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CENTERING CONDITIONS FOR PLANAR SEPTIC SYSTEMS

EVGENII P. VOLOKITIN

Abstract. We find centering conditions for the following O-symmetric system

of degree 7:

ẋ = y + x(H2(x, y) + H6(x, y)),

ẏ = −x + y(H2(x, y) + H6(x, y)),

where H2(x, y) and H6(x, y) are homogeneous polynomials of degrees 2 and 6,

respectively. In some cases, we can find commuting systems and first integrals

for the original system. We also study the geometry of the central region.

1. introduction

Consider the planar autonomous system of ordinary differential equations

ẋ = y + xRn−1(x, y),

ẏ = −x + yRn−1(x, y),
(1.1)

where Rn−1(x, y) is a polynomial in x and y, of degree n− 1, and Rn−1(0, 0) = 0.
This system has only one singular point at O(0, 0) which is the center of the linear
part of the system. The orbits of this system move around the origin with constant
angular speed, and the origin is so a uniformly isochronous singular point.

Such systems have been studied in many papers; see [1]–[5] and references
therein. The following problem was stated as Problem 19.1. in [2]:

Identify systems (1.1) of odd degree which are O-symmetric (not
necessarily quasi homogeneous) having O as a (uniformly isochronous)
center.

In this article we solve this problem for some systems of degree 7. In particular, we
find necessary and sufficient conditions for system (1.1) with

Rn−1(x, y) =a0x
2 + a1xy + a2y

2 + c0x
6 + c1x

5y + c2x
4y2

+ c3x
3y3 + c4x

2y4 + c5xy5 + c6y
6,

(1.2)

where a0, a1, a2, c0, c1, c2, c3, c4, c5, c6 are real numbers.
The plan for this paper is as follows: In Section 2, we present centering condi-

tions. In Section 3, we investigate some properties of systems in the presence of a
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center. In particular, we discuss the question of existence of a polynomial commut-
ing system. When this system exists, we give a first integral of the original system.
We also study the geometry of the central region.

2. Results

Theorem 2.1. The origin is a center of (1.2) if and only if one of the following
two conditions is satisfied:

(i) a0 = a1 = a2 = 0, 5c0 + c2 + c4 + 5c6 = 0;
(ii)

a0 + a2 = 0,
5c0 + c2 + c4 + 5c6 = 0,

a1(15c0 + c2 − c4 − 15c6) + 2a0(5c1 + 3c3 + 5c5) = 0,

(a2
1 − 4a2

0)(3c0 − c2 − c4 + 3c6) + 8a0a1(c1 − c5) = 0,

a1(a2
1 − 12a2

0)(c0 − c2 + c4 − c6) + 2a0(3a2
1 − 4a2

0)(c1 − c3 + c5) = 0.

Before proving this theorem, we consider the instance of (1.2) in which a0 =
a2 = 0, that is

ẋ = y + x(a1xy + c0x
6 + c1x

5y + c2x
4y2 + c3x

3y3 + c4x
2y4 + c5xy5 + c6y

6),

ẏ = −x + y(a1xy + c0x
6 + c1x

5y + c2x
4y2 + c3x

3y3 + c4x
2y4 + c5xy5 + c6y

6).
(2.1)

Lemma 2.2. The origin is a center of (2.1) if and only if one of the following two
conditions is satisfied:

a1 = 0, 5c0 + c2 + c4 + 5c6 = 0; (2.2)

c0 = c2 = c4 = c6 = 0. (2.3)

Proof. We used the software package Mathematica to find the first six Poincaré-
Lyapunov constants of (2.1) (see more details about our method in [6]). Up to a
positive scalar factor they are

l1 = 0, l2 = 0,

l3 = 5c0 + c2 + c4 + 5c6,

l4 = −a1(5c0 + 3c2 + 5c4 + 35c6),

l5 = a2
1(−101c0 − 17c2 − 9c4 + 19c6),

l6 = 15a3
1(621c0 + 367c2 + 565c4 + 3367c6)

− 56(31c1 + 20c3 + 49c5)(5c0 + c2 + c4 + 5c6).

Necessity of conditions (2.2)–(2.3) result from solving the simultaneous equations
l3 = l4 = l5 = l6 = 0.

In the case (2.2), the sufficiency part of the lemma follows from the fact that (2.1)
is a quasi homogeneous system of degree 7 whose coefficients satisfy the equation
5c0 + c2 + c4 + 5c6 = 0 representing a necessary and sufficient centering condition
[1].

In the case (2.3), system (2.1) is reversible and its trajectories are symmetric
with respect to both coordinate axes.
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It is well known that if the linear part of a reversible system has a center at the
origin, then the origin is also a center of the system itself. Thus, under conditions
(2.2)-(2.3), the origin is a center of system (2.1). This completes the proof of the
lemma. �

Proof of Theorem 2.1. In the previous lemma we considered a particular case. Now,
we consider the general system (1.2). The first Poincaré-Lyapunov constant l1 of
(1.2) is

l1 = 2(a0 + a2).

If a0 + a2 = 0 then the change of variables x 7→ x cos ϑ + y sinϑ, y 7→ −x sinϑ +
y cos ϑ, with ϑ defined from the condition

a0 cos2 ϑ + a1 sinϑ cos ϑ− a0 sin2 ϑ = 0, (2.4)

reduces (1.2) to a system of the form (2.1):

ẋ = y + x(a′1xy + c′0x
6 + c′1x

5y + c′2x
4y2 + c′3x

3y3 + c′4x
2y4 + c′5xy5 + c′6y

6),

ẏ = −x + y(a′1xy + c′0x
6 + c′1x

5y + c′2x
4y2 + c′3x

3y3 + c′4x
2y4 + c′5xy5 + c′6y

6)

whose coefficients are expressible in terms of the coefficients of (1.2). In particular,
we have

a′1 = a1 cos2 ϑ− 4a0 cos ϑ sinϑ− a1 sin2 ϑ,

c′0 = (2d0 − d2 + 2d4 − d6)/32,

c′2 = (6d0 − d2 − 10d4 + 15d6)/32,

c′4 = (6d0 + d2 − 10d4 − 15d6)/32,

c′6 = (2d0 + d2 + 2d4 + d6)/32,

(2.5)

where

d0 = 5c0 + c2 + c4 + 5c6,

d2 = (15c0 + c2 − c4 − 15c6) cos 2ϑ + (5c1 + 3c3 + 5c5) sin 2ϑ,

d4 = (3c0 − c2 − c4 + 3c6) cos 4ϑ + 2(c1 − c5) sin 4ϑ,

d6 = (c0 − c2 + c4 − c6) cos 6ϑ + (c1 − c3 + c5) sin 6ϑ,

and ϑ is defined in (2.4).
Using Lemma 2.2, we see that the origin is a center of system (1.2) if and only

if one of the following two conditions is satisfied:

a0 + a2 = 0, a′1 = 0, 5c′0 + c′2 + c′4 + 5c′6 = 0; (2.6)

a0 + a2 = 0, c′0 = c′2 = c′4 = c′6 = 0. (2.7)

In the case (2.6), a′1 = 0 and (2.4) amount to a0 = a1 = 0. Next, (2.5) yields
5c′0 + c′2 + c′4 + 5c′6 = d0 = 5c0 + c2 + c4 + 5c6. This proves the theorem in the case
(i).

Next, c′0 = c′2 = c′4 = c′6 = 0 amounts to d0 = d2 = d4 = d6 = 0. Using (2.4), we
eliminate ϑ from the last equations, thus arriving at the conditions of the case (2.7)
expressed in terms of the coefficients of the original system (1.2). These conditions
coincide with those in the case (ii) of Theorem 2.1 and the proof is complete. �
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3. Properties of systems with center

Consider system (2.1) with coefficients that satisfy the centering conditions (2.2)–
(2.3). For a planar polynomial system, the presence of an isochronous center is well
known to be equivalent to the existence of a transverse analytic system commuting
with it [7].

It is proved in [5] that in the case (2.2) system (2.1) commutes with a polynomial
system of the form

ẋ = x + xQ(x, y),

ẏ = y + yQ(x, y),
(3.1)

where

Q(x, y) = q0x
6 + q1x

5y + q2x
4y2 + q3x

3y3 + q4x
2y4 + q5xy5 + q6y

6

which is a homogeneous polynomial of degree 6 satisfying

yQx(x, y)− xQy(x, y) = 6P6(x, y) (3.2)

with

P6(x, y) = c0x
6 + c1x

5y + c2x
4y2 + c3x

3y3 + c4x
2y4 + c5xy5 + c6y

6 .

To satisfy this equation, we can take

q0 = 0, q1 = −6c0, q2 = −3c1, q3 = −2(5c0 + c2),

q4 = −3(c1 + c3/2), q5 = 6c6, q6 = −(c1 + c3/2 + c5).
(3.3)

Note that if we add c(x2 +y2)3 to the polynomial Q(x, y) with the coefficients (3.3)
then the resultant system of the form (3.1) commutes with (2.1).

Following [8], we say that a function C : R2 → R and the curve C = 0 are
invariants for a system ẋ = p(x, y), ẏ = q(x, y) if there is a polynomial L such that
Ċ = CL, where Ċ = Cxp + Cyq. The polynomial L is called the cofactor of C.

Note that the functions

C1 = x2 + y2, C2 = 1 + Q(x, y)

are invariants for (2.1). This enables us to find the first Darboux integral

H(x, y) =
(x2 + y2)3

1 + Q(x, y)
(3.4)

for this system. The Darboux method is presented, for instance, in [8, 9].
By [2], the center of (2.1) is of type Bk, and the boundary of the center domain

is the union of k open unbounded trajectories (1 ≤ k ≤ 6). In the case under study,
we can describe this boundary explicitly and indicate the possible values of k more
precisely.

Passing to the polar coordinates x = % cos ϕ, y = % sinϕ in (3.4), we can show
that in the case (2.2), the boundary of the central region is defined by the equation

% =
1

(c0 −Q(cos ϕ, sinϕ))1/6

with c0 = max[0,2π] Q(cos ϕ, sinϕ).
The central region is a curvilinear k-polygon whose vertices are points at in-

finity in the intersection of the equator of the Poincaré sphere with the rays x =
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r cos ϕi, y = r sinϕi, r > 0, where the values of ϕi are determined from the condi-
tions

Q(cos ϕi, sinϕi) = c0, 0 ≤ ϕi < 2π.

Note that the values ϕi are solutions of the equation P6(cos ϕ, sinϕ) = 0. Indeed,
from (3.2) we deduce:

0 =
d

dϕ
Q(cos ϕ, sinϕ)|ϕ=ϕi

= −Qx(cos ϕi, sinϕi) sinϕi + Qy(cos ϕi, sinϕi) cos ϕi

= 6P6(cos ϕi, sinϕi).

The trigonometric polynomial Q(cos ϕ, sinϕ) of degree 6 satisfies the condition
Q(cos(ϕ + π), sin(ϕ + π)) = Q(cos ϕ, sinϕ) and takes its every value, c0 inclusively,
on the interval [0, 2π) an even number of times. Thus, in the case (2.2) the central
region is symmetric about the origin and its boundary is the union of an even
number of unbounded trajectories. Therefore, the center is of type Bk, where
k = 2, 4, 6. Moreover, a “generic” system has a center of type B2. For the center
to be of type B4 or B6, the trigonometric polynomial Q(cos ϕ, sinϕ) must take
its greatest value c0 on the interval [0, 2π) more than twice. This requires extra
restrictions on the coefficients of the system.

In the case (2.3) system (2.1) takes the form

ẋ = y + x(a1xy + c1x
5y + c3x

3y3 + c5xy5),

ẏ = −x + y(a1xy + c1x
5y + c3x

3y3 + c5xy5).

If a1 = 0 then we arrive at the case (2.2). If a1 6= 0 then we may assume that a1 = 1.
The general case is reduced to this by the change of variables x 7→ x/

√
a, y 7→ y/

√
a

for a > 0 or x 7→ y/
√
−a, y 7→ x/

√
−a, t 7→ −t for a < 0.

According to [5], the system

ẋ = y + x(xy + c1x
5y + c3x

3y3 + c5xy5) ≡ y + xP (x, y),

ẏ = −x + y(xy + c1x
5y + c3x

3y3 + c5xy5) ≡ −x + yP (x, y)
(3.5)

commutes with an analytic system of the form

ẋ = xQ(x, y), ẏ = yQ(x, y), (3.6)

where the function Q(x, y) meets the equation

x(Qy(x, y) + Px(x, y)Q(x, y)− P (x, y)Qx(x, y))

+ y(−Qx(x, y) + Py(x, y)Q(x, y)− P (x, y)Qy(x, y)) = 0.
(3.7)

Suppose that the function Q(x, y) is a polynomial in the variables x and y which
has degree N in y: Q(x, y) = Q0(x) + Q1(x)y + . . . + QN (x)yN . After insertion of
Q(x, y) in (3.7), the left-hand side becomes a polynomial of degree at most N + 5
and the coefficient of yN+5 is

c5x((6−N)QN (x)− xQ′
N (x)).

Therefore, we must have xQ′
N (x) = (6−N)QN (x) or c5 = 0. If c5 6= 0, this yields

N ≤ 6. The same bound of N can be shown to be true also in the case when c5 = 0.
Likewise, we can show that the degree of Q(x, y) in x is at most 6.

Substituting the polynomial Q(x, y) =
∑6

i,j=0 qijx
iyj in (3.7) yields a system of

linear equations in the coefficients qij . We derived this system and investigated its
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properties by using the software package Mathematica. In this way we found out
that the necessary solvability condition is

c2
3 − 4c1c5 = 0. (3.8)

This condition is also sufficient.
As an example, assume that c1 = α2, c5 = β2, and c3 = 2αβ. Then (2.1) takes

the form
ẋ = y + x2y(1 + (αx2 + βy2)2),

ẏ = −x + xy2(1 + (αx2 + βy2)2).
(3.9)

Straightforward calculations show that (3.9) commutes with the polynomial system

ẋ = x(α− β + (αx2 + βy2) + (αx2 + βy2)3),

ẏ = y(α− β + (αx2 + βy2) + (αx2 + βy2)3).

Likewise, we can study the case when c1 = α2, c5 = β2, c3 = −2αβ and the case
when c1 = −α2, c5 = −β2, and c3 = ±2αβ.

We have thus proved that system (3.5) commutes with a polynomial system of
the form (3.6) if and only if (3.8) holds.

Recall that every uniformly isochronous O-symmetric quintic system satisfying
the center conditions commutes with some polynomial system of the same degree
[6]. At the same time, an arbitrary uniformly isochronous (not necessarily O-
symmetric) quintic system with a center may fail to commute with any polynomial
system [4].

The functions

C1 = x2 + y2, C2 = α− β + (αx2 + βy2) + (αx2 + βy2)3

are invariants for (3.9) with the respective cofactors

L1 = 2xy(1 + (αx2 + βy2)2), L2 = 2xy(1 + 3(αx2 + βy2)2).

Moreover, if α 6= β then the function

C3 = exp
( ∫ αx2+βy2

0

dt

α− β + t + t3

)
is an invariant with the cofactor L3 = 2xy. We have 3L1 − L2 − 2L3 = 0. In this
case the function

H(x, y) =
C3

1

C2C2
3

=
(x2 + y2)3

α− β + (αx2 + βy2) + (αx2 + βy2)3

× 1

exp(2
∫ αx2+βy2

0
dt/(α− β + t + t3)

is a first Darboux integral of (3.9).
When α = β, the change of variables x =

√
r cos ϕ, y =

√
r sinϕ reduces (3.9)

to the system
ṙ = r2(1 + α2r2) sin 2ϕ, ϕ̇ = −1

for which the function

G(x, y) =
1
r

+ sin2 ϕ + arctanαr
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is a first integral. Therefore, the function

H(x, y) =
x2 + y2

1 + x2 + α(x2 + y2) arctanα(x2 + y2)
is a first integral of (3.9) for α = β.

As in the case (2.2), system (3.9) has a center of type Bk (1 ≤ k ≤ 6). Since
the system under study is reversible, the central region is symmetric with respect
to both coordinate axes. Therefore, the center is of type B2, B4, or B6. The
singular points on the equator of the Poincaré sphere, vertices of the symmetric
boundary of the central region, are saddle points. They have common separatrices
only in exceptional cases. So in the case (2.6) the center is “generically” of type
B2. Clearly, all our results about system (2.1) can be translated to system (1.2).
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