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ANALYTIC SOLUTION TO A CLASS OF
INTEGRO-DIFFERENTIAL EQUATIONS

XUMING XIE

ABSTRACT. In this paper, we consider the integro-differential equation
ey’ () + L(x)H(y) = N(e, z,y, H(y)),
where H(y)[z] = %(P) = ¥ g4t is the Hilbert transform. The existence and

—o0 t—x
uniqueness of analytic solution in appropriately chosen space is proved. Our

method consists of extending the equation to an appropriately chosen region
in the complex plane, then use the Contraction Mapping Theorem.

1. INTRODUCTION

The second order ordinary differential equations with singular perturbation have
been discussed in works such as [11, 18]. While singular integral equations have
also been studied systematically in [9]. Many physical problems can be modelled
by singular integro-differential equation

ey () + Q2)y(z) + L(x)H(y) = N(e%, z,y.9', H(y), H(y)), (1.1)
for z € (—o0, +00), where H(y)[z] = 2(P) [ ¥ g is the Hilbert transform.

—oo t—x

Saffman and Taylor [14] studied the displacement of a viscous fluid by a less vis-
cous fluid in a Hele-Shaw cell. It was noted that a single finger of the less viscous
fluid is eventually formed and propagates at constant velocity keeping a steady
shape. In the absence of surface tension (e = 0), Saffman and Taylor obtained
a family of exact solutions. When the surface tension is non-zero, by conformal
mapping, Maclean and Saffman [8] have reduced the determination of the finger
to the solution of two coupled nonlinear integrodifferential equations. In Maclean-
Saffman equations, the integral term is a Cauchy type singular integral over the
interval [0,1]. By a transformation of the independent variable, Combescot et al [5]
and Chapman [4] cast the finger problem with small surface tension as an integrod-
ifferntial equation on the whole real line. By using Saffman-Taylor exact solutions,
the integrodifferntial equations of Combescot et al and Chapman can be reduced
to equation (1.1) with @Q(x) # 0 and L(z) # 0. The works mentioned above include
numerical and asymptotic studies. Recently, Xie and Tanveer [20, 17] reformulated
the Saffman-Taylor finger problem as solving the integro-differential equation

€y"(z) + Q2)y () = N(e,z,y,y', H(Gly]) (1.2)
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where G[y] is an operator. Existence of steadily translating finger solutions (i.e
analytic solution of (1.2)) were proved rigorously if relative finger width is in a set
of infinite discrete values and surface tension is sufficiently small.

Dendritic crystal growth has long been a subject of interest to both physicists
and Mathematicians. The simplest example of dentrite growth is the growth of
needle crysyal in solidification from a pure undercooled melt. The growth of a
steadily moving interface between solid and liquid is the ultimate evolution of the
Mullins-Sekerka instability. When surface tension is neglected, Ivanstov [6] found
an infinite continuous family of parabolic crystal interfaces. When surface tension
is taken into account, in the limit of small Peclet number, Pelce and Pomeau [12, 1]
reduced the Nash-Gicksman [10] equation to a simpler set of integrodifferential
equations in which the singular integral terms are no longer of Cauchy type. In
a recent work, Xie [19] reduced the one-sided needle crystal growth problem to
solving an integrodifferential equation of form (1.2); symmetric analytic solutions
are obtained if the surface tension is small and the crystalline anisotropy is in a set
of infinite discrete values.

In this paper, we consider (1.1) with L(z) # 0, Q(z) = 0, and N does not depend
on y'. i.e., equations of form

€%y’ (z) + L(z)H(y) = N(e, 2,5, H(y)). (1.3)

We believe that the method developed in this paper will be useful for other type of
integro-differential equations such as Nash-Glicksman equations [10, 12, 15] for the
two-sided steady needle crystal growth problem.

Although equation (1.3) is given on the real = axis, we will extend the equation
to some domains in the complex plane as in the viscous fingering case ([20, 17]).
The main reason to go to complex plane is that it is possible to control the nonlocal
integral terms in (1.3) and estimate the decay rate of the derivatives.

Notation and Main result. We define regions in complex z-plane:

Definition 1.1. Let R, be an open connected region on the complex plane
bounded by the lines

Ty = Ty UTy2UTys, 1p=11Ur2Urgs
where
Tu,1 Z{Z:zzai—R—FTe(“*“")i,OSrg oo},
ru2={2:z2=ai+r,—R <r <R},
Tu,3:{ZizzaifRJrreW,Ogrgoo},
(0% i
ra={z:2= —§i—R+re<"+%>,0§r§oo}7
o
Tz,2={zizz—§i+r,—R§r§R},
« _ pi
Tz,sz{z:zz—az—R—&—re 7,0 <r < oo},
where 1 > a > 0,0 < ¢ < 7/2 and R > 0.

Denoting by * the complex conjugate, we define

Rap =Rh,=1{2" 12 € R} (1.4)
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FIGURE 1. Region R, in the complex plane

Definition 1.2. We define function
P(z):/ ViL(t)dt, P(z):/ V/ —iL(t)dt (1.5)
0 0

We assume that there exist numbers 1 > ap > 0, R > 0 and § > ¢g > 0, so that
L(z), P(z), and P(z) satisfy the following properties:
Property 1. L(z) is analytic in Rag 00 URag,p0, a0d L(2) 7 010 Rag 0 U Rag, w0
and

|L(2)| = Clz["(1 + (1)), |L' (2)] = Clz = 2i "~ (1 + 0(1)), (1.6)

IL"(2)| = Clz — 2i]""2(1 + 0o(1)) as |2| — 00,2 € Rag.p0 U Rag.po (1.7)

where v > —2 and C independent of e.

Property 2. A branch of viL and v/—iL in (1.5) can be chosen so that P(2)
and P(z) are analytic in Ray.py U Rag.p, and Re P(—o0) = —oo , Re P(c0) =
00,Re P(—00) = —o00 , Re P(00) = o0 .

Property 3. For Rez > R, 0 < o < ap, 0 < ¢ < ¢y, Re P(t) (resp. Re P(t)) is
increasing with increasing s along any ray r = {¢t : t = z + se.0 < 5 < 00, —p <
0 < ¢} in Ry, (resp. in Ry.p) from 2 to z+ooe? and Oy [t —2i[7/? < 4 Re P(t(s))
(resp. Cy|t — 2i[7/? < % Re P(t(s))) where C} is a constant which can be made
independent of € and Cy > 0.

Property 4. For Rez < —R, 0 < a < ap, 0 < ¢ < ¢, Re P(t) (resp. Re P(t)
) is decreasing with increasing s along ray r = {t : t = z + 5et™0 0 < 5 <
00, —p < 0 < ¢} in R, (resp. Ra,p) from z to z+00e!™ %) and £ Re P(t(s)) <
—Cht — 2i[7/2 (vesp. L Re P(t(s))| < —Calt — 2i[7/2) where C5 is constant which
can be made independent of € and Cy > 0.

Property 5. For any z € Rq,, (resp. z € 7~€a,¢), 0<a<ay 0<¢< g, there
is a path P(z,00) in Ra., (resp. P(z,00) in Ra,,) which is C! curve connecting z
to oo so that - [Re P(t(s))] > C|t — 2i|"/2 > 0 for t(s) € P(z,00)

( resp. <L [Re P(t(s))] > C|t —2i|/? > 0 for t(s) € P(z,00)), s being an arc
length of P(z,00) (resp. P(z,00)), which increases toward t = co.
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Property 6. For any z € R ,(resp. z € 7@0674,), 0<a<ag, 0<p< g, thereis
a path P(z, —00) in Rq,, (resp. ’ﬁ(z, —o00) in 7~2a,¢) which is C' curve connecting
z to —oo so that £ [Re P(t(s))] < —C|t — 2i|7/? < 0 for t(s) € P(z,00)
( resp. %[Rep(t(s))] < —C|t — 2i["/? < 0 for t(s) € P(z,00)), s being an arc
length of P(z, —00) (resp. P(z, —00)), which increases toward t = —ooc.
Remark 1.3. In section 4, we are going to give two explicit functions of L(z) and

region Ra,,p, S0 that Property 1-6 hold. Note that Property 1-6 are crucial to
prove Lemmas 2.12 and 2.13.

We assume that N (e, z,u,v) can be written as

N(e,z,u,v)zz 6 (2) T (u, v) —1—62ka )Qp(u, v) (1.8)
k=2

k=0
where Q(u,v), Tk (u,v) is analytic in {(u,v) : |u| < £ \v\ < 1} and

Qi (u,v) = Z Qo 51 U kvﬁk Tiy(u,v) = Z tak,ﬁkuakvﬁk
ap+Br2k ar+Br>k (1.9)

|q0‘k7ﬁk| < ApakJer ‘ ag, ﬁk| < ApakJer

where A and p are some positive constants. Then fi(z) and py(z) are analytic in
Reao.00 U Rag.po and for 2 € Ray o U Rag.00

[fi(2)] < Clz = 2i T py(2)] < Clz — 20| 7T (1.10)

Let 0 < 7 < 1 be fixed and independent of e. Let D be any connected open set
in complex z-plane. We introduce the following function spaces:

D) ={y(2) : y(2) is analytic in D and continuous in D,

with sup |(z — 2i)F*7y(z)| < oo}
2€D
for k = 0,1, with ||[y|lx,p :=sup, 5 |(z — 20)* 7y (2)]
Clearly, Ay (D) are Banach spaces, and A2(D) C A1(D) C Ao(D) = A(D).

Ak = Ar(Ragpo)s  Ylle =11 Ik Ray.o, for y € Ay
Ar= A Raoioo)s Nl =1l s, . for § € Ay
Let 6 be a constant such that 0 < § < 1, We define
Aos={y:yeAollylo <8}, Aos={7:7€ Aol <3} (1.11)

We will prove the following result.

Theorem 1.4. For sufficiently small € and 0, there exists a unique solution y €
Ap,5(Rag,p0 URag,p0) to equation (1.8). Furthermore ||y, » ~ O(€?).

"Rag,o0YRag,00

The proof of this Theorem will be given at the end of §3, after some preliminary
results. The solution strategy followed in this paper is as follows: In §2, we first
derive two integro-differential equations. One is the extension of equation (1.3)
to the upper part of R and the other is the extension of equation (1.3) to lower
part of R. Since the integral terms I derived from the Hilbert transform H (see
Definition 2.4 in the sequel) are not contraction terms (or small terms), the classical
contraction argument does not work for both equations. By integration by parts
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and Hilbert Inverse transform, we can change the integral term into a small term.
However in doing so, we get derivatives of I, the classical contraction argument
still fails. To circumvent this difficulty, we formulate a coupled system of integral
equations using the equations in {Im z > 0}NR and in {Im z < 0}NR at the same
time. In §3, we use contraction argument to show the existence and uniqueness of
solution to the coupled system of integral equations. Then, we further show the
solution to the coupled system is actually the solution to (1.3). In §4, in order
to demonstrate the relevance of the method, we give two explicit functions for
L(z) in (1.3) and show that there are constants o and g so that property 1-6
hold in Rqy,p,- Therefore, Theorem 1.4 can be applied to these two examples.
These simple model problems are derived from more complex and physically sound
problem [8, 15, 2.

2. FORMULATION OF EQUIVALENT INTEGRAL EQUATIONS IN COMPLEX REGIONS

In this section, for simple notation, we use R to denote Rq,,,, and R to denote
7~2aw,0 respectively. We will use C' (and sometimes Cy,Cs) as generic constant,
whose value is allowed to differ from Lemma to Lemma and from line to line.
However C' does not depend on e.

Lemma 2.1. Let T’ = {t,t = & + pe'¥,0 < p < o} be a ray, with 2i not in T'. D
is a region with dist(2¢,D) > 0 and

dist(€,T) > mlé — €o| > 0; for € € D; (2.1)
dist(¢,D) > m|t — &|; fort €T, (2.2)
dist(¢,2i) > mlt — &|; fort €T, (2.3)

for some constant m > 0 independent of €. Assume g(§) to be a continuous function
on T with ||g|lor < o0, then for k=0,1,2,

sup i€ — 2047 [ I at] < Cllglor (2.4)

where constant C' that depends on ¢ and m only .

Proof. This lemma was proved in [20], we give the proof here for completeness.
dt|
72.k+7/ g() dt < 9 k+‘r/ ‘ . 25
|(£ Z) r (t é‘)k-‘rl ’ ||g||0 ’Y|£ Z‘ | |k+1|t 2i|7-? ( )

On I'jt — & = pe'®, |dt| = dp. Breaking up the integral in (2.5) into two parts:

/ |dt|
(t — &) FF 1]t — 2|

[€—&ol d 00 d
= / k+p1 ks +/ k+p1 : ‘r; (26)
0 (& = Ot — 21 e—go) |(E = It — 24

for the first integral in (2.6),we use (2.1) and (2.3) and for the second, we use (2.2)
and (2.3) to obtain:(on scaling p by |€ — §0|

/ | / dp / |
‘ t_ |k+1|t—2l‘7— |£ §O|k+7' k+7’+1
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FIGURE 3. Relevant to Lemma 2.1 and Remark 2.3

Definition 2.2. Let D be an open connected set in complex plane with one or
more straight line boundaries. D’ is defined as an angular subset of D if D' C D,
dist(D’,0D) > 0 and D’ has straight line boundaries that make a nonzero angle
with respect to 9D asymptotically at large distances from the origin (see Figure
2). This means that if 2/ € D’ and z € 9D,then dist(z,0D') > C|z|sinfy, as
|z| — oo; dist(z’,0D) > C|2'| sinfy, as |z'| — oco,where C' is some positive constant
and 0 < 6y < 7/2.

Remark 2.3. Note if T" is in D/, an angular subset of D, (complement of D) then
(2.1) and (2.2) hold (see Figure 2 ). Also note (2.3) is valid for any I" in R.
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Definition 2.4. Let y be continuous on (—o0,00) and and [|y/|o,(—oc,00) < 00, We
define I (y)(2) and I_(y)(2) as

I (y)(2) = %/_00 ty@dt for Im z > 0; (2.7)
I_(y)(z) = %/00 ty@dt for Im z < 0; (2.8)

Lemma 2.5. Ify € Ay and § € Ay, then

(1) 1 (y) € Ao, [11+(®)]lo < Cllyllo-
(2) L 1(9) € A, |35 1 (@) |lk < Cllgllo for any integer k > 1

Proof. (1) For z € {Im z > 0}, By Cauchy integral formula, we have
L[ oy
I = — ——dt 2.9
e = [ 2 (29)
Using Lemma 2.1 with D = {Im z > 0},we have sup|(z — 2i|" |1+ (v)] < C|ly|lo-
D

For z € {Imz < 0} N R, by Plemelj formula and Cauchy integral formula, I (y)
can be analytically continued to low part of R,

LW)E) = 1))+ 2z) =+ YO g 194y 2, (2.10)

r, 02
Using Lemma 2.1 with D = {Im z < 0}NR, we have sup|(z—2¢|7|1_(y)(2)| < C|y]lo-
D

Using (2.10) and y € A, we get the lemma.
(2) For z € {Im z > 0},By Cauchy integral formula,we have

a1 y(t)
where 7, = [ry]*. Using Lemma 2.1 with D = {Imz > 0}, we have supp |z —
21’|k+7|%1+(g])| < C|lgllo- For z € {Imz < 0} N'R, by (2.8), Cauchy integral
formula and Plemelj formula, I, () can be analytically continued to low part of R,

N N - 1 y(t o
@) = 1)+ 2= = [ 2asig (2.12)
T 7 t—2z
So
¥ o dk 1 () d

dt + 2i (2.13)

L @) =) 2= —— iy,

dzk +) dzk )+ Yok Elw [ (t—2)k dzk

Using Lemma 2.1 with D = {Imz < 0} N R, we have sup|z — 2i|k+7|i—kkl_ @) <
D

Cl|7llo. Now by the Cauchy integral formula: for z € {Imz <0} NR

i 1 i
_ N . 2.14
10 =g | | Gl (214)
where 7, = [r]*, 7y = [ru]*. So
dr 1 7
Z )= — | - —2_ar 2.1
dz’“y(z) 2k i /Fu /ﬂz (t — z)k+1 at; (2.15)

Using Lemma 2.1 with D = {Im z < 0} N R which is an angular subset of R, we
. koo _
have sup|(= 20" L @) < Clllo. 0
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Remark 2.6. In general, from Cauchy integral formula and Lemma 2.1, the following
statements are true:

(1) It y € Ao(D) and D’ is an angular subset of D, then € Ai(D’) and
[F=3
(2) If y € AO( ), ( 00 oo) C D, then I (y) € A¢(D) and |[I+(y)|lo,p <

Cliyllo,- -
3) fy € Ag(D), D'N{Im 2z < 0} is an angular subset ofD and (—o00,00) C D,

then for any integer k& > 1, - I+(y) € A(D’') and || < C’Hy||07p.
(4) Ify € Ao(D), D'N{Im z > O} is an angular subset ofD and (—00,00) C D,
then for any integer k > 1, ¢ ( ) € Ay (D') and || 2= < C’HyHOD

Lemma 2.7. Ify € Ay and j € A, then
(1) Lk(ﬂ) € Ao, [[1-(9)]lo < Cllgllo
(2) LI (y) € Ap, |2 1-(W)lle < Cllyllo for any integer k > 1

The proof of this lemma is parallel to that of Lemma 2.5.

dk}
IF=3

Lemma 2.8. Ify € Ay and §j € Ao, then
(1) The Hilbert transform H(y)(z) = (P) [, i’ Ldt can be extended to region
R and H(y)(z) € Ao, [H(y)llo < Cllyllo-
(2) The Hilbert transform H(§)(z) = (P) [, i’ xdt can be extended to region
R and H(§)(2) € Ao.[IH(@)]lo < Clllo-
Proof. We prove only (1). The proof of (2) is similar. Using Plemelj formula, we
have
H(y)(z) = I+ (y)(z) —iy(z); for z € {Imz >0} NR
H(y)(z) = I-(y)(2) +iy(z); for z€ {Imz <0} NR

the lemma follows from Lemma 2.5. O

(2.16)

Formulation of Equivalent integral equations.

Lemma 2.9. Let y(z) € Ay, then y(z) is a solution of (1.3) on real axis, if and
only if y(z) satisfies

€y (2) —iL(2)y(2) = —L(2) 14 (y)(2) + N(e, 2,5, L4 (y) — iy), (2.17)
for z€ RN {Imz > 0}.

Proof. If y € Ay satisfies (1.3), extending (1.3) to upper half complex plane Im
z > 0 and using Plemelj formulae and Lemma 2.8, we get the equation (2.17).
Conversely, in (2.17) , let z go to to real axis from above, using Plemelj formulae,
we get (1.3). O
Lemma 2.10. If §(z) € Ay is a solution of (1.3) on real awis, then for z €
RN {Imz < 0}, g(z) satisfies

9" (2) +iL(2)g(2) = —L(2)I-()(2) + N(e, 2,9, 1-(9) + if), (2.18)
Proof. If y € Ay satisfies (1.3), extending (1.3) to lower half complex plane Im
z < 0 and using Plemelj formulae and Lemma 2.8, we get the equation (2.18).

Conversely, in (2.18) , let z go to to real axis from below, using Plemelj formulae,
we get (1.3). O
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Note that the equation €2¢” — iL¢ = 0 has the following two Wentzel-Kramers-

Brillouin solutions (i.e WKB solutions):
1
Yi(2) = L74(z) exp{~P(2)}
€

Va(z) = L7/ () exp~ - P(2)}

The Wronskian of these two solutions is

W V20+i)

€

While two WKB solutions to €2¢” + iL¢ = 0 are
. 1 -
Yi(z) = L7V4(2) exp{ - P(2)}
€
. 1 -
Ya(z) = L7Y4(2) exp{—=P(2)}
€

The Wronskian of Y;(z) and Ya(z) is

o _v20-i)

€

and Y1(2), Ya(z) satisfy the equation
¢ (2) —iL(2)¢(2) + € L1(2)¢(2) = 0

where
_ L'z 5(L'(2))°
4L(z)  16L2%(z)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

Remark 2.11. From Property 1, Li(z) is analytic in RUR, and L;(z) ~ O(|z —

2i|72).
The functions Y;(z), Ya(2) satisfy the equation
29" (2) +iL(2)$(2) + € L1(2)9(z) = 0

so (2.17) can be written as

62(15// _ ZL(Z)¢(Z) + L1(2)62¢(2) = —L(Z)I+(¢)(Z) + N1(67 (b)(z)

where N is an operator

Ni(e,9)(2) = €L1(2)¢(2) + N(e, 2, 8(2), L+ () (2) — i¢(2)),

while (2.18) can be written as

@¢ +iL(2)6(2) + Li(:)9() = ~L()I-(J) + Ni(e

where Nj is an operator defined by

Ni(e,¢) = L1(2)d(2) + N(e, 2,6(2). () () + id(=)),

Lemma 2.12. Ifsupg |y(2)(z — 20)™| < oo, for m >0 ,then

1) [ vora(a < EPIEZBTVEOL e v,

o |z — 2i|y+m

where C' is a constant independent of ¢ and y(z).

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)
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Proof. Case 1: when Rez > 2R, on path P = {t : t = 2+ 5,0 < s < o0},
Re(P(t) — P(z)) goes from 0 to oo as s — oo.

me) [ Cy(0)Ya(t)d|

oo

_ |L71/4/ y(t)L(t)fl/éle*\/%(P(t)*P(Z))dﬂ

< sup|(z = 20"y (LG [ L0 e 20 RPO-PO) gy

z

* )| VAt(s) — 2i|7™ 1
< esup (= — 20)™y(2)| |L(z)] /4 /0 L ))1|%eP’|(tt((s))) 2" et RPO-P ()

Note that |[L=Y4(2)| ~ C|z — 2|7/, |z — 2i| < |t — 2i| for t on the integral range,
and we have Re P’(t(s))| > C|t — 2i|?/?, so we have

|Y1(z) /Z y(t)YQ(t)dt’ < Cesup |(z — 20)"y(2)||z — 2¢| ™7

oo

Case 2: when |Rez| < 2R, by property 5, there is a path P(z, 00) on which Re P(t)
increases as t goes from z to co. Using the same steps as in Case 1, we can get the
estimate.

Case 3: when Rez < —2R, we choose paths connecting z to oo , P = P; U
[Re z/2, 00), where

1 ez R.

Note on P;,by Property 4, we have

| Re z|
Re(P(z) — P(t)) < —Cl/ P2dr < —Cy (| Re 2[1+7/2 — |Ret|H1/2)
| Re t|
So
i) [ oot
P1
_ |L—1/4/ Y() L(t) e HPO-PE) gy
P1
| Re z|
< sup|(z +4)"y(2)|| L(z) /4| / |L(t)| 74t — 2| e e RePO=PE) gy
| Re 2/2|

| Re 2| C11( R 1+v/2 _414~/2
o—Cr L (| Rez[MH7/24157/2) 4,

< Csup|(z +i)™y(2)||z ™2 /
| Re z|/2

< Cesup |[(z +14)"y(2)||z| "™
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and

i) | T v

Rez/2

L /°° y() L(t) e HPO-PE) g
Rez/2

-\ — — —m —LRe —P(z
<sup|(z — 29)"y(2)||L(2)]| 1/4/R / |L(t)| "4t — 2| e Re(PO=P)) g
ez/2

< esup|(z — 20)™y(2)[|L(z) |
y /°° |L(t(s))|~/*[t(s) _2i|_md[e—%Re(P(t)—P(z))}
Re z/2 Re P'(i(s))
< Cesup |(z — 20)™y(2)||L|~/4e—t Re(P(Re=/2)=P(2))
< Cesup|(z — 20)"y(2)||z — 2i|~™7

Note that

C
e—%Rc(P(Rcz/Q)—P(z)) < e—Tl|Rcz|1+7 < C‘Z _ 2i|_l

for any integer [ > 0, which completes the proof. O

Lemma 2.13. If supg |y(2)|z — 2i|™| < 0o, for m >0, then z € R,

|Ya(z) /Z y(OY:(t)dt| < 6C'Sup |(z +i)"y(2)]

oo |z — 24[y+m ’
where C is a constant independent of € and y(z).

The proof is similar to the proof of Lemma 2.12.

Lemma 2.14. Ifsupg [7(2)|z — 2i|™| < oo, for m >0, then

o) [ T < el 200

0 |Z - i|’y+m
~ SN Cmax|(z — 2i)"y(z)]
Ya(z) /m gOYi(t)dt| < e it

where C is a constant independent of ¢ and §(z).
The proof is similar to the proof of Lemmas 2.12 and 2.13.

Lemma 2.15. Let u,v € Ay s, then for § sufficiently small and z € R

IN (e, 2,u,0)| < Clz = 20|77 (€ + 8([[ullo + [|v]lo)) (2.32)
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Proof. By (1.8), (1.9) and (1.10):
[N (e, z,u,v)|

<Z|pk ||TkUU|+€2Z|fk NQk (u, v)|

k=0
< CZ |2 = 20 TTHET N [t g [[u] o]
k=2 ak+pr>k
l
+ECY [z =2 TN g |ul o]
k=0 ap+Br>k

n
SCY |z =20 TR N Apt B (2 — 2477 )™ (|2 — 24] 7 v
k=2 ar+Be>k
l
+ECY |z =20 TR N A (12— 24| fullo)** (|2 — 247 Jv]lo)?
k=0 ap+Be>k

< Clz —2i|~ T*”Z > Alp(llullo + [ollo)) ™+

k=2 ar+8s>k

l
+CEz =20y N A(ps) et

k=0 ax+ Bk >k
(2.33)
If § is less than %, then
P
Yo > Allul + o)+ < Ca(lullo + Ilvllo)
k=2 ap+pr>k
!
> Y e sc
k=0 ap+pr>k
hence, the Lemma follows from (2.33). O

Lemma 2.16. Let u,v € Aoﬁ, then for 0 sufficiently enough and z € R
IN(e,2,@,9)| < Clz = 2| 77F7(e* + 6(||llo + [|7]0)) (2.34)

The proof is similar to that of Lemma 2.15.
We want to convert (2.17) and (2.18) into integral equations by using variation
of parameters.

Definition 2.17. Define operator U so that for function N(z) satisfying
sup |z — 2i|"|N(2)] < co,m+~vy >0
zER
Yi(2) /z Ya(2) /z
U(N)|z] i= ———— N@)Ys(t)dt — ———— N ()Y (t)dt 2.35
W= e [ Ny - 2O [ Nayne e
Remark 2.18. In light of Lemma 2.12 and Lemma 2.13, we have
sup |z — 2i|"TUN[2]| < C'sup |z — 2i|™|N(2)|
zER zER
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Definition 2.19. Let ¢ € Ay s, we define operator G(e, ¢) so that

G(e, 9)[z] :=U(N1(e, 9))[2] (2.36)
Lemma 2.20. Let ¢(z) € Ags, then for sufficiently small 6, G(e, ¢) € Ay and
1G (e, )llo < C(3l1dllo + €?) (2.37)

Proof. Since ¢(z) € Aos, by lemma 2.5, I.(¢) € Ay, || I+(9)|| < C|l¢llo- By (2.29)
and Lemma 2.15, we have

[N1(e,t, ¢)[2]] < Clz = 2i|77F7( + 6] pllo)
Then the lemma follows from Remark 2.18. O

Lemma 2.21. Let ¢(z) € Ags, ¢ is a solution to (2.17) if and only if it is a
solution to the following integral equation:

¢(z) = U(=LI(9))[z] + G(e, 9)[7] (2.38)

Proof. Using variation of parameters, the equation (2.17) is equivalent to the inte-
gral equation

$(2) = C1Y1(2) + CoYa(2) + U(=LI1(9))[2] + G(e, ¢) 2]

since ¢(z) € Ag5,by (1.6) and Lemma 2.5, we have |L(2)I;(¢)(2)| < Clz—2i|7 7.
By Remark 2.18, U(LI;(¢)) € Ap. Note Y1(z) — o0 as z — —oo and Ya(z) — o0
as z — 00, we must have C; = Cy = 0. [l

By the same method, we convert (2.18) into integral equations.
Definition 2.22. Define operator U so that for function N(z) satisfying
sup|z — 2i|™|N(2)| < oo,m+7 >0
Z€R
UN)[z] := \/;(/1(2)1)6 /OO N(t)Ya(t)dt — \/;(/i(Z)z)e /_ . N()Yi(t)dt  (2.39)
Remark 2.23. In light of Lemma 2.14, we have
sup |z — 2™ U(N)[2] < sup|z — 2|™|N(2)]

zeR zeR
Definition 2.24. Let ¢(z) € Ags, we define operator G(e, @) so that
Gle, 9)[z] = U(N1 (e, 9))[2] (2.40)
Lemma 2.25. Let ¢(z) € A5, then for sufficiently small 6, G(e, ¢) € Ay and
IG(e,P)llo < C©E]16]l0 + €) (2.41)

The proof is similar to that of Lemma 2.20.

Lemma 2.26. Let ¢(z) € Ags, ¢ is a solution to (2.18) if and only if it is a
solution to the following integral equation:

$(2) = U(=LI-())[z] + G(e, §)[2] (2.42)

The proof is similar to the proof of Lemma 2.21.
We would not be able to use contraction argument in integral equation (2.38)
or (2.42) to get existence of solution, since the linear part of the left hand side of

(2.38) or (2.42), U(—LIL(¢)), is not a contraction. In the following lemma, we are
going to deal with this linear term.
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Lemma 2.27. Let ¢(z) € Ags, ¢ is a solution to (2.38) if and only if it is a
solution to the following integral equation:

¢(z) = il (G(€,9))(2) + il (G1(9, 9))(2) + Ge, 9)[2] + €G1(9, @)[z]  (2.43)
where G is an operator acting on two functions u and v

2¢

Grlu ol = "5 [ (LE UL 0+ 10 G U 00 ) ato)i

+ % /; (iL—l/z(t)Lf(t)u(u) + Ll/z(t)jt{u(v)(t)})m(t)dt (2.44)

Proof. Integrating by parts,
U(=LI(¢)) = =il () + €G1(9, §) (2.45)
From (2.38),(2.45):
¢(2) = =il (¢)(2) + G(e, 9)[2] + €G1(¢-9)) 2] (2.46)

In above equation,Let Imz — 07, i.e 2z goes to x = Rez on the real axis, using
Plemelj formulae:

H(o)(x) = —iG(e, ¢)[x] — ieG1(¢, §)[x] (2.47)
Using Hilbert inverse formulae:
¢(x) = iH(G(e, 9))(x) + ieH(G1 (e, 0))(x) (2.48)

Extending (2.48) to upper half z-plane, we get (2.43).
Conversely,since the above steps are reversible,it can be seen that a solution ¢ € A
to (2.43) satisfies (2.38). O

Lemma 2.28. Let ¢(z) € Ags, ¢ is a solution to (2.42) if and only if it is a
solution to the following integral equation:
b= —il_(Cle,d) — el (Cr(6,0) + Cle,d) + Cr(d,d)  (2.49)

where G1 is an operator acting on 4 and U

Gatan) = - [ GL‘”Z(t)L’(t)I (@) + LV2(0) {1 <ﬁ><t>})ffz<t>dt

oo

/z (iLl/z(t)L’(t)I(ﬂ) + Ll/Q(t)%{L (ﬁ)(t)}> Yi(t)dt  (2.50)

The proof is parallel to that of Lemma 2.27.

To get the small € factor in front of G1(¢, ®) terms in equation (2.43), we paid
a price. Instead we get the derivative term %L_ (¢) in the expression of G1(¢, ).
Since %I+(¢) can not be estimated in terms of ||¢||p (see Remark 2.6),we are not
be able to use contraction argument to prove existence in (2.43). Same situation is
true for (2.49). To circumvent this difficulty, we replace the derivative term %41, (¢)
in G1(¢,¢) with L1, (¢) to get G1(¢,¢), and L1_(¢) in G1(¢,d) with L1_(¢) to
get G4 (¢, ¢) . That is, we consider a coupled system of integral equations:

¢(2) = il (G(ed)) + iel (G1(, D)) + G(e, ) + €G1(¢, d) (2.51)
¢(2) = —il_(G(e, §)) — iel_(G1(, 8)) + G(e, d) + €G1($, ¢) (2.52)
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Remark 2.29. If ¢ € Ao,g,é € A07§ are solutions to the coupled system (2.51) and

(2.52), and ¢(z) = ¢(z) for real x,then (2.51) is equivalent to (2.43) in RU{Imz >
0},(2.52) is equivalent to (2.49) in RU{Im 2 < 0}. Therefore ¢ = ¢ in RUR, and
by lemma 2.9, Lemma 2.21 and Lemma 2.27, either ¢ or ¢ is a solution to (1.3).

3. EXISTENCE AND UNIQUENESS OF ANALYTIC SOLUTIONS

In this section, we use a contraction argument to prove the existence and unique-
ness of solutions of a coupled system. Then we argue that solutions to the coupled
system are solutions of (1.3).

Lemma 3.1. If y € Ags,5(2) € AO,(S; then G1(y,9) € Ag and
1G1(y Dllo < Cllyllo + 7o) (3.1)
where C is independent of € and y, 7.

Proof. By Lemma 2.5, L1, (§) € Ay, and || L1 (§)|l1 < C|/gllo. Since |L'/?| ~
O(|z — 2i[7/?), we have

d
sup |z — 2i[F7V2LY2 (2) - L (7)) < Cllgilo (3.2)
2ER dz
By Lemma 2.5, I.(y) € Ay, |[I+(¥)]lo < C|ly|lo.Using (1.6), we have
sup [z — 2i["FTV2ILTV2(2) L' (2) L (y)] < Cllyllo (3-3)
zER
The Lemma follows from Lemma 2.12, Lemma 2.13 and (2.44). O

Lemma 3.2. Ify € Ay, 3(2) € Aoﬁ, then G1(3,y) € Ay and
I1G1@.9)lo < Clllyllo + I3llo)- (3.4)
where C' is independent of € and y, 7.
The proof is similar to the proof of Lemma 3.1.
Lemma 3.3. If y;, € Ags,9k(2) € Ao#;, then
1G1(y1,91) — G1(y1, 92)llo < Clllyr — w2llo + 191 — F2llo) (3.5)

where C' is independent of €, yi, and y.

Proof. By (2.44), G1(y, ) is linear in y and ¢, the lemma follows from lemma
3.1. O

Lemma 3.4. If y, € Ags,Ur(2) € Ags, then
1G1 (51, 91) = GG, w2)llo < Cllyr = yello + 191 — F2l0) (3.6)
where C' is independent of €, yx, and P
The proof is similar to the proof of Lemma 3.3.
Lemma 3.5. Let up € Ags,vi(2) € Ag s, then for sufficiently small §,
[N (€, 2z, u1,01) =N (€, z,ug,v2)| < Clz=2i| 77 (2 4:6) (|lur—us|lo+[[vr—v2lo) (3.7)

where C' is independent of € and ug, vy.
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Proof. For a, > 1,06, > 1,

ag, Pk ag, B
[ui™ v — ug* vy

"
QK O B o kB
< ‘(u1 uy®)| || + |ug| |U1 vy" |
< ag(fun|“* 7+ Jug|* ) Jug — walfor | 4 Be(lvr[PF T + ool F ) o — va| lug|*
<|z— 2i|7(ak+ﬁk)7{2ak5ak+ﬁk*1||u1 —uslo + Qﬂk(gakJrﬁrlel _ UQHO}

< ‘Z _ 2i|—(ak+ﬁk)7{2(ak + ﬂk)éak'f‘ﬁk—l(”ul N ’LL2||0 + ||'U1 B 02”0)}

(3.8)
By (1.8) and (1.9):
|N(67 Z, ulavl) - N(Ev Z,UQ,U2)|
<Y k@ Y Mawsllui*or™ —ugtog"]
k=2 akp+PBr>k
l
FEI 1) D [Gay.mlJug ol — ugrul®|
k=0 ap+PBr>1
< Clz = 21|77 ([lur — uzlo + [lvr — v2llo) (3.9)
n
% Z Z Apak+ﬁk{2(ak +6k)5ak+ﬁrl}
k=2 ap+pr>k
+ Ce?|z = 2i) 7T (Jlur — wallo + [lvr — vallo)
l
% Z Z Apak+ﬁk{2(ak +6k)60¢k+5k_1}
k=1 ax+pr>k
1
For § < vt
Z Apak-l-ﬁk{g(ak +ﬂk)6ak+ﬂk_1} <Cs
ak+PBr>2
Z Apak-i-ﬁk{Q(ak +ﬂk)§ak+ﬂk—1} <C
ap+Br>1
Equation (3.7) follows from (3.9) and the inequalities above. O

Lemma 3.6. Ify, € Ay, then
1G (e, 91) — Gle,y2) o < C(€ + )|y — y2llo (3.10)
where C' is independent of € .

Proof. By lemma 2.5, we have I (yx) € Ao, |1+ (yr)l| < C|lykllo- Replacing uy =
Yk, Uk = Iy (yx) — tyg in Lemma 3.5, we have

IN(€,2,u1,v1) — N (e, 2,u9,v2)| < Clz — 20|77 (2 + )|ly1 — y2llo (3.11)

By Remark 2.11,
L1 (2) (1 — y2)| < €]z = 2077 [lyr — 2o (3.12)
Then the lemma follows from (2.29), Definition 2.19 and Remark 2.18. ]
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Lemma 3.7. If y;, € ong, k=1,2, then
IG(e,51) = G(e,a)llo < C(e* + 8)lI5r — Fallo (3.13)
where C' is independent of €.
The proof is simimlar to the proof of Lemma 3.6.

Lemma 3.8. If ¢ € Ao s, ¢ € Ags is a solution of equations (2.51) and (2.52) for

sufficiently small § but independent of ¢, then ||plo < Ko€2, ||p|lo < Koe2. where
Ky is some constant independent of €.

Proof. By (2.51) and Lemmas 2.5, 2.20, 3.1:
¢llo < [114(G(e; d))lo + €l 1+ (G1 (6, )| + |G (e, @)llo + | G1(, D)llo
< C1||G(e, )0 + Crel|G1 (¢, D)o (3.14)
< Co(€® + 8|1 llo) + Cae([[dllo + [I4l0)
By (2.52), Lemmas 2.7, 2.25, 3.2:
@llo < I11-(G(e, )0 + el I-(G1 (6, 9))| + |G (e, D)o + el G1(6, D)o
< C1[|G(e, )0 + CrellG1(4, 8)lo (3.15)
< Ca(€ +6)16]l0) + Cae(l[llo + [19]l0) -
Adding (3.15) to (3.14),
1¢llo + l18llo < Ca(e+ 8)([¢llo + lIllo) + Cse? (3.16)
Choosing § small enough so that C3(e+6) < 3, the lemma follows from (3.16). O
Definition 3.9.
E=Ays®Ags (3.17)
(. 9)lle = llylla, + 17l 4, (3.18)
It is clear that E is a Banach space.
Definition 3.10. Let
E.={(y.9) €E | [lyllo < K [|gllo < Ke?}, (3.19)
Definition 3.11. For e = (¢, ¢) € E, we define operator O(e) as follows:
O(e) = (01(e), Oz(e)) (3.20)
where
O1(e) = il4(G(e,9)) + il (G1(9,9)) + G(e,0) + ¢G1(¢, ) (3.21)
Oz(e) = —il_(G(e,9)) — il (G1(9,9))) + Gle, §) + €G1(, ¢) (3:22)

Theorem 3.12. For sufficiently small ¢ and properly chosen K ,the operator O(e
is a contraction mapping from E. to E.; therefore there exists a unique solution

(¢,9) € B to (2.51),(2.52).
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Proof. By (3.21) and replacing § = Ke? in (3.14), we have ||O1(e)|lo < Ce® +
CKe? + CKe* By (3.22) and replacing § = Ke2 in (3.15), we have ||Oz(e)|lo <
Ce® + CKe® + CKe*. Hence for K suitably chosen, we have O(E,) C E, .

Let (¢1,01) € E, (¢2,¢2) € E.. By (3.21), Lemmas 2.5, 3.3, 3.5:

| O1(¢1, 1) — O1(d2, $2)llo
< |14 (G(e, 1) — Gle, 92)) || + €l T (G1(f1, 1) — Gi(ha, 62))|
quad + |[(G(e, ¢1) — G(e, ¢2))|| + €l (Gr (1, D1) — Gr(¢2, 02))
< C(G(e, 1) — G(e,$2))[| + €C[(G1(¢n, ¢~>1) - G1(¢2, <52))||
< ell(yr —y2,91 — B2)lE -
By (3.22), Lemmas 2.7, 3.4, 3.6, we have
| O2(¢1,61) — O1(d2, $2)llo
< |- (Gle,61) — Gle, d2)) | + €l I-(G1 (61, 61) — Gi1(d2, 62)) |
+(G(e, 1) = Gle, d2))l| + €l (Gr(d1, d1) — G (2, 62)) |
< CO[(Gle, 61) — Gle, 92)) || + €C (G (61, ¢1) — G1(2, 62))|
< Cel/(¢1 — b2, 01 — d2)|lE
[l

Next, we show that ¢ = ¢ in the above Theorem. First, we show that v = ¢ — ¢
satisfies a homogeneous differential equation on real axis. Then we use the a priori
estimates obtained in §2 and §3 to prove u = 0.

Definition 3.13. We define the differential operators
Vo = ¢ + (—iL + L), (3.23)
Vo =e2¢" + (il + 2L1) 6. (3.24)
Remark 3.14. By (2.35) and (2.39), we have VUN = N and VUN = N.

Lemma 3.15. Let (¢, gZ)) be as in Theorem 3.12,then (¢, (Z)) satisfies the following
equation on real aris:

" +LH(9) = *i(H(6—9))" + La(¢— ) +iH(6— )] +N (e, 2, ¢, H(9)) (3.25)
Proof. In equation (2.51), let Im z — 0%. Using Plemelj formula,

¢ = iH(G(e, 9)) + ieH(G1 (¢, b)), (3.26)
On the real axis. Applying Hilbert inverse Transform:
H(9) = ~iG(e, ¢) — ieG1(¢, ) (3.27)
on real axis. Extending above to Im z > 0, and using Plemelj formula,
¢ = —il(¢) + G(e,0) + €G1(¢, 9). (328)
Using (2.45), we have
—il(¢) = U(-LI1(¢)) — €G1(¢, §). (3.29)

Substituting (3.29) in (3.28), we have
¢ =G(e,0) +€Gi(6,6 — &) +U(-LI(9)). (3.30)
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Using (2.45), we have

€G1(¢,¢ — ¢) = il (d — ¢) +U(-LI (6 — ¢))- (3.31)
Substituting (3.31) in (3.30), we have
¢ = Gle,d) +U(=LI(9)) + il ( — ¢). (3.32)
Applying V to (3.30) and Using Remark 3.14,
V¢ = Ri(e,¢) — LI (§) + V(il (6 — ¢)) (3.33)
Let Im 2z — 07 in (2.33) and using Plemelj formula, we get the lemma. (Il

Lemma 3.16. Let (¢, (;NS) be as in Theorem 3.12, then (¢, é) satisfies the following
equation on real axis:

9"+ LH(9) = i(H(9—9))" +e* Li[(¢— ) +iH($— )]+ N(e, 2,6, H(9)) (3.34)

Proof. Starting with (2.52), using the same steps as in the proof of Lemma 3.15,
we get the lemma. O

From now on in this section, we are going to work with different domains. We
use notation A(D) to indicate the dependence of function space on domain D. Let
Rl = RO(O’LPO n RQO’WO. By Definition 1.17R1 = Ra0/2,<p0/2 @] ROéO/Q,(PO/Q'

Lemma 3.17. Let (¢,¢) be as in Theorem 3.12,then
N(e,z,6,H(9)) = N(e,z,6,H(9)) = Bi(e,2)(6 = ¢) + Bale,2)H(6 — 9)  (3.35)

where By(e,x) and Ba(e,x) can be extended to Ry and

sup |2 — 2i|77|B;(e,2)] < Ce*,  j=1,2 (3.36)
2ER,
Proof. By Theorem 3.12, ¢ € A(R1), ¢ € A(R;) and
I¢llor, < K€%, [[6llo.r, < Ké (3.37)
Let uy = ¢, v, = H(}) and us = ¢, va = H($). By Lemma 2.5 and Lemma 2.7:
luillom, < Ke* o Nojllor, < Ke*, j=1,2 (3.38)

For any integer m > 1, define

_ @)™ — [ug (@)™ _ I
gm(l') T ul(x) _ u2($) - Z 1%2 (339)

k=0
o) e @)™ = (@)™ m_lvkvm,l,k
b () = IEEHEP I (3.40)

Then g,, and h,, can be extended to R; and for z € R,

gm( < D Jufljug]

j+k=m—1

< S flz -2 ullo} {1z — 207 Juzllo}* (3.41)
j+k=m—1

< KmeQ(m71)|z - 2i|77(m71)

Similarly
|hm (2)] < KmeXm=D|z — 24| 77(m=1) (3.42)
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For ay + Bk > 1,

ufF ot — ugt ol = (uft — ug* o 4 ugt (o — ol (3.43)
= (Ul - u2)gakvlﬂk + (Ul - UQ)ugkhﬁk

By (1.8) and (1.9), we have

n
N(e,w,u1,v1) — N(e,w,u2,00) = > ppl@) Dt [uf* 0] — ug*o*)
k=2 ap+PBr>k

+EY fil@) Y dansluiol —ustost]
k=1 ak+Br>k
(3.44)
Substituting (3.43) in (3.44), we have (3.35) with B; and By given by:

n

B1(6,$) = Zpk(m) Z tak,ﬂkgak (x)vlﬁk+622f/€($> Z o, BrJou (x)vlﬁk
k=1

k=2 ak+PBr>k ap+Pr>k
(3.45)
n n
Bs(e,x) = Zpk (z) Z tay,Bi P (x)vlﬁk""62 Z fi(@) Z v, By, ey (x)vlﬁk
k=2 ax+Br>k k=1 ax+Br>k
(3.46)

To obtain (3.36) and to show the convergence of the series in By and Bg, we consider

n

Dolk@)l D0 ltansellgan (@)]on]*

k=2 ap+Br>k
n
< Z |z — 24| 7TV
k=2

% Z Apak+ﬂk(ak(K€2)ak_l|Z—27;‘_T(ak_1))(|2—Qil_THvln)ﬁk (3.47)
ap+Br>k

<l|lz—2|"77 Z Z Apay (Kep)orthe—t
k=2 ayp+Br>k

< Ceéz— 2T
The other series can be estimated similarly. Then the proof is complete. O

Lemma 3.18. Letu= ¢ — (j~>, then u satisfies the following homogeneous equation
on real axis:

eu" — LH(u) = —2€2Liu + By (e, z)u + Bo(e, z)H (u) (3.48)
This lemma follows from Lemmas 3.16 and 3.17.
Lemma 3.19. The function u satisfies the homogeneous equations:
Eu + (iL+ Ly)u = LI, (u) — €Lyu+ By(e, 2)u + Ba(e, 2) (14 (v) — iu) (3.49)
for z € Rog/2,00/2, and
Eu'’ + (—iL+ 2 Ly)u = LI_(u) — € Liu+ By (e, 2)u+ Ba(e, 2)(I_ (u) +iu) (3.50)

for z € 7@&0/2)%/2.
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Proof. Extending (3.48) to {Imz > 0}, using Plemelj formula, we obtain (3.49).
While extending (3.48) to {Im z < 0}, using Plemelj formula, we obtain (3.50). O

Definition 3.20. We define operator
Gale,u)[z] == U(—2Liu + By (e, 2)u + Ba(e, 2) (I (u) — iu))[z] (3.51)
where U is given by (2.39).
Lemma 3.21. If u € A(Rqy/2,00/2), then ég(e,u) € A(Ray/2,00/2) and
1G2(€. ) 10.R g 2,02 < CENUllOR g 2,402 (3.52)

Proof. By Remark 2.6, || (u) < Cllullo,r Using (3.36), we

HO}RO‘O/QvV’O/z — ag/2,¢0/2"
have
|—€Liu + Bi(e, z)u+ Ba(e, 2)(I+(u) — iu)| < Ce?|z — 20" [ullo, Ry 2,002
(3.53)
We note that Lemma 2.14 still hold if we replace R by Rag/2,00/2, the lemma
follows from Lemma 2.14 , equation (3.51) and (3.53). O

Definition 3.22. We define operator G3(u) by

Gotwle) = U2 [0 L1 )0} + TE PO O 00
L Ta(z)

) [ O I @)+ [ POLOL@OT 0 (650

Lemma 3.23. Ifu € A(Ry), then Gs(u) € A(Rag/2,00/2) and
1G3(w) o, < Cllullo,r, (3.55)

ag/2,90/2 —
Proof. Since R, /2,00/2 N { Im 2z < 0} is an angular subset of Ry,from Remark 2.6,

||,%«I+(u)”1773a0/2,¢0/2 < CHU'||O7R1'
Since |L'/?| ~ O(|z — 2i|"/?), we have

I d
sup [z —24|'F ”/QIL”Q(Z)@MU)ISCHUIIo,nl (3.56)

2€Rag/2.00/2

By Lemma 2.5, I (u) € Ag r,, [ I+ (w)]or, < Cllullo,r, . Using (1.6), we have

sup [z = 20T (2) L (2) L1 ()] < Clluflo,r, (3.57)
2€Rag/2.00/2
The proof follows from Lemma 2.14, (3.54), (3.56) and (3.57). O

Lemma 3.24. The function u satisfies the following integral equation for z €
Rao/2,00/2¢

u = i[l(Ga(e,u)) — iGa(e,u)] + e[l (G3(u)) — iG3(u)] (3.58)
Proof. Using variation of parameters in (3.49):
w=U(LI; (u)) + Ga(e,u) (3.59)
Integration by parts,

U(LI(u) = —il(u) 4 eGs(u) (3.60)
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From (3.59) and (3.60),

u = —il(u) +eGs(u) + Gy . (3.61)
In the above equation, let Im z — 07, using Plemelj formula:
H(u) = —ieG'3(u) — iGy (3.62)
Taking inverse Hilbert Transforms,
u = ieH(G3(u)) 4+ iH(Go). (3.63)
Extending (3.63) to Im z > 0, we complete the proof. a

Definition 3.25. We define operator
Gole,u)[2] :== U(—>Lyu + By (e, 2)u + Ba(e, 2)(I_ (u) + iu)) (3.64)
where U is given by (2.35).
Lemma 3.26. Ifu € A(7~€a0/27¢0/2), then Ga(e,u) € A(’IN%O[O/QWO/Q) and
1Gaello 7 o < CClullo 2, e (3.65)
The proof is similar to the proof of Lemma 3.21.

Definition 3.27. We define operator

Gawle)i= =0 [0 I )0} + L POLOL @00
B [ e 4 @ 0) + 1L POLOL WO 0 (360
Lemma 3.28. Ifu € A(Ry), then G3(u) € A(ﬁao,w)m) and
IGslo,, ... < Clllor, (3.67)

ap,p0/2

The proof is similar to the proof of Lemma 3.23.
Lemma 3.29. the function u satisfies the following integral equations for z €
R o2
u=—i[I_(Ga(€e,u) + iGa(e,u))] — ie[I_(G3(u)) + iG3(u)] (3.68)
The proof is parallel to that of Lemma 3.24.
Lemma 3.30. Let (¢, q~5) be as in Theorem 3.12, then ¢ = gz~5 mn Ry
Proof. By (3.58), Lemmas 2.5, 3.21, 3.23, we have
10 R g o2 < IH+(G2(6,))0,Roy 4 2 + €llT (Ga(w)]
+ [|Gale, OM0,Rag,py/2 T €||és(u)||0,7zao,%/2
< ClGae, Wlloma, oo + CelGa@lome, ..
< Cle+e?)|ullo,r, -
By (3.68), Lemmas 2.7, 3.26, 3.28, we have
< [H-(Ga(e,u))llo =
+1Ga(e Doz, .,
<Gl )z,

< Cle+ €)|ullo,r, -

||U 0,R 0,R

ag,r0/2

(3.69)

ag,eo/2 + 6||I_(G3(u))||077z’,

+6HG3(U)||0,7§Q0,¢0/2 (3.70)
+ C’eHGg(U)Ho,fz |

lullo %

ap,e0/2 @0,%0/2

ag,p0/2
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Adding (3.69) to (3.70),
+ [lullo.r < Cle+A)|ullo.r, - (3.71)

[ullo.ry < llull % cor0/2 =

ap,p0/2

For sufficiently small €, (3.71) implies ||uljo,r, = 0. So v =0 in R;. O
The proof of Theorem 1.4 follows from Remark 2.29, Lemma 3.8, Lemma 3.12
and Lemma 3.30.
4. SOME EXPLICIT EXAMPLES

In this section we give explicit functions of L(x) so that Properties 1-6 hold.
Example 1 Let L(z) be constant. Without loss of generality, we assume L(z) = 1,
then v = 0, P(z) = 'z, P(z) = e "5z Let r = {t: 2+ 5¢'?,0 < 5 < 00} be a
ray, and z be a complex number. Then along ray r,

Re P(t(s)) = scos(% +6) 4+ Re(e'Tz), ReP(z)= tcos(—% +6) + Re(e ' 2).

Therefore,

‘mediji;(t(‘s)zcos(%+0)>0, for —%<9<%,
Cm%f(*s):cos(%+e)<o, for%r<9<%r7
%}t(s):cos(%—i—e)>0, for —%<9<£7
%W:COS(£+0)<O’ for?%<9<%ﬂ,

Also for R > 0, on the line {Im¢ = constant, —R < s = Ret < R},
Re P(t(s)) = scos g + costant, Re P(t(s)) = s cos g + costant,

So
dRe P(t(s) i dRe P(t(s)
fahdiall Sl S/ o 2222V
ds 7 =% ds
Therefore, if we choose ag and ¢ so that 0 < ap <1, 0 < o < F, R > 0 can be
chosen arbitrarily, then Property 1-6 hold from above equations.

s
:cosz>0,

Example 2 Let L(z) = 2% + a? with a > 1. Without loss of generality, we assume

L(z) = 2? + 1, then v = 2, P(z) = 'T [[V1+12dt, P(z) = e % [ V1+ t2dt,

where we use lines {ti : t > 1} and {ti : ¢ < —1} as the branch cut of v¢2 + 1 and
V2 +1 = /|12 + 1]e!/2ara(tti)targ(i—0)]

where —2F < arg(t —i) < Z,—Z < arg(t+1i) < 2.

2

Lemma 4.1. For6 € (—%,%), then as |2| — oo and t € {t(s) : t(s) = z+s€™,0 <
s < o0},

Re P(t(s)) = |t cos(% +20)(1 + o(1)),

(4.1)
%S(t(s)) = 2Jt| cos(g +20)(1+o(1)),
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Proof. Note that
z t
P(t(s)) = ¢iF / V1T Ede + ' / (s)V/1 + €3d¢ . (4.2)
0 z
The first integral of (4.2) is independent of s, and can be treated as a constant. We
choose the path of integration in the second integral of (4.2) to be the ray segment
{€:&=2+4pe? 0 < p< s}, then

P(t(s)) = €' / \/(z + pei?) + z\/(z + pei®) — ie??dp + constant
0

1
_ i(9+§)/ ( + i9)+’ ( + i@)_ id
se z + swe i1/ (2 + swe 1dw
; V v

The proof follows from the above equation and the fact that arg(z 4 swe® 414) — 6,
arg(z + swe'® — i) — 0, as |z| — oc. O

(4.3)

Lemma 4.2. For0 € (=%,%), if |z| — oo and t € {t(s) : t = z+s€e"?,0 < s < o0},

then
Re P(¢(s)) = [t|2 COS(—% +20)(1 + o(1)),
dRe P(t(s)) (4.4)
=2 cos(—% +20)(1 + o(1)),

The proof is similar to the proof of Lemma 4.1.
Lemma 4.3. For 0 € (%,2F), if |2| — oo and t € {t(s) : t =z + se?,0 < s < o0},
then

Re P(t) = |t|? cos(f?% +20)(1+o(1)),
(4.5)

dRe P(t 3
AR PUS) _ o1y cos(— 3T 4 20)(1 + o(1)),
ds 4
Proof. The proof follows from (4.3) and the fact that arg(z + swe'® + i) — 0,
arg(z + swe'® — i) — 6 — 27, as |z| — oo. O

Lemma 4.4. For 0 € (%,2F), if |2| — oo and t € {t(s) : t = 2+ se?,0 < s < o0},
then

Re P(t(s)) = |t|? cos(—%r +20)(1 + o(1)),
dRe P(t(s)) (46)
ds
Lemma 4.5. Let R > 0 be any fized number, there exists a number 0 < ap < 1
so that %s(t(s)) > 1 on line segment {z : z = s+ id,—R < s < R} where
—ap < d < .

= 2[t| cos(—% +20)(1 + o(1)),

Proof. When t(s) is on the real axis, i.e., d = 0, we have

Re P(t(s)) = cos(r /4) /0 V1t 2dt

SO %f(z) =1+5? > 1. Since %f(t) is continuous with respect to d, we get the

lemma. O
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Now by Lemmas 4.1-4.4, there exist R large enough and ¢g = 7/8 so that

P P
dRe P(t) > Olt| > 0, dRe P(t) > Ot > 0 (4.7)
ds ds
for 2> R, t € {t(s) =z +se?, 0 < s < o0}, —pg <0< . Also
dRe P(t dRe P(t
RGT() < =Cl|t| <0, RGT() <=Clt| <0 (4.8)

for 2 < —R, t € {t(s) = 2 + 5 ("9 0 < 5 < 00}, —pp < 0 < .
Choose g so that Lemma 4.5 holds. It can be checked easily that Properties
1-6 hold in Rag,p,, by (4.7), (4.8) and Lemma 4.5.
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