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TWO CONVERGENCE RESULTS FOR CONTINUOUS DESCENT
METHODS

SIMEON REICH AND ALEXANDER J. ZASLAVSKI

Abstract. We consider continuous descent methods for the minimization of

convex functionals defined on general Banach space. We establish two conver-
gence results for methods which are generated by regular vector fields. Since

the complement of the set of regular vector fields is σ-porous, we conclude that
our results apply to most vector fields in the sense of Baire’s categories.

1. Introduction

The study of discrete and continuous descent methods is an important topic
in optimization theory and in dynamical systems. See, for example, [3, 7, 9, 10].
Given a continuous convex function f on a Banach space X, we associate with f a
complete metric space of vector fields V : X → X such that f0(x, V x) ≤ 0 for all
x ∈ X. Here f0(x, h) is the right-hand derivative of f at x in the direction h ∈ X.
To each such vector field there correspond two gradient-like iterative processes.
In our recent papers [10, 11] we show that for most of the vector fields in this
space, both iterative processes generate sequences {xn}∞n=1 such that the sequences
{f(xn)}∞n=1 tend to inf(f) as n →∞. In the present paper, we first briefly review
these results and then study the convergence of the values of the function f to
its infimum along the trajectories of an analogous continuous dynamical system
governed by such vector fields.

When we say that most of the elements of a complete metric space Y enjoy a
certain property, we mean that the set of points which have this property contains
a Gδ everywhere dense subset of Y . In other words, this property holds generically.
Such an approach, when a certain property is investigated for the whole space Y
and not just for a single point in Y , has already been successfully applied in many
areas of Analysis [1, 4-6, 8, 13, 16].

Now we recall the concept of porosity [2, 5, 6, 11, 14, 17] which enables us to
obtain even more refined results. Let (Y, d) be a complete metric space. We denote
by Bd(y, r) the closed ball of center y ∈ Y and radius r > 0. We say that a subset
E ⊂ Y is porous in (Y, d) if there exist α ∈ (0, 1) and r0 > 0 such that for each
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r ∈ (0, r0] and each y ∈ Y , there exists z ∈ Y for which

Bd(z, αr) ⊂ Bd(y, r) \ E.

A subset of the space Y is called σ-porous in (Y, d) if it is a countable union of
porous subsets in (Y, d). Other notions of porosity have been used in [2, 14]. We
use the rather strong notion which appears in [5, 6, 11, 17].

Since porous sets are nowhere dense, all σ-porous sets are of the first category.
If Y is a finite-dimensional Euclidean space Rn, then σ-porous sets are of Lebesgue
measure 0. The existence of a non-σ-porous set P ⊂ Rn, which is of the first
Baire category and of Lebesgue measure 0, was established in [14]. It is easy to
see that for any σ-porous set A ⊂ Rn, the set A ∪ P ⊂ Rn also belongs to the
family E consisting of all the non-σ-porous subsets of Rn which are of the first
Baire category and have Lebesgue measure 0. Moreover, if Q ∈ E is a countable
union of sets Qi ⊂ Rn, i = 1, 2, . . . , then there is a natural number j for which the
set Qj is non-σ-porous. Evidently, this set Qj also belongs to E . Thus one sees
that the family E is quite large. Also, every complete metric space without isolated
points contains a closed nowhere dense set which is not σ-porous [15].

To point out the difference between porous and nowhere dense sets, note that
if E ⊂ Y is nowhere dense, y ∈ Y and r > 0, then there is a point z ∈ Y and
a number s > 0 such that Bd(z, s) ⊂ Bd(y, r) \ E. If, however, E is also porous,
then for small enough r we can choose s = αr, where α ∈ (0, 1) is a constant which
depends only on E.

This paper is organized as follows. In the second section we briefly review our
work on discrete descent methods. In the third section we present our two theorems
(Theorems 3.2 and 3.3) on continuous descent methods. The first one is concerned
with infinite horizon trajectories, while the second deals with finite horizon per-
turbed trajectories. We prove Theorem 3.2 in Section 4. Theorem 3.3 is proved in
Section 5.

2. Discrete descent methods

Let (X∗, ‖·‖∗) be the dual space of the Banach space (X, ‖·‖), and let f : X → R1

be a convex continuous function which is bounded from below. Recall that for each
pair of sets A,B ⊂ X∗,

H(A,B) = max{sup
x∈A

inf
y∈B

‖x− y‖∗, sup
y∈B

inf
x∈A

‖x− y‖∗}

is the Hausdorff distance between A and B.
For each x ∈ X, let

∂f(x) = {l ∈ X∗ : f(y)− f(x) ≥ l(y − x) for all y ∈ X}

be the subdifferential of f at x. It is well known that the set ∂f(x) is nonempty
and norm-bounded. Set

inf(f) = inf{f(x) : x ∈ X}.

Denote by A the set of all mappings V : X → X such that V is bounded on every
bounded subset of X (i.e., for each K0 > 0 there is K1 > 0 such that ‖V x‖ ≤ K1

if ‖x‖ ≤ K0), and for each x ∈ X and each l ∈ ∂f(x), l(V x) ≤ 0. We denote by Ac

the set of all continuous V ∈ A, by Au the set of all V ∈ A which are uniformly



EJDE–2001/24 CONTINUOUS DESCENT METHODS 3

continuous on each bounded subset of X, and by Aau the set of all V ∈ A which
are uniformly continuous on the subsets

{x ∈ X : ‖x‖ ≤ n and f(x) ≥ inf(f) + 1/n}

for each integer n ≥ 1. Finally, let Aauc = Aau ∩ Ac.
Next we endow the set A with a metric ρ: For each V1, V2 ∈ A and each integer

i ≥ 1, we first set

ρi(V1, V2) = sup{‖V1x− V2x‖ : x ∈ X and ‖x‖ ≤ i}

and then define

ρ(V1, V2) =
∞∑

i=1

2−i[ρi(V1, V2)(1 + ρi(V1, V2))−1].

Clearly, (A, ρ) is a complete metric space. It is also not difficult to see that the
collection of the sets

E(N, ε) = {(V1, V2) ∈ A×A : ‖V1x− V2x‖ ≤ ε, x ∈ X, ‖x‖ ≤ N},

where N, ε > 0, is a base for the uniformity generated by the metric ρ. Evidently,
Ac, Au, Aau and Aauc are all closed subsets of the metric space (A, ρ). In the
sequel we assign to all these spaces the same metric ρ.

To compute inf(f), we associate in [10, 11] with each vector field W ∈ A two
gradient-like iterative processes to be defined below.

Note that the counterexample studied in Section 2.2 of Chapter VIII of [7] shows
that, even for two-dimensional problems, the simplest choice for a descent direction,
namely the normalized steepest descent direction,

V (x) = argmin
{

max
l∈∂f(x)

< l, d >: ‖d‖ = 1
}
,

may produce sequences the functional values of which fail to converge to the infimum
of f . This vector field V belongs to A and the Lipschitzian function f attains its
infimum. The steepest descent scheme (Algorithm 1.1.7) presented in Section 1.1
of Chapter VIII of [7] corresponds to any of the two iterative processes we consider
below.

In infinite dimensions the minimization problem is even more difficult and less
understood. Moreover, positive results usually require special assumptions on the
space and the functions. However, as shown in [10] (under certain assumptions on
the function f), for an arbitrary Banach space X and a generic vector field V ∈ A,
the values of f tend to its infimum for both processes.

In [11] we introduced the class of regular vector fields V ∈ A and established
three main results. The first one, Theorem 2.2 below, shows (under the two mild
assumptions A1 and A2 on f stated below) that the complement of the set of
regular vector fields is not only of the first category, but also σ-porous in each of
the spaces A, Ac, Au, Aau and Aauc. We then show (Theorem 2.3) that for any
regular vector field V ∈ Aau, the values of the function f tend to its infimum for
both processes. If, in addition to A1 and A2, f also satisfies the assumption A3,
then this convergence result is valid for any regular V ∈ A. The last result in [11],
Theorem 2.4 below, is a stability theorem for regular vector fields.

These results are valid in any Banach space and for those convex functions which
satisfy the following two assumptions.
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A1 There exists a bounded set X0 ⊂ X such that

inf(f) = inf{f(x) : x ∈ X} = inf{f(x) : x ∈ X0};

A2 for each r > 0 the function f is Lipschitzian on the ball {x ∈ X : ‖x‖ ≤ r}.
Note that assumption A1 clearly holds if lim‖x‖→∞ f(x) = ∞.

We say that a mapping V ∈ A is regular if for any natural number n there exists
a positive number δ(n) such that for each x ∈ X satisfying

‖x‖ ≤ n and f(x) ≥ inf(f) + 1/n,

and each l ∈ ∂f(x), we have
l(V x) ≤ −δ(n).

Denote by F the set of all regular vector fields V ∈ A. It is not difficult to verify
the following property of regular vector fields. It means, in particular, that A \ F
is a face of the convex cone A.

Proposition 2.1. Assume that V1, V2 ∈ A, V1 is regular, φ : X → [0, 1], and that
for each integer n ≥ 1,

inf{φ(x) : x ∈ X and ‖x‖ ≤ n} > 0.

Then the mapping x → φ(x)V1x + (1− φ(x))V2x, x ∈ X, also belongs to F .

The first result of [11] shows that in a very strong sense most of the vector fields
in A are regular.

Theorem 2.2. Assume that both A1 and A2 hold. Then A\F (respectively, Ac\F ,
Aau\F and Aauc\F) is a σ-porous subset of the space A (respectively, Ac, Aau and
Aauc). Moreover, if f attains its infimum, then the set Au \ F is also a σ-porous
subset of the space Au.

Now let W ∈ A. We associate with W the following two gradient-like iterative
processes.

For x ∈ X we denote by PW (x) the set of all y ∈ {x + αWx : α ∈ [0, 1]} such
that

f(y) = inf{f(x + βWx) : β ∈ [0, 1]}.
Given any initial point x0 ∈ X, one can construct a sequence {xi}∞i=0 ⊂ X such
that for i = 0, 1, . . . ,

xi+1 ∈ PW (xi). (2.1)

This is our first iterative process.
Next we describe the second iterative process. Given a sequence a = {ai}∞i=0 ⊂

(0, 1] such that

lim
i→∞

ai = 0 and
∞∑

i=0

ai = ∞, (2.2)

we construct for each initial point x0 ∈ X a sequence {xi}∞i=0 ⊂ X according to
the following rule: For i = 0, 1, . . . ,

xi+1 =

{
xi + aiW (xi) if f(xi + aiW (xi)) < f(xi),
xi otherwise.

(2.3)

In the sequel we will also make use of the assumption:
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A3 For each integer n ≥ 1, there exists δ > 0 such that for each x1, x2 ∈ X
satisfying

‖x1‖, ‖x2‖ ≤ n, f(xi) ≥ inf(f) + 1/n, i = 1, 2, and ‖x1 − x2‖ ≤ δ,

we have H(∂f(x1), ∂f(x2)) ≤ 1/n.
This assumption is certainly satisfied if f is differentiable and its derivative is
uniformly continuous on those bounded subsets of X over which the infimum of f
is larger than inf(f).

The next result of [11] is a convergence theorem for those iterative processes
associated with regular vector fields. It is of interest to note that we obtain con-
vergence when either the regular vector field W or the subdifferential ∂f enjoys a
certain uniform continuity property.

Theorem 2.3. Assume that W ∈ A is regular, A1, A2 are valid and that at least
one of the following two conditions holds: 1. W ∈ Aau, or 2. A3 is valid. Then
the following two assertions are true

(i) Let {xi}∞i=0 ⊂ X satisfy (2.1) for all i = 0, 1, . . . . If lim infi→∞ ‖xi‖ < ∞,
then limi→∞ f(xi) = inf(f).

(ii) Let the sequence a = {ai}∞i=0 ⊂ (0, 1] satisfy (2.2) and let the sequence
{xi}∞i=0 ⊂ X satisfy (2.3) for all i = 0, 1, . . . . If {xi}∞i=0 is bounded, then
limi→∞ f(xi) = inf(f).

Finally, we impose an additional coercivity condition on f , and establish the
following stability theorem. Note that this coercivity condition implies A1.

Theorem 2.4. Assume that f(x) →∞ as ‖x‖ → ∞, V ∈ A is regular, A2 is valid
and that at least one of the following two conditions holds: 1. V ∈ Aau, or 2. A3
is valid.

Let K, ε > 0 be given. Then there exist a neighborhood U of V in A and a natural
number N0 such that the following two assertions are true:

(i) For each W ∈ U and each sequence {xi}N0
i=0 ⊂ X which satisfies ‖x0‖ ≤ K

and (2.1) for all i = 0, . . . , N0−1, the inequality f(xN0) ≤ inf(f)+ ε holds.
(ii) For each sequence of numbers a = {ai}∞i=0 ⊂ (0, 1] satisfying (2.2), there

exists a natural number N such that for each W ∈ U and each sequence
{xi}N

i=0 ⊂ X which satisfies ‖x0‖ ≤ K and (2.3) for all i = 0, . . . , N − 1,
the inequality f(xN ) ≤ inf(f) + ε holds.

A partial extension of the results reviewed in this section to functions f : X → R
which are not necessarily convex can be found in [12].

3. Continuous descent methods

Let T > 0, x0 ∈ X and let u : [0, T ] → X be a Bochner integrable function. Set

x(t) = x0 +
∫ t

0

u(s)ds, t ∈ [0, T ].

Then x : [0, T ] → X is differentiable and x′(t) = u(t) for a.e. t ∈ [0, T ]. Recall that
the function f : X → R is assumed to be convex and continuous and therefore it is,
in fact, locally Lipschitzian. It follows that its restriction to the set {x(t) : t ∈ [0, T ]}
is Lipschitzian. Indeed, since the set {x(t) : t ∈ [0, T ]} is compact, the closure of
its convex hull C is both compact and convex, and so the restriction of f to C
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is Lipschitzian. Hence the function (f · x)(t) := f(x(t)), t ∈ [0, T ], is absolutely
continuous. It follows that for almost every t ∈ [0, T ], both the derivatives x′(t)
and (f · x)′(t) exist:

x′(t) = lim
h→0

h−1[x(t + h)− x(t)],

(f · x)′(t) = lim
h→0

h−1[f(x(t + h))− f(x(t))].

Proposition 3.1. Assume that t ∈ [0, T ] and that both the derivatives x′(t) and
(f · x)′(t) exist. Then

(f · x)′(t) = lim
h→0

h−1[f(x(t) + hx′(t))− f(x(t))]. (3.1)

Proof. There exist a neighborhood U of x(t) in X and a constant L > 0 such that

|f(z1)− f(z2)| ≤ L‖z1 − z2‖ for all z1, z2 ∈ U . (3.2)

Let ε > 0. There exists δ > 0 such that

x(t + h), x(t) + hx′(t) ∈ U for each h ∈ [−δ, δ] ∩ [−t, T − t], (3.3)

and such that for each h ∈ [(−δ, δ) \ {0}] ∩ [−t, T − t],

‖x(t + h)− x(t)− hx′(t)‖ < ε|h|. (3.4)

Let
h ∈ [(−δ, δ) \ {0}] ∩ [−t, T − t]. (3.5)

It follows from (3.3), (3.2) and (3.4) that

|f(x(t + h))− f(x(t) + hx′(t))| ≤ L‖x(t + h)− x(t)− hx′(t)‖ < Lε|h|. (3.6)

Clearly,

[f(x(t + h))− f(x(t))]h−1 = [f(x(t + h))− f(x(t) + hx′(t))]h−1

+ [f(x(t) + hx′(t))− f(x(t))]h−1.
(3.7)

The relations (3.6) and (3.7) imply

|[f(x(t + h))− f(x(t))]h−1 − [f(x(t) + hx′(t))− f(x(t))]h−1|
≤ |f(x(t + h))− f(x(t) + hx′(t))‖h−1| ≤ Lε.

Since ε is an arbitrary positive number, we conclude that (3.1) holds. ♦
Now assume that V ∈ A and that the differentiable function x : [0, T ] → X

satisfies
x′(t) = V (x(t)) a.e. t ∈ [0, T ]. (3.8)

Then by Proposition 3.1, (f · x)′(t) ≤ 0 for a.e. t ∈ [0, T ], and f(x(t)) is decreasing
on [0, T ].

In the sequel we denote by µ(E) the Lebesgue measure of E ⊂ R.

Theorem 3.2. Let V ∈ A be regular, let x : [0,∞) → X be differentiable and
suppose that

x′(t) = V (x(t)) for a.e. t ∈ [0,∞). (3.9)
Assume that there exists a positive number r such that

µ({t ∈ [0, T ] : ‖x(t)‖ ≤ r}) →∞ as T →∞. (3.10)

Then limt→∞ f(x(t)) = inf(f).
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Note that in this theorem the requirements imposed on the vector field V and
the function f are considerably less stringent than those of Theorem 2.3.

Theorem 3.3. Let V ∈ A be regular, let f be Lipschitzian on bounded subsets of
X, and assume that lim‖x‖→∞ f(x) = ∞. Let K0 and ε be positive. Then there
exist N0 > 0 and δ > 0 such that for each T ≥ N0 and each differentiable mapping
x : [0, T ] → X satisfying

‖x(0‖ ≤ K0 and ‖x′(t)− V (x(t))‖ ≤ δ for a.e. t ∈ [0, T ],

the following inequality holds for all t ∈ [N0, T ]:

f(x(t)) ≤ inf(f) + ε.

4. Proof of Theorem 3.2

Assume the contrary. Since f(x(t)) is decreasing on [0,∞), this means that there
exists ε > 0 such that

lim
t→∞

f(x(t)) > inf(f) + ε. (4.1)

Then by Proposition 3.1 and (3.9), for each T > 0,

f(x(T ))− f(x(0)) =
∫ T

0

(f · x)′(t)dt

=
∫ T

0

f0(x(t), x′(t))dt

=
∫ T

0

f0(x(t), V (x(t)))dt

≤
∫

ΩT

f0(x(t), V (x(t)))dt,

(4.2)

where

ΩT = {t ∈ [0, T ] : ‖x(t)‖ ≤ r}. (4.3)

Since V is regular, there exists δ > 0 such that for each x ∈ X satisfying

‖x‖ ≤ r + 1 and f(x) ≥ inf(f) + ε/2, (4.4)

and each l ∈ ∂f(x), we have

l(V x) ≤ −δ. (4.5)

It follows from (4.2), (4.3), (4.1), the definition of δ (see (4.4), (4.5)) and (3.10)
that for each T > 0,

f(x(T ))− f(x(0)) ≤
∫

ΩT

f0(x(t), V (x(t)))dt ≤ −δµ(ΩT ) → −∞

as T →∞, which is a contradiction completing the poof.
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5. Proof of Theorem 3.3

We assume that ε < 1/2 and choose

K1 > sup{f(x) : x ∈ X and ‖x‖ ≤ K0 + 1}. (5.1)

The set

{x ∈ X : f(x) ≤ K1 + | inf(f)|+ 4} (5.2)

is bounded. Therefore there exists K2 > K0 + K1 such that

if f(x) ≤ K1 + | inf(f)|+ 4, then ‖x‖ ≤ K2. (5.3)

There exists a number K3 > K2 + 1 such that

sup{f(x) : x ∈ X and ‖x‖ ≤ K2+1}+2 < inf{f(x) : x ∈ X and ‖x‖ ≥ K3}. (5.4)

There exists a number L0 > 0 such that

|f(x1)− f(x2)| ≤ L0‖x1 − x2‖ (5.5)

for each x1, x2 ∈ X satisfying

‖x1‖, ‖x2‖ ≤ K3 + 1. (5.6)

Fix an integer

n > K3 + 8/ε. (5.7)

There exists a positive number δ(n) < 1 such that

(P1) for each x ∈ X satisfying ‖x‖ ≤ n and f(x) ≥ inf(f) + 1/n, and each
l ∈ ∂f(x), we have l(V x) ≤ −δ(n).

Choose a natural number N0 > 8 such that

8−1δ(n)N0 > | inf(f)|+ sup{|f(z)| : z ∈ X and ‖z‖ ≤ K2}+ 4 (5.8)

and a positive number δ which satisfies

8δ(N0 + 1)(L0 + 1) < ε and (1 + L0)δ < δ(n)/2. (5.9)

Let T ≥ N0 and let x : [0, T ] → X be a differentiable function such that

‖x(0)‖ ≤ K2 (5.10)

and

‖x′(t)− V (x(t))‖ ≤ δ for a.e. t ∈ [0, T ]. (5.11)

We will show that

‖x(t)‖ ≤ K3, t ∈ [0,min{2N0, T}]. (5.12)

Assume the contrary. Then there exists t0 ∈ (0,min{2N0, T}] such that

‖x(t)‖ ≤ K3, t ∈ [0, t0) and ‖x(t0)‖ = K3. (5.13)

It follows from Proposition 3.1, the convexity of directional derivatives, the inequal-
ity f0(x(t), V x(t)) ≤ 0 which holds for all t ∈ [0, T ], (5.13), the definition of L0 (see
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(5.5), (5.6)), and (5.11) that

f(x(t0))− f(x(0)) =
∫ t0

0

(f · x)′(t)dt

=
∫ t0

0

f0(x(t), x′(t))dt

≤
∫ t0

0

f0(x(t), V (x(t))dt +
∫ t0

0

f0(x(t), x′(t)− V (x(t)))dt

≤
∫ t0

0

f0(x(t), x′(t)− V (x(t)))dt

≤
∫ t0

0

L0‖x′(t)− V (x(t))‖ ≤ t0L0δ.

Thus by (5.9),

f(x(t0)) ≤ f(x(0)) + 2N0L0δ < f(x(0)) + 1.

Since ‖x(0)‖ ≤ K2 (see (5.10)) and ‖x(t0)‖ = K3, the inequality just obtained
contradicts (5.4). The contradiction we have reached proves (5.12).

We will now show that there exists

t0 ∈ [1, N0] (5.14)

such that

f(x(t0)) ≤ inf(f) + ε/8. (5.15)

Assume the contrary. Then

f(x(t)) > inf(f) + ε/8 and ‖x(t)‖ ≤ K3, t ∈ [1, N0]. (5.16)

It follows from (5.16), Property (P1) and (5.7) that

f0(x(t), V (x(t))) ≤ −δ(n), t ∈ [1, N0]. (5.17)

By (5.17), (5.16), (5.11), (5.9), the convexity of the directional derivatives of f , and
the definition of L0 (see (5.5), (5.6)), we have, for a.e. t ∈ [1, N0],

f0(x(t), x′(t)) ≤ f0(x(t), V (x(t))) + f0(x(t), x′(t)− V (x(t)))

≤ −δ(n) + L0‖x′(t)− V (x(t))‖
≤ −δ(n) + L0δ ≤ −δ(n)/2.

(5.18)

It follows from the convexity of the directional derivatives of f , the inclusion V ∈ A,
(5.11), (5.12) and the definition of L0 (see (5.5), (5.6)), that for a.e. t ∈ [0, 1],

f0(x(t), x′(t)) ≤ f0(x(t), V (x(t))) + f0(x(t), x′(t)− V (x(t)))

≤ f0(x(t), x′(t)− V (x(t)))

≤ L0‖x′(t)− V (x(t))‖ ≤ L0δ.

(5.19)
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The inequalities (5.10), (5.18) and (5.19) imply that

inf(f)− sup
{
f(z) : z ∈ X, ‖z‖ ≤ K2

}
≤ f(x(N0))− f(x(0))

=
∫ N0

0

f0(x(t), x′(t))dt

=
∫ 1

0

f0(x(t), x′(t))dt +
∫ N0

1

f0(x(t), x′(t))dt

≤ −2−1δ(n)N0/2 + 1.

This contradicts (5.8). The contradiction we have obtained yields the existence of
a point t0 which satisfies both (5.14) and (5.15). Clearly, ‖x(t0)| ≤ K2. Having
established (5.12) and the existence of such a point t0 for an arbitrary mapping x
satisfying both (5.10) and (5.11), we now consider the mapping x0(t) = x(t + t0),
t ∈ [0, T − t0]. Evidently, (5.10) and (5.11) hold true with x replaced by x0 and T
replaced by T − t0. Hence, if T − t0 ≥ N0, then we have

‖x(t)‖ = ‖x0(t− t0)‖ ≤ K3, t ∈ [t0, t0 + min{2N0, T}],

and there exists t1 ∈ [t0 + 1, t0 + N0] for which

f(x(t1)) ≤ inf(f) + ε/8.

Repeating this procedure, we obtain by induction a finite sequence of points {ti}q
i=0

such that

t0 ∈ [1, N0], ti+1 − ti ∈ [1, N0], i = 0, . . . , q − 1, T − tq < N0,

f(x(ti)) ≤ inf(f) + ε/8, i = 0, . . . , q,

‖x(t)‖ ≤ K3, t ∈ [t0, T ].

Let i ∈ {0, . . . , q}, t ≤ T , and 0 < t − ti ≤ N0. Then by Proposition 3.1, the
convexity of the directional derivative of f , the inclusion V ∈ A, the definition of
L0 (see (5.5), (5.6)), (5.9) and (5.11), we have

f(x(t))− f(x(ti)) =
∫ t

ti

f0(x(t), x′(t))dt

≤
∫ t

ti

f0(x(t), V (x(t)))dt +
∫ t

ti

f0(x(t), x′(t)− V (x(t)))dt

≤
∫ t

ti

f0(x(t), x′(t)− V (x(t)))dt

≤
∫ t

ti

L0‖x′(t)− V (x(t))‖dt

≤ L0δ(t− ti) ≤ 2N0L0δ < ε/4

and hence

f(x(t)) ≤ f(x(ti)) + ε/4 ≤ inf(f) + ε/2.

This completes the proof of Theorem 3.3. ♦
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[7] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms,
Springer, Berlin, 1993.

[8] A. D. Ioffe and A.J. Zaslavski, Variational principles and well-posedness in optimization and
calculus of variations, SIAM J. Control Optim. Vol. 38 (2000), 566-581.

[9] J. W. Neuberger Sobolev Gradients and Differential Equations, Lecture Notes in Math. No.

1670, Springer, Berlin, 1997.
[10] S. Reich and A.J. Zaslavski, Generic convergence of descent methods in Banach spaces, Math.

Oper. Research Vol. 25(2000), 231-242.

[11] S. Reich and A.J. Zaslavski, The set of divergent descent methods in a Banach space is

σ-porous, SIAM J. Optim. Vol. 11 (2001), 1003-1018.
[12] S. Reich and A.J. Zaslavski, Porosity of the set of divergent descent methods, Nonlinear

Analysis Vol. 47 (2002), 3247-3258.

[13] G. Vidossich, Most of the successive approximations do converge, J. Math. Anal. Appl. Vol.
45 (1974), 127-131.
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