbox{in } C^{\alpha}([T_{N+1},1],R), \quad\alpha >1-1/p. \end{gathered}\tag{4.20} \] Inequality (4.19) implies $|u_*|\in\{0,1\}$. Using also (4.20) and $f_{\varepsilon_k}(1)=1$ we see that $|u_*|=1$ or $u_*=\frac{x}{|x|}$. Hence, noticing that any subsequence of $u_\varepsilon$ has a convergent subsequence and the limit is always $x/|x|$, we can assert \begin{gather} \lim_{\varepsilon \rightarrow 0}u_\varepsilon=\frac{x}{|x|}, \quad \mbox{weakly in }W^{1,p}(K,R^n). \tag{4.21}\\ \lim_{\varepsilon \rightarrow 0} u_{\varepsilon}=u_*, \quad \mbox{in } L^{q}(K,R), \quad\forall q>0. \tag{4.22} \end{gather} From this and the weakly lower semicontinuity of $\int_K|\nabla u|^p$, using Proposition \ref{prop4.2}, it follows that \[\begin{aligned} \int_K|\nabla \frac{x}{|x|}|^p &\leq \liminf_{\varepsilon_k \rightarrow 0} \int_K|\nabla u_\varepsilon|^p \leq \limsup_{\varepsilon_k \rightarrow 0} \int_K|\nabla u_\varepsilon|^p\\ &\leq |S^{n-1}| \int_{T_{N+1}}^1 ((n-1)r^{-2})^{p/2}r^{n-1}\,dr \end{aligned} \] and hence $$ \lim_{\varepsilon \rightarrow 0} \int_K|\nabla u_\varepsilon|^p =\int_K|\nabla \frac{x}{|x|}|^p $$ since $$ \int_K|\nabla \frac{x}{|x|}|^p =|S^{n-1}| \int_{T_{N+1}}^1 ((n-1)r^{-2})^{p/2}r^{n-1}\,dr. $$ Combining this with (4.21)(4.22) completes the proof. \end{proof} \begin{thebibliography}{0} \bibitem{b1} F. Bethuel, H. Brezis, F. Helein: {\it Ginzburg-Landau Vortices}, Birkhauser. 1994. \bibitem{h1} R. M. Herve, M. Herve: {\it Etude qualitative des solutions reelles d'une equation differentielle liee a l'equation de Ginzburg-Landau}, Ann. IHP. Analyse nonLineaire, {\bf 11} (1994),427-440. \bibitem{h2} M. C. Hong: {\it Asymptotic behavior for minimizers of a Ginzburg-Landau type functional in higher dimensions associated with n-harmonic maps}, Adv. in Diff. Eqns., {\bf 1} (1996), 611-634. \bibitem{l1} O.Ladyzhenskaya, N.Uraltseva: {\it Linear and quasilinear elliptic equations}, Acad, Press, NewYork and London, 1968. \bibitem{l2} L. Lassoued, C. Lefter: {\it On a variant of the Ginzburg-Landau energy}, Nonlinear Differ. Equ. Appl. ,{\bf 5} (1998), No.43, 39-51. \bibitem{l3} Y. T. Lei: {\it Uniqueness for radial Ginzburg-Landau type functional minimizers}, Electron. J. Diff. Equs.,{\bf 2002} (2002), No. 43, 1-11. \bibitem{s1} M. Struwe: {\it An asymptotic estimate for the Ginzburg-Landau model}, C. R. Acad. Sci. Paris, {\bf 317} (1993), 677-680. \bibitem{t1} P. Tolksdorff: {\it Everywhere regularity for some quasilinear systems with a lack of ellipticity}, Anna. Math. Pura. Appl. ,{\bf 134} (1983), 241-266. \end{thebibliography} \end{document}