\documentclass[twoside]{article} \usepackage{amsfonts,amsmath} % font used for R in Real numbers \pagestyle{myheadings} \markboth{\hfil Remarks on semilinear problems \hfil EJDE--2003/18} {EJDE--2003/18\hfil Jose Mar\'{\i}a Almira \& Naira Del Toro \hfil} \begin{document} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent {\sc Electronic Journal of Differential Equations}, Vol. {\bf 2003}(2003), No. 18, pp. 1--11. \newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \vspace{\bigskipamount} \\ % Remarks on semilinear problems with nonlinearities depending on the derivative % \thanks{ {\em Mathematics Subject Classifications:} 34B15, 34L30. \hfil\break\indent {\em Key words:} Nonlinear boundary-value problem, Neumann and Periodic problems. \hfil\break\indent \copyright 2003 Southwest Texas State University. \hfil\break\indent Submitted December 5, 2002. Published February 20, 2003. \hfil\break\indent Partially supported by grant FQM-0178 from the Junta de Andaluc\'{\i}a, \hfil\break\indent Grupo de Investigaci\'{o}n ``Aproximaci\'{o}n y M\'{e}todos Num\'{e}ricos'' .} } \date{} % \author{Jose Mar\'{\i}a Almira \& Naira Del Toro} \maketitle \begin{abstract} In this paper, we continue some work by Ca\~{n}ada and Dr\'{a}bek \cite{C-D} and Mawhin \cite{M} on the range of the Neumann and Periodic boundary value problems: \begin{gather*} \mathbf{u}''(t)+\mathbf{g}(t,\mathbf{u}'(t))= \overline{\mathbf{f}}+\widetilde{\mathbf{f}}(t), \quad t\in (a,b) \\ \mathbf{u}'(a)=\mathbf{u}'(b)=0 \\ \text{or}\quad \mathbf{u}(a)=\mathbf{u}(b),\quad \mathbf{u}'(a)=\mathbf{u}'(b) \end{gather*} where $\mathbf{g}\in C([a,b]\times \mathbb{R}^{n},\mathbb{R}^{n})$, $\overline{\mathbf{f}}\in \mathbb{R}^{n}$, and $\widetilde{\mathbf{f}}$ has mean value zero. For the Neumann problem with $n>1$, we prove that for a fixed $\widetilde{\mathbf{f}}$ the range can contain an infinity continuum. For the one dimensional case, we study the asymptotic behavior of the range in both problems. \end{abstract} \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \section{Introduction} Let us consider the resonance problem \begin{equation} \begin{gathered} u''(t)+g(u'(t))=f(t), \quad t\in (a,b) \\ u'(a)=u'(b)=0 \end{gathered} \label{problema} \end{equation} where $f\in C[a,b]$ and $g:\mathbb{R}\to \mathbb{R}$ is continuous. The linearized part of (\ref{problema}) is the resonance system \begin{equation} \begin{gathered} u''(t)=f(t), \quad t\in (a,b) \\ u'(a)=u'(b)=0 \end{gathered} \label{linear} \end{equation} and the corresponding eigenfunction is $u_{1}(t)=1$. The change of variable $v=u'$ transforms (\ref{linear}) into the problem \begin{equation} \begin{gathered} v'(t)=f(t), \quad t\in (a,b) \\ v(a)=v(b)=0 \end{gathered} \label{p2} \end{equation} which obviously is solvable if and only if $\int_{a}^{b}f(t)dt=0$. Moreover, its solution is given by $v(t)=\int_{a}^{t}f(s)ds$. Hence (\ref{linear}) is solvable if and only if $f=\widetilde{f}\in \widetilde{C}[a,b]:=\{\widetilde{% f}\in C[a,b]:\int_{a}^{b}\widetilde{f}(t)dt=0\}$ and its set of solutions is \begin{equation*} u_{c}(t)=c+\int_{a}^{t}v(s)ds \end{equation*} where $c\in \mathbb{R}$ and $v(t)=\int_{a}^{t}f(s)ds$. Let us now consider problem (\ref{problema}). When we decompose \begin{equation} f(t)=s+\widetilde{f}(t) \label{descom} \end{equation} where $s\in \mathbb{R}$ and $\widetilde{f}\in \widetilde{C}[a,b]$, it is quite natural to ask for which values $s\in \mathbb{R}$ the problem (\ref {problema}) is solvable. This question has been studied by several authors. In particular, Ca\~{n}ada and Dr\'{a}bek (see \cite{C-D}) proved that if $g\in C^{1}(\mathbb{R})$ and is bounded, then for each $\widetilde{f}$ there is a unique value $s=s(\widetilde{f})\in \mathbb{R}$ such that (\ref {problema}) is solvable. Moreover, in such a case they also proved that the map $s(\cdot ):\widetilde{C}[a,b]\to \mathbb{R}$ , $\widetilde{f}% \to s(\widetilde{f})$ is continuously differentiable and satisfies $% |s(\widetilde{f})|\leq \|g\|$ for all $\widetilde{f}\in \widetilde{C}[a,b]$, where $\|g\|= \sup_{t \in \mathbb{R}}|g(t)|$. In the same paper the authors noted that their proofs are also applicable to the more general problem \begin{equation} \begin{gathered} u''(t)+g(t,u'(t))=s+\widetilde{f}(t), \quad t\in (a,b) \\ u'(a)=u'(b)=0 \end{gathered} \label{canadanuevo} \end{equation} (with $g\in C^{1}([a,b]\times \mathbb{R},\mathbb{R})$ and bounded) and also to the periodic problem \begin{equation} \begin{gathered} u''(t)+g(t,u'(t))=s+\widetilde{f}(t), \quad t\in (a,b)\\ u(a)=u(b),\quad u'(a)=u'(b); \end{gathered} \label{canadanuevo2} \end{equation} and proposed as an open question to study these kind of problems for systems of equations and for higher order equations. This was made by Mawhin in \cite {M}. In particular, he studied the problems \begin{equation} \begin{gathered} \mathbf{u}''(t)+\mathbf{g}(t,\mathbf{u}'(t))= \overline{\mathbf{f}}+\widetilde{\mathbf{f}}(t), \quad t\in (a,b) \\ \mathbf{u}'(a)=\mathbf{u}'(b)=\mathbf{0} \end{gathered} \label{problemaw1} \end{equation} and \begin{equation} \begin{gathered} \mathbf{u}''(t)+\mathbf{g}(t,\mathbf{u}'(t))= \overline{\mathbf{f}}+\widetilde{\mathbf{f}}(t), \quad t\in (a,b) \\ \mathbf{u}(a)=\mathbf{u}(b),\quad \mathbf{u}'(a)=\mathbf{u}'(b), \end{gathered} \label{problemaw2} \end{equation} where $\mathbf{g}:[a,b]\times \mathbb{R}^{n}\to \mathbb{R}^{n}$ is a Carath\'{e}dory function, $\mathbf{u:}[a,b]\to \mathbb{R}^{n}$, $\overline{\mathbf{f}}\in \mathbb{R}^{n}$ and \begin{equation*} \widetilde{\mathbf{f}}\in \widetilde{L^{1}}([a,b],\mathbb{R}^{n}):=\{% \widetilde{\mathbf{f}}\in L^{1}([a,b],\mathbb{R}^{n}):\int_{a}^{b}\widetilde{% \mathbf{f}}(t)dt=0\}; \end{equation*} and proved that if \begin{equation} \lim_{\|\mathbf{v\|}_{2}\to \infty }\big\| \mathbf{g}(t,\mathbf{v})/ \|\mathbf{v}\|_{2} \big\| _{2}=0 \quad\text{uniformly a.e. in } t\in [a,b], \label{condicionmawhin} \end{equation} then for each $\widetilde{\mathbf{f}}\in \widetilde{L^{1}}([a,b],\mathbb{R}^{n})$ the sets \begin{gather*} \mathcal{J}_{\widetilde{\mathbf{f}}}^{(\mathcal{N})} =\{\overline{\mathbf{f% }}\in \mathbb{R}^{n}:\text{the problem }(\ref{problemaw1})\text{ is solvable}% \} \\ \mathcal{J}_{\widetilde{\mathbf{f}}}^{(\mathcal{P})} =\{\overline{\mathbf{f% }}\in \mathbb{R}^{n}:\text{the problem }(\ref{problemaw2})\text{ is solvable}% \} \end{gather*} are both nonempty, where $\| \cdot\|_{2}$ denotes the Euclidean norm of $\mathbb{R}^n$. Moreover, he also proved that for $n=1$ and $\widetilde{f}% \in \widetilde{L^{1}}(a,b):=\widetilde{L^1}([a,b],\mathbb{R})$, $\#\mathcal{J}_{\widetilde{f}}^{(\mathcal{N})} =\#\mathcal{J}_{\widetilde{f}}^{(\mathcal{P})}=1$ and stated the uniqueness problem for $n>1$ as an open question. In this note we solve this problem in the negative sense for the Neumann case (\ref{problemaw1}). For $n=1$ and $g\in C([a,b]\times \mathbb{R},\mathbb{R})$ satisfying (\ref {condicionmawhin}), we denote by $s_{\mathcal{N}}(\widetilde{f})$ the unique element of $\mathcal{J}_{\widetilde{f}}^{(\mathcal{N})}$ and by $s_{\mathcal{% P}}(\widetilde{f})$ the unique element of $\mathcal{J}_{\widetilde{f}}^{(% \mathcal{P})}$. We study the asymptotic behavior of the functionals $s_{\mathcal{N}}(\widetilde{f})$ and $s_{% \mathcal{P}}(\widetilde{f})$ for $\|\widetilde{f}\|\to \infty $ when the uniqueness results are applicable. \section{Uniqueness Problem} The first contribution of this note to the subject is that we solve for the Neumann problem (\ref{problemaw1}) the uniqueness question in the negative sense for all $n>1$. With this objective in mind, we take $h:\mathbb{% R\to R}$ a $C^{\infty }$ function such that it is bounded and satisfies $h(x)=x$ for all $x\in [ -2,2]$ and we set $\widetilde{% \mathbf{f}}=\mathbf{0}$ and \begin{equation*} \mathbf{g(}t,x_{1},x_{2},x_{3},\dots ,x_{n})=-(-h(x_{2}),h(x_{1}),0,\dots ,0). \end{equation*} Then $\mathbf{g}:[0,2\pi ]\times \mathbb{R}^{n}\to \mathbb{R}^{n}$ belongs to $C^{\infty }([0,2\pi ]\times \mathbb{R}^{n},\mathbb{R}^{n})$ and it is bounded. Let us now consider the problem \begin{equation} \begin{gathered} \mathbf{u}''(t)+\mathbf{g}(t,\mathbf{u}'(t))=% \overline{\mathbf{f}}, \quad t\in (0,2\pi ) \\ \mathbf{u}'(0)=\mathbf{u}'(2\pi )=\mathbf{0} \end{gathered} \label{contraejemplo} \end{equation} and let $\alpha \in [ -1,1]$ be fixed. We set $\mathbf{u}_{\alpha}(t)=(\alpha \sin (t-\frac{\pi }{2}), \alpha t-\alpha \cos (t-\frac{\pi }{2}),0,\dots ,0)$ with $\alpha \in [ -1,1]$. Then $\mathbf{u}_{\alpha }\in C^{2}([0,2\pi ],\mathbb{R}^{n})$ and $\mathbf{u}_{\alpha }'(t)=(\alpha \cos (t-\frac{\pi }{2}),\alpha +\alpha \sin (t-\frac{\pi }{2}),0,\dots ,0)$, so that $\mathbf{u}_{\alpha }'(0)=\mathbf{u}_{\alpha }'(2\pi )=\mathbf{0}$ and \begin{eqnarray*} \mathbf{u}_{\alpha }''(t) &=&(-\alpha \sin (t-\frac{\pi }{2}% ),\alpha \cos (t-\frac{\pi }{2}),0,\dots ,0) \\ &=&(-(\alpha +\alpha \sin (t-\frac{\pi }{2})),\alpha \cos (t-\frac{\pi }{2}% ),0,\dots ,0)+(\alpha ,0,0,\dots ,0) \\ &=&-\mathbf{g(}t\mathbf{,u}_{\alpha }'(t)\mathbf{)}+(\alpha ,0,0,\dots ,0) \end{eqnarray*} Hence $\mathbf{u}_{\alpha }$ solves (\ref{contraejemplo}) with $\overline{% \mathbf{f}}=(\alpha ,0,\dots ,0)$ and we have proved that there exists a continuum of vectors $\overline{\mathbf{f}}\in \mathbb{R}^{n}$ for which the problem (\ref{contraejemplo}) is solvable. Moreover, we have got such a result not only for $\mathbf{g}(t,\mathbf{x})$ continuous but also $% C^{\infty }$ and bounded, so that $\mathbf{g}(t,\mathbf{x})$ satisfies the hypothesis of the existence and uniqueness results in the papers by Mawhin (see \cite[Theorems 1 and 3]{M}) and Ca\~{n}ada and Dr\'{a}bek (see \cite[Theorem 3.3]{C-D}). This proves that the mentioned uniqueness result for $n=1$ is impossible to generalize to higher dimensions. Of course, the same problem is still open for the periodic case. \section{Asymptotic behavior} In this section we set $n=1$ and we consider the problems (\ref{canadanuevo}) and (\ref{canadanuevo2}). Moreover, in order to have existence of solutions, we assume that $g(t,u)$ satisfies that $\lim_{|u\mathbf{|}% \to \infty }\frac{g(t,u)}{|u|}=0$ uniformly in $t\in [ a,b]$. With these hypotheses at hands we know that for each $\widetilde{f}\in \widetilde{C}[a,b]$, $\mathcal{J}_{\widetilde{f}}^{(% \mathcal{N})}=\{s_{\mathcal{N}}(\widetilde{f})\}$ and $\mathcal{J}_{% \widetilde{f}}^{(\mathcal{P})}=\{s_{\mathcal{P}}(\widetilde{f})\}$, where $% s_{\mathcal{N}}:\widetilde{C}[a,b]\to \mathbb{R}$ and $s_{\mathcal{P}% }:\widetilde{C}[a,b]\to \mathbb{R}$ are certain functionals. Furthermore, the change of variables $v=u'$ transforms (\ref {canadanuevo}) and (\ref{canadanuevo2}) into the problems \begin{equation} \begin{gathered} v'(t)+g(t,v(t))=s+\widetilde{f}(t), \quad t\in (a,b) \\ v(a)=v(b)=0 \end{gathered} \label{problematransformado} \end{equation} and \begin{equation} \begin{gathered} v'(t)+g(t,v(t))=s+\widetilde{f}(t), \quad t\in (a,b) \\ v(a)=v(b), \quad \int_{a}^{b}v(t)dt=0. \end{gathered} \label{problematransformado2} \end{equation} Thus, if $w(t)$ solves (\ref{problematransformado}) and $\omega (t)$ solves (\ref{problematransformado2}) and we integrate between $a$ and $b$ both sides of the equation, we get \begin{equation*} s_{\mathcal{N}}(\widetilde{f})=\frac{1}{b-a}\int_{a}^{b}g(t,w(t))dt \quad \text{and}\quad s_{\mathcal{P}}(\widetilde{f})=\frac{1}{b-a}\int_{a}^{b}g(t,\omega(t))dt. \end{equation*} We will use the formulas above in order to prove certain asymptotic results for the functionals $s_{\mathcal{N}}(\cdot )$ and $s_{\mathcal{P}}(\cdot )$. Now we state and prove the main results of this section. \begin{theorem} \label{thm1} Let us set $\Theta =\{\frac{1}{b-a}\int_{a}^{b}g(t,v_{0})dt:v_{0}\in \mathbb{% R}\}$. Then for each $g_{0}\in \overline{\Theta }$, the closure of $\Theta $ in $\mathbb{R}$, there exists a sequence $\{\widetilde{f}_{n}\}_{n=1}^{% \infty }\subset \widetilde{C}[a,b]$ such that $\lim_{n\to \infty }\|% \widetilde{f}_{n}\|=\infty $ and $\lim_{n\to \infty }s_{\mathcal{N}}(% \widetilde{f}_{n})=g_{0}$, where $\|\widetilde{f}_{n}\|= \sup_{t \in [a,b]}|\widetilde{f}_{n}(t)|$. \end{theorem} \paragraph{Proof} Let $g_{0}=\frac{1}{b-a}\int_{a}^{b}g(t,v_{0})dt\in \Theta $ be arbitrarily chosen. We define for each $n>2(b-a)^{-1}$ a function $w_{n}:[a,b]\to \mathbb{R}$ which satisfies the following conditions \begin{itemize} \item[$a)$] $w_{n}\in C^{1}[a,b]$ \item[$b)$] $w_{n}(a)=w_{n}(b)=0$ \item[$c)$] $w_{n}(a+\frac{1}{2n})=w_{n}(b-\frac{1}{2n})=1$ \item[$d)$] $w_{n}(t)=v_{0}$ for all $t\in [ a+\frac{1}{n},b -\frac{1}{n}]$ \item[$e)$] $\|w_{n}\|\leq |v_{0}|+2$ \end{itemize} and we set \begin{equation*} \widetilde{f}_{n}(t):=w_{n}'(t)+g(t,w_{n}(t))-\frac{1}{b-a} \int_{a}^{b}g(t,w_{n}(t))dt. \end{equation*} It is clear that $a)$ implies that $\widetilde{f}_{n}\in C([a,b])$ for all $% n\in \mathbb{N}$ and $b)$ implies that $\int_{a}^{b}\widetilde{f}% _{n}(t)dt=0$. Moreover, using that \ $K=[a,b]\times [ -|v_{0}|-2,|v_{0}|+2]$ is compact and $\{(t,w_{n}(t)):t\in [ a,b]\}\subset K$ for all $n\in \mathbb{N}$, we have that the functions $g(t,w_{n}(t))$ are uniformly bounded in $[a,b]$, so that the conditions $b)$ and $c)$ imply that $\lim_{n\to \infty }\|\widetilde{f}_{n}\|=\infty$. Then $w=w_{n}$ solves the problem \begin{gather*} w'(t)+g(t,w(t))=s_{\mathcal{N}}(\widetilde{f}_{n})+\widetilde{f} _{n}(t), \quad t\in (a,b) \\ w(a)=w(b)=0 \end{gather*} with $s_{\mathcal{N}}(\widetilde{f}_{n})=\frac{1}{b-a}\int_{a}^{b} g(t,w_{n}(t))dt$. We will prove that $\lim_{n\to \infty }s_{% \mathcal{N}}(\widetilde{f}_{n})=g_{0}$. In fact, by $d)$ we have that \begin{align*} s_{\mathcal{N}}(\widetilde{f}_{n}) &=\frac{1}{b-a}\int_{a}^{b}g(t,w_{n}(t))dt \\ &=\frac{1}{b-a}\Big( \int_{a}^{a+\frac{1}{n}}g(t,w_{n}(t))dt+\int_{a+\frac{% 1}{n}}^{b-\frac{1}{n}}g(t,v_{0})dt+\int_{b-\frac{1}{n}}^{b}g(t,w_{n}(t))dt% \Big) . \end{align*} The uniform boundedness of $g(t,w_{n}(t))$ implies that \begin{equation*} \lim_{n\to \infty }\int_{a}^{a+\frac{1}{n}}g(t,w_{n}(t))dt =\lim_{n\to \infty }\int_{b-\frac{1}{n}}^{b}g(t,w_{n}(t))dt=0. \end{equation*} Hence \begin{equation*} \lim_{n\to \infty }s_{\mathcal{N}}(\widetilde{f}_{n})=\lim_{n% \to \infty }\frac{1}{b-a}\int_{a+\frac{1}{n}}^{b-\frac{1}{n}% }g(t,v_{0})dt=g_{0} \end{equation*} which is what we wanted to prove. Let us now take $g_{0}\in \overline{\Theta }\setminus \Theta $. Then there exists a sequence of numbers $\{g_{n}\}_{n=1}^{\infty }\subset \Theta $ and a family of functions $\{\widetilde{f}_{n,k}\}_{n,k=1}^{\infty }\subset \widetilde{C}[a,b]$ such that $\|\widetilde{f}_{n,k}\|\geq k$ and $\big| s_{\mathcal{N}}(\widetilde{f}_{n,k})-g_{n}\big| \leq \frac{1}{k}$ for all $k,n\geq 1$ and $\lim_{n\to \infty }g_{n}=g_{0}$. Thus the sequence $\{\widetilde{f}_{n,n}\}_{n=1}^{\infty }$ satisfies that $\lim_{n\to \infty }\|\widetilde{f}_{n,n}\|=\infty $ and $\lim_{n\to \infty }s_{\mathcal{N}}(\widetilde{f}_{n,n})=g_{0}$. \hfill$\diamondsuit$ \begin{corollary} \label{coro2} Let us assume that $g=g(v)\in C(\mathbb{R})$ and $g_{0}\in \overline{g(% \mathbb{R})}$. Then there exists a sequence $\{\widetilde{f}% _{n}\}_{n=1}^{\infty }\subset \widetilde{C}[a,b]$ such that $\lim_{n\to \infty }\|\widetilde{f}_{n}\|=\infty $ and $\lim_{n\to \infty}s_{\mathcal{N}}(\widetilde{f}_{n})=g_{0}$. \end{corollary} \paragraph{Proof} In \cite[Corollary 2]{M} it is shown the existence of solutions for $n=1$ whenever $g=g(v)$ is continuous. Hence, it is enough to observe that if $g$ does not depend on the variable $t$ then $\Theta =g(\mathbb{R})$. \hfill$\diamondsuit$ \begin{theorem} \label{thm3} Let us assume that $g$ is bounded and set $\Theta =\{\frac{1}{b-a}\int_{a}^{b}g(t,v_{0})dt:v_{0}\in \mathbb{R}\}$. Then for each $g_{0}\in \overline{\Theta }$, there exists a sequence $\{\widetilde{f}% _{n}\}_{n=1}^{\infty }\subset \widetilde{C}[a,b]$ such that $\lim_{n\to \infty }\|\widetilde{f}_{n}\|=\infty $ and $\lim_{n\to \infty}s_{\mathcal{P}}(\widetilde{f}_{n})=g_{0}$. \end{theorem} \paragraph{Proof} We define for each $n>2(b-a)^{-1}$ a function $\varphi _{n}:[a,b]\to \mathbb{R}$ which satisfies the following conditions: \begin{itemize} \item[$a)$] $\varphi _{n}\in C^{1}[a,b]$ \item[$b)$] $\varphi _{n}(a)=\varphi _{n}(b)$ \item[$c)$] $\varphi _{n}(a+\frac{1}{2n})=\varphi _{n}(b-\frac{1}{2n})=1$ \item[$d)$] $\varphi _{n}(t)=v_{0}$ for all $t\in [ a+\frac{1}{n},b-% \frac{1}{n}]$ \item[$e)$] $\int_{a}^{b}\varphi _{n}(t)dt=0$ \end{itemize} Clearly, these functions exist. The rest of the proof is analogous to that of Theorem \ref{thm1}. We just change $w_{n}$ by $\varphi _{n}$ and $s_{\mathcal{N}}(\widetilde{f})$ by $s_{\mathcal{P}}(\widetilde{f})$. The only difference with the other proof is that now the graphs of the functions $\varphi _{n}$ are not uniformly bounded, and this is the reason because we need now to assume that $g$ is bounded. \hfill$\diamondsuit$ \begin{corollary} \label{coro4} Assume that $g=g(v)\in C(\mathbb{R})$ is bounded and $g_{0}\in \overline{g(% \mathbb{R})}$. Then there exists a sequence $\{\widetilde{f}% _{n}\}_{n=1}^{\infty }\subset \widetilde{C}[a,b]$ such that $\lim_{n\to \infty }\|\widetilde{f}_{n}\|=\infty $ and $\lim_{n\to \infty}s_{\mathcal{P}}(\widetilde{f}_{n})=g_{0}$. \end{corollary} \paragraph{Proof} In \cite[Corollary 4]{M} it is shown the existence of solutions for $n=1$ whenever $g=g(v)$ is continuous. Hence, it is enough to observe that if $g$ does not depend on the variable $t$ then $\Theta =g(\mathbb{R})$. \hfill$\diamondsuit$ \medskip We have proved that the limits $\lim_{\|\widetilde{f}\|\to \infty }s_{\mathcal{N}}(\widetilde{f})$ and $\lim_{\|\widetilde{f}\|\to \infty }s_{\mathcal{P}}(\widetilde{f})$ never exist if $\overline{\Theta}$ is not a single point. This makes natural to ask if some weaker asymptotic results are possible. For example, for which functions $\widetilde{f}\in \widetilde{C}[a,b]$ do the radial limits $% \lim_{k\to \infty }s_{\mathcal{N}}(k\widetilde{f})$ or $% \lim_{k\to \infty }s_{\mathcal{P}}(k\widetilde{f})$ exist? Now we prove a comparison result which will be helpful for the computation of these limits. \begin{lemma}[Comparison Principle] \label{lm5} Let $k>0$ and $\widetilde{f}\in \widetilde{C}[a,b]$. If $w_{\mathcal{N}}$ is a solution of the problem \begin{equation} \begin{gathered} w'(t)+g(t,w(t))=s_{\mathcal{N}}(k\widetilde{f})+k\widetilde{f}(t), \quad t\in (a,b) \\ w(a)=w(b)=0, \end{gathered} \label{problema-k} \end{equation} where $w_{\mathcal{P}}$ is a solution of the problem \begin{equation} \begin{gathered} w'(t)+g(t,w(t))=s_{\mathcal{P}}(k\widetilde{f})+k\widetilde{f}(t), \quad t\in (a,b) \\ w(a)=w(b);\quad \int_{a}^{b}w(t)dt=0, \end{gathered} \label{problema-p} \end{equation} $v_{\mathcal{N}}$ is the unique solution of \begin{equation} \begin{gathered} v'(t)=\widetilde{f}(t), \quad t\in (a,b) \\ v(a)=v(b)=0 \end{gathered} , \label{trivial-k} \end{equation} and $v_{\mathcal{P}}$ is the unique solution of \begin{equation} \begin{gathered} v'(t)=\widetilde{f}(t), \quad t\in (a,b) \\ v(a)=v(b); \quad \int_{a}^{b}v(s)ds=0, \end{gathered} \label{trivial-p} \end{equation} then $\|w_{\mathcal{N}}-kv_{\mathcal{N}}\|\leq (b-a)(M-m)$ and \ $\|w_{% \mathcal{P}}-kv_{\mathcal{P}}\|\leq \frac{1}{2}(b-a)(M-m)$, where $% m:=\inf_{(t,s)\in [ a,b]\times \mathbb{R}}g(t,s)$ and $% M:=\sup_{(t,s)\in [ a,b]\times \mathbb{R}}g(t,s)$. \end{lemma} \paragraph{Proof:} Let $w_{\mathcal{N}}$ be a solution of (\ref{problema-k}) and let $v_{\mathcal{N}}(t)=\int_{a}^{t}\widetilde{f}(s)ds$ be the solution of (\ref{trivial-k}). Then \begin{equation*} w_{\mathcal{N}}(t)=k\int_{a}^{t}\widetilde{f}(s)ds+s_{\mathcal{N}}(k% \widetilde{f})(t-a)-\int_{a}^{t}g(s,w_{\mathcal{N}}(s))ds \end{equation*} and \begin{eqnarray*} w_{\mathcal{N}}(t)-kv_{\mathcal{N}}(t) &=&s_{\mathcal{N}}(k\widetilde{f}% )(t-a)-\int_{a}^{t}g(s,w_{\mathcal{N}}(s))ds \\ &=&\frac{t-a}{b-a}\int_{a}^{b}g(s,w_{\mathcal{N}}(s))ds-\int_{a}^{t}g(s,w_{% \mathcal{N}}(s))ds. \end{eqnarray*} Hence \begin{equation*} |w_{\mathcal{N}}(t)-kv_{\mathcal{N}}(t)|\leq (b-a)(M-m),\quad \text{ for all }t\in [ a,b] \end{equation*} since \[ (t-a)m\leq \frac{t-a}{b-a}\int_{a}^{b}g(s,w_{\mathcal{N}}(s))ds\leq (t-a)M \] and \[ (t-a)m\leq \int_{a}^{t}g(s,w_{\mathcal{N}}(s))ds\leq (t-a)M . \] This completes the proof for the Neumann problem. For the periodic case we must take into account that if $w_{\mathcal{P}}$ is a solution of (\ref{problema-p}) and \[ v_{\mathcal{P}}(t)=\int_a^t\widetilde{f}(s)ds-\frac{1}{b-a}\int_a^b \int_a^t\widetilde{f}(s)ds\,dt \] is the solution of (\ref{trivial-p}) then \begin{align*} w_{\mathcal{P}}(t) &=kv_{\mathcal{P}}(t)+s_{\mathcal{P}}(k\widetilde{f})(t-\frac{a+b}{2})+ \frac{1}{b-a}\int_a^b\int_a^tg(s,w_{\mathcal{P}}(s))ds\,dt\\ &\quad -\int_a^tg(s,w_{\mathcal{P}}(s)ds. \end{align*} After this, the proof is quite similar to that of the Neumann problem. \hfill$\diamondsuit$ \smallskip In what follows we denote by $|A|$ the Lebesgue measure of the set $A$. \begin{theorem} \label{thm6} Assume that the limits $g(t,\pm \infty ):=\lim_{s\to \pm \infty }g(t,s)$ exist uniformly in $t\in [a,b]$. Given $\widetilde{f}\in \widetilde{C}[a,b]$ and $F(t)=\int_{a}^{t}\widetilde{f}(s)ds$, we have that\\ $(i)$ If $| \{t\in [ a,b]:F(t)=0\}| =0$ then \begin{equation*} \lim_{k\to \infty }s_{\mathcal{N}}(k\widetilde{f})=\frac{% \int_{F^{-1}(0,+\infty )}g(t,+\infty )dt+\int_{F^{-1}(-\infty ,0)}g(t,-\infty )dt}{b-a} \end{equation*} $(ii)$ If $| \{t\in [ a,b]:F(t)=0\}| >0$ and $g(t,s)=g(t,0)$ for all $(t,s)$ in $[ a,b]\times [-(b-a)(M-m),(b-a)(M-m)]$, then \begin{align*} &\lim_{k\to \infty }s_{\mathcal{N}}(k\widetilde{f})\\ &= \frac{1}{b-a}\Big(\int_{F^{-1}(0,+\infty )}g(t,+\infty )dt +\int_{F^{-1}(-\infty,0)}g(t,-\infty )dt +\int_{F^{-1}(0)}g(t,0)dt\Big). \end{align*} \end{theorem} \paragraph{Proof} It follows from Lemma \ref{lm5} that \begin{equation} kF(t)-(b-a)(M-m)\leq w_{\mathcal{N}}(t)\leq kF(t)+(b-a)(M-m)\text{, for all }t\in [a,b]\text{;} \label{desigualdad} \end{equation} where $F(t)=\int_{a}^{t}\widetilde{f}(s)ds$. We define the sets: \begin{gather*} A^{+} =\{t\in [a,b]:F(t)>0\}=F^{-1}(0,+\infty ) \\ A^{0} =\{t\in [a,b]:F(t)=0\}=F^{-1}(0) \\ A^{-} =\{t\in [a,b]:F(t)<0\}=F^{-1}(-\infty ,0) \end{gather*} Then \begin{align*} s_{\mathcal{N}}(k\widetilde{f}) &=\frac{1}{b-a}\int_{a}^{b}g(t,w_{\mathcal{N}}(t))dt\\ &=\frac{1}{b-a}\int_{A^{0}}g(t,w_{\mathcal{N}}(t))dt +\frac{1}{b-a}\int_{A^{+}}g(t,w_{\mathcal{N}}(t))dt\\ &\quad+\frac{1}{b-a}\int_{A^{-}}g(t,w_{\mathcal{N}}(t))dt \end{align*} Now we will estimate each one of the integrals which appear in the equality above. First, using (\ref{desigualdad}) and the Lebesgue's dominated convergence theorem we have \begin{eqnarray*} \lim_{k\to \infty }\frac{1}{b-a}\int_{A^{+}}g(t,w_{\mathcal{N}}(t))dt &=&\frac{1}{% b-a}\int_{A^{+}}g(t,+\infty )dt \\ \lim_{k\to \infty }\frac{1}{b-a}\int_{A^{-}}g(t,w_{\mathcal{N}}(t))dt &=&\frac{1}{% b-a}\int_{A^{-}}g(t,-\infty )dt. \end{eqnarray*} Second, under the assumption $(i)$ (i.e. $| A^{0}| =0$) we have \begin{equation*} \frac{1}{b-a}\int_{A^{0}}g(t,w_{\mathcal{N}}(t))dt=0. \end{equation*} On the other hand, under the hypotheses of $(ii)$ (i.e. $g(t,s)=g(t,0) $ for all $(t,s)\in [ a,b]\times [ -(b-a)(M-m),(b-a)(M-m)]$), we obtain from (\ref{desigualdad}) that \begin{equation*} -(b-a)(M-m)\leq w_{\mathcal{N}}(t)\leq (b-a)(M-m) \end{equation*} for all $t\in A^{0}$. Hence, \begin{equation*} \frac{1}{b-a}\int_{A^{0}}g(t,w_{\mathcal{N}}(t))dt=\frac{1}{b-a}\int_{A^{0}}g(t,0)dt. \end{equation*} Taking into account the two items above we complete the proof. \hfill$\diamondsuit$ \begin{theorem} \label{thm7} Assume that $g(t,s)$ is bounded and that the limits $g(t,\pm \infty ):=\lim_{s\to \pm \infty }g(t,s)$ exist uniformly in $t\in [a,b]$. Given $\widetilde{f}\in \widetilde{C}[a,b]$ and \begin{equation*} H(t)=\int_{a}^{t}\widetilde{f}(s)ds-\frac{1}{b-a}\int_{a}^{b}\Big( \int_{a}^{t}\widetilde{f}(s)ds\Big) dt, \end{equation*} we have that:\\ $(i)$ If $| \{t\in [ a,b]:H(t)=0\}| =0$ then \[ \lim_{k\to \infty }s_{\mathcal{P}}(k\widetilde{f}) =\frac1{b-a}\big(\int_{H^{-1}(0,+\infty )}g(t,+\infty )dt +\int_{H^{-1}(-\infty,0)}g(t,-\infty )dt\Big) \] $(ii)$ If $| \{t\in [ a,b]:H(t)=0\}| >0$ and $g(t,s)=g(t,0)$ for all $(t,s)$ in $[ a,b]\times[ -\frac{b-a}{2}(M-m),\frac{b-a}{2}(M-m)]$ then \begin{align*} &\lim_{k\to \infty }s_{\mathcal{P}}(k\widetilde{f})\\ &=\frac1{b-a}\Big(\int_{H^{-1}(0,+\infty )}g(t,+\infty )dt +\int_{H^{-1}(-\infty,0)}g(t,-\infty )dt+\int_{H^{-1}(0)}g(t,0)dt.\Big) \end{align*} \end{theorem} The proof of this theorem is analogous to that of Theorem \ref{thm6}, using the periodic case of the comparison principle. The following result is a direct consequence of the theorems above: \begin{corollary} \label{coro8} With the notation of Theorems \ref{thm6} and \ref{thm7}, if $g=g(s)$ does not depend on the variable $t$ and there exists the limits $g(\pm \infty ):=\lim_{s\to \pm \infty }g(s)$ then \begin{equation*} \lim_{k\to \infty }s_{\mathcal{N}}(k\widetilde{f})=\frac{g(+\infty )\left| F^{-1}(0,+\infty )\right| +g(-\infty )\left| F^{-1}(-\infty ,0)\right| }{b-a} \end{equation*} whenever $\left| F^{-1}(0)\right| =0$ and \begin{equation*} \lim_{k\to \infty }s_{\mathcal{P}}(k\widetilde{f})=\frac{g(+\infty )\left| H^{-1}(0,+\infty )\right| +g(-\infty )\left| H^{-1}(-\infty ,0)\right| }{b-a} \end{equation*} whenever $\left| H^{-1}(0)\right| =0$. \end{corollary} The following proposition gives an estimation of the size of the sets of functions with the property that the radial limits exists. \begin{proposition} \label{prop9} The sets \begin{equation*} \mathcal{F}=\{\widetilde{f}\in \widetilde{C}[a,b]: F(t)=\int_{a}^{t} \widetilde{f}(s)ds\text{ satisfies }| F^{-1}(0)| =0\} \end{equation*} and \begin{align*} \mathcal{H}=&\Big\{\widetilde{f}\in \widetilde{C}[a,b]: H(t)=\int_{a}^{t}\widetilde{f}(s)ds-\frac{1}{b-a}\int_{a}^{b} \Big( \int_{a}^{t}\widetilde{f}(s)ds\Big) dt \\ & \text{ satisfies }| H^{-1}(0)| =0\Big\} \end{align*} are dense non-meager subsets of the Banach space $\widetilde{C}[a,b]$. \end{proposition} \paragraph{Proof} Clearly, $\mathcal{F}$ is a dense subset of $\widetilde{C}[% a,b]$, since $\widetilde{\Pi }=\Pi \cap \widetilde{C}[a,b]$ is dense in $% \widetilde{C}[a,b]$, where $\Pi $ denotes the set of algebraic polynomials, and $\widetilde{\Pi }\setminus \{0\} \subset \mathcal{F}$. Now, we are going to prove that $% \mathcal{F}$ has nonempty interior, which implies that $\mathcal{F}$ is non-meager. Of course, there is no loss of generality if we assume that $[a,b]=[-1,1]$. Then $\widetilde{f}(t)=t$ belongs to $\mathcal{F}$. Let $\widetilde{g}\in \widetilde{C}[-1,1]$ be such that $\|\widetilde{f}-\widetilde{g}\|<\frac{1}{4}$ and let $G(t)=\int_{-1}^{t}\widetilde{g}(s)ds$. Then \begin{equation*} \frac{t^{2}}{2}-\frac{t}{4}-\frac{3}{4}\leq G(t)\leq \frac{t^{2}}{2}+\frac{t% }{4}-\frac{1}{4}\quad \text{ for all }t\in [ -1,1]. \end{equation*} Thus, $G^{-1}(0)\subset \{-1\}\cup [ 1/2,1]$. If $\ \#G^{-1}(0)\geq 3$ then there are two points $x,y\in [ 1/2,1]$ such that $G(x)=G(y)=0$ and Rolle's theorem implies that $G'(t)=\widetilde{g}(t)$ vanishes at some point $\xi \in [ 1/2,1]$, which is impossible since $\|% \widetilde{f}-\widetilde{g}\|<\frac{1}{4}$. This implies that $% \#G^{-1}(0)\leq 2$, so that $\widetilde{g}\in \mathcal{F}$ and $\mathcal{F}$ has nonempty interior and proves the claim for the set $\mathcal{F}$. Finally, the proof of the claim for the set $\mathcal{H}$ follows from similar arguments. \hfill$\diamondsuit$ \paragraph{Remark} Note that when $g\in C^{1}(\mathbb{R})$, it follows from \cite[Theorems 3.3 and 3.4]{C-D} that $s_{\mathcal{N}}(\cdot )$ and $s_{\mathcal{P}}(\cdot )$ are continuous functionals so that $\lim_{\|\widetilde{f}\|\to 0}s_{\mathcal{N}}(\widetilde{f})=s_{% \mathcal{N}}(0)$ and $\lim_{\|\widetilde{f}\|\to 0}s_{\mathcal{P}}(% \widetilde{f})=s_{\mathcal{P}}(0)$. Now, $s_{\mathcal{N}}(0)=s_{\mathcal{P}% }(0)=g(0)$ since \cite[Theorem 3]{M} guarantees that $w(t)=0$ is the unique solution of the systems \begin{gather*} w'(t)+g(w(t))=g(0), \quad t\in (a,b) \\ w(a)=w(b)=0 \quad \text{or}\quad w(a)=w(b);\quad \int_{a}^{b}w(t)dt=0 \end{gather*} \paragraph{Acknowledgements} The authors are very grateful to Prof. A. Ca\~{n}ada both for proposing the problems considered in this note and for several useful suggestions. \begin{thebibliography}{0} \frenchspacing \bibitem{C-D} Ca\~{n}ada, A., Dr\'{a}bek, P. \textit{On semilinear problems with nonlinearities depending only on derivatives,} SIAM J. Math. Anal., \textbf{27} (1996) 543-557. \bibitem{D-U1} Ca\~{n}ada, A., Ure\~{n}a, A. J. \textit{Asymptotic behaviour of the solvability set for pendulum-type equations with linear damping and homogeneous Dirichlet conditions,} Electron. J. Differ. Equ. Conf. \textbf{6} (2001) 55-64. \bibitem{D-U2} Ca\~{n}ada, A., Ure\~{n}a, A. J. \textit{Some new qualitative properties on the solvability set of pendulum-type equations}. In \textit{Dynamical Systems and Differential Equations,} Discrete and Continuous Dynamical Systems, Kennesaw State University (2001) 66-73. \bibitem{D} Dancer, E. N. \textit{On the ranges of certain damped nonlinear differential equations,} Annali di Matematica Pura ed Applicata (IV), \textbf{CXIX} (1979) 281-295. \bibitem{K-O} Kannan, R., Ortega, R. \textit{An asymptotic result in forced oscillations of pendulum-type equations,} Appl. Anal., \textbf{22} (1986) 45-53. \bibitem{M} Mawhin, J. \textit{Some remarks on semilinear problems at resonance where the nonlinearity depends only on the derivatives,} Acta Math. Inform. Univ. Ostraviensis, \textbf{2} (1994) 61-69. \end{thebibliography} \noindent\textsc{Jose Mar\'{\i}a Almira} (e-mail: jmalmira@ujaen.es)\\ \textsc{Naira Del Toro} (e-mail: ndeltoro@ujaen.es)\\ Departamento de Matem\'{a}ticas\\ Universidad de Ja\'{e}n. E.U.P. Linares\\ C/ Alfonso X el Sabio, 28.\\ 23700 Linares (Ja\'{e}n) Spain \end{document}