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A new theorem on exponential stability of

periodic evolution families on Banach spaces ∗

Constantin Buşe & Oprea Jitianu

Abstract

We consider a mild solution vf (·, 0) of a well-posed inhomogeneous
Cauchy problem v̇(t) = A(t)v(t) + f(t), v(0) = 0 on a complex Banach
space X, where A(·) is a 1-periodic operator-valued function. We prove
that if vf (·, 0) belongs to AP0(R+, X) for each f ∈ AP0(R+, X) then for
each x ∈ X the solution of the well-posed Cauchy problem u̇(t) = A(t)v(t),
u(0) = x is uniformly exponentially stable. The converse statement is also
true. Details about the space AP0(R+, X) are given in the section 1, be-
low. Our approach is based on the spectral theory of evolution semigroups.

1 Introduction

Let X be a complex Banach space and L(X) the Banach algebra of all linear and
bounded operators acting on X. The norms of vectors in X and of operators in
L(X) will be denoted by ‖ · ‖. Let R+ the set of all non-negative real numbers
and let J be either R or R+. The Banach space of all X-valued, bounded and
uniformly continuous functions on J will be denoted by BUC(J, X), and the
Banach space of all X-valued, almost periodic functions on J will be denoted
by AP (J, X). It is known that AP (J, X) is the smallest closed subspace of
BUC(J, X) containing functions of the form

t 7→ fµ,x(t) := eiµtx : J → X, µ ∈ R, x ∈ X,

see e.g. [14]. The set of all X-valued functions on R+ for which there exist
tf ≥ 0 and Ff ∈ AP (R+, X) such that f(t) = 0 if t ∈ [0, tf ] and f(t) = Ff (t) if
t ≥ tf will be denoted by A0(R+, X). Let AP0(R+, X) the smallest closed sub-
space of BUC(R+, X) which contains A0(R+, X). The subspace of BUC(J, X)
consisting of all X-valued, continuous, 1-periodic functions such that f(0) = 0
will be denoted by P 0

1 (J, X). An X-valued, trigonometric polynomial function
is given by

t 7→ p(t) :=
n∑

k=−n

ckeiµktxk : R → X, ck ∈ C, µk ∈ R, xk ∈ X.
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The set of all functions f on R+ for which there exist tf ≥ 0 and a X-valued,
trigonometric polynomial function pf such that f(t) = 0 if t ∈ [0, tf ] and f(t) =
pf (t) if t ≥ tf will be denoted by TP0(R+, X). It is clear that TP0(R+, X)
is a subset of A0(R+, X) and P 0

1 (R+, X) is the closure in BUC(R+, X) of a
part of TP0(R+, X). Let T = {T (t) : t ≥ 0} ⊂ L(X) be a strongly continuous
semigroup on X and A : D(A) ⊂ X → X its infinitesimal generator. It is well
known that the Cauchy problem

u̇(t) = Au(t) t ≥ 0
u(0) = x, x ∈ X

(1.1)

is well-posed (see [22, 23, 15] and the references therein for the well-posednness
of abstract differential equations) and the mild solution of (1.1) is given by
u(t) = T (t)x, (t ≥ 0). Moreover, for a locally Bochner integrable function
f : R+ → X, the mild solution of the inhomogeneous Cauchy Problem

u̇(t) = Au(t) + f(t), t ≥ 0,

u(0) = y, y ∈ X

is given by

uf (t, y) = T (t)y +
∫ t

0

T (t− ξ)f(ξ)dξ, t ≥ 0.

In particular the Cauchy problem

u̇(t) = Au(t) + eiµtx t ≥ 0,

u(0) = 0 ,

where µ ∈ R and x ∈ X, has the solution

uf (t, 0) = uµ,x(t) =
∫ t

0

T (t− ξ)eiµξxdξ, t ≥ 0.

The Datko-Neerven’s theorem ([8, 18]) states that a strongly continuous semi-
group T = {T (t) : t ≥ 0} ⊂ L(X) is exponentially stable, that is, there exist the
constants N > 0 and ν > 0 such that

‖T (t)‖ ≤ Ne−νt for all t ≥ 0,

if and only if it acts boundedly on one of the spaces Lp(R+, X) or C0(R+, X) by
convolution. With other words if X is one of the spaces Lp(R+, X) or C0(R+, X)
then the strongly continuous semigroup T is exponentially stable if and only if
for each function f ∈ X the solution uf (·, 0) belongs to X . Here C0(R+, X) is
the space consisting of all X-valued, continuous functions vanishing at infinity,
endowed with the sup-norm, and Lp(R+, X), 1 ≤ p < ∞, denotes the usual
Lebesgue-Bochner space of all measurable functions f : R+ → X identifying
functions which are equal almost everywhere and such that

‖f‖p :=
( ∫ ∞

0

‖f(s)‖pds
)1/p

< ∞.
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When X is a complex Hilbert space the Neerven-Vu’s theorem ([19, 20, 24])
states that the strongly continuous semigroup T on X is exponentially stable if
and only if

sup
µ∈R

sup
t≥0

‖uµ,x(t)‖ = M(x) < ∞ for each x ∈ X. (1.2)

In fact Neerven and Vu showed that if (1.2) holds then the resolvent R(λ, A) :=
(λ−A)−1 exists and is uniformly bounded in {λ ∈ C : Re(λ) > 0}. This result
is valid for semigroups defined on Banach spaces. The Gearhart-Prüss-Herbst-
Howland’s theorem (see [10, 11, 12, 13, 21, 25]) states that for semigroups on
Hilbert spaces the uniform boundedness of the resolvent in {Re(λ) > 0} implies
the exponential stability. A short history of these results and many more details
about their relationships with abstract differential equations can be found in
[2, 4, 24].

For a well-posed, non-autonomous Cauchy problem

u̇(t) = A(t)u(t), t ≥ 0,

u(0) = x, x ∈ X
(1.3)

with (possibly unbounded) linear operators A(t), the mild solutions lead to an
evolution family on R+, U = {U(t, s) : t ≥ s ≥ 0} ⊂ L(X), that is:

(e1) U(t, r) = U(t, s)U(s, r) for all t ≥ s ≥ r ≥ 0 and U(t, t) = I for any t ≥ 0,
(I is the identity operator in L(X));

(e2) the maps (t, s) 7→ U(t, s)x : {(t, s) : t ≥ s ≥ 0} → X are continuous for
each x ∈ X.

An evolution family is exponentially bounded if there exist ω ∈ R and Mω > 0
such that

‖U(t, s)‖ ≤ Mωeω(t−s), forall t ≥ s ≥ 0, (1.4)

and exponentially stable if (1.4) holds with some negative ω. If the evolution
family U verifies the condition

(e3) U(t, s) = U(t− s, 0) for all t ≥ s ≥ 0,

then the family T = {U(t, 0) : t ≥ 0} ⊂ L(X) is a strongly continuous semigroup
on X. In this case the estimate (1.4) holds automatically. If the Cauchy problem
(1.3) is 1-periodic, that is, A(t+1) = A(t) for every t ≥ 0, then the corresponding
evolution family U is 1-periodic, that is,

(e4) U(t + 1, s + 1) = U(t, s) for all t ≥ s ≥ 0.

Every 1-periodic evolution family is exponentially bounded, see for example ([5],
Lemma 4.1). For a locally Bochner integrable function f : R+ → X, the mild
solution of the well-posed, inhomogeneous Cauchy problem

v̇(t) = A(t)v(t) + f(t), t ≥ 0,

u(0) = x
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is given by

vf (t, x) := U(t, 0)x +
∫ t

0

U(t, τ)f(τ)dτ, (t ≥ 0).

We also consider evolution families on the line. We shall use the same notations
as in the case of evolution families on R+ except that the variables s and t can
take any value in R. For more details about the strongly continuous semigroups
and evolution families we refer to [9]. The Datko-Neerven’s theorem can be
extended for evolution families in the both cases, on the line and on the half-
line, see the papers ([8, Theorem 6], [17, Theorem 2.2], [7], or the monograph
[6]. It seems that the Neerven-Vu’s theorem cannot be extended for periodic
evolution families, but some weaker results, which will be described as follows,
hold.

We recall the notion of evolution semigroup. For more details we refer to
[6, 7] and references therein. Let U = {U(t, s) : t ≥ s ∈ R} be a 1-periodic
evolution family, t ≥ 0, and G ∈ AP (R, X). The function given by

s 7→ (S(t)G)(s) := U(s, s− t)G(s− t) : R → X, (1.5)

belongs to AP (R, X) and the one-parameter family S = {S(t) : t ≥ 0} is a
strongly continuous semigroup on AP (R, X), see for example [16]. S is called
an evolution semigroup on AP (R, X).

2 Results

Lemma 2.1 Let f ∈ AP0(R+, X), τ ≥ 0 and U = {U(t, s) : t ≥ s ∈ R} ⊂ L(X)
be a 1-periodic evolution family of bounded linear operators on X. Then the
function S(τ)f given by

[S(τ)f ](s) :=

{
U(s, s− τ)f(s− τ), if s ≥ τ

0, if 0 ≤ s < τ
(2.1)

belongs to AP0(R+, X).

Proof First we prove that S(τ)g ∈ A0(R+, X) for any g in A0(R+, X). Let
tg and Fg (as in the definition of the set A0(R+, X)). Let tS(τ)g := τ + tg
and FS(τ)g := U(·, · − τ)Fg(· − τ). If τ ≤ s ≤ τ + tg then g(s − τ) = 0
and [S(τ)g](s) = 0. Moreover, if s ≥ τ + tg then g(s − τ) = Fg(s − τ) and
therefore [S(τ)g](s) = FS(τ)g(s). Thus S(τ)g ∈ A0(R+, X). Let now ε > 0
and g ∈ A0(R+, X) such that ‖f − g‖BUC(R+,X) < ε. Then S(τ)g belongs to
A0(R+, X), and

‖S(τ)f − S(τ)g‖BUC(R+,X) = sup
s≥τ

‖U(s, s− τ)[f(s− τ)− g(s− τ)]‖

≤ Meωτ sup
s≥τ

‖f(s− τ)− g(s− τ)‖ ≤ Meωτε.
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This completes the proof. �

Now, it is easy to see, that the family {S(τ) : τ ≥ 0} is a semigroup of linear
and bounded operators on AP0(R+, X).

Lemma 2.2 Let U be an 1-periodic evolution family of bounded linear operators
on X. The semigroup S = {S(t) : t ≥ 0} associated to U on AP0(R+, X)),
defined in (2.1) is strongly continuous.

Proof For each f ∈ AP0(R+, X) and any τ ≥ 0, we have

‖S(τ)f − f‖AP0(R+,X) ≤ sup
s∈[tf ,τ+tf ]

‖f(s)‖+ sup
s∈[t+tf ,∞)

‖(S(τ)f)(s)− Ff (s)‖

≤ ‖S(τ)Ff − Ff‖AP (R,X) + sup
s∈[tf ,τ+tf ]

‖f(s)‖.

The last term tends to 0 when τ → 0, because the semigroup S (which is defined
in (1.5)) is strongly continuous, the function f is uniformly continuous on R+,
and f(tf ) = 0. �

The semigroup S is called an evolution semigroup associated to U on the
space AP0(R+, X). The main result of the our paper is the following theorem.

Theorem 2.3 Let U = {U(t, s) : t ≥ s ∈ R} be an 1-periodic evolution family
of bounded linear operators acting on X. The following two statements are
equivalent:

(i) U is exponentially stable;

(ii) vf (·, 0) belongs to AP0(R+, X) for each f ∈ AP0(R+, X).

The following Lemma is the key tool in our proof of (i) implies (ii) from
Theorem 2.3.

Lemma 2.4 Let U = {U(t, s) : t ≥ s ∈ R} be a 1-periodic evolution family
of bounded linear operators on X, S = {S(t) : t ≥ 0} the evolution semi-
group associated to U on the space AP0(R+, X), defined in (2.1), (G, D(G)) the
infinitesimal generator of S and u and f ∈ AP0(R+, X). The following two
statements are equivalent:

(j) u ∈ D(G) and Gu = −f ;

(jj) u(t) =
∫ t

0
U(t, s)f(s)ds for all t ≥ 0.

Proof This Lemma can be shown as in [17, Lemma 1.1]. For sake of complet-
ness we present the details.
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(j) implies (jj). For each t ≥ 0, S(t)u− u =
∫ t

0
S(ξ)Gudξ; therefore,

u(t) = (S(t)u)(t)− (
∫ t

0

S(ξ)Gu dξ)(t)

= U(t, 0)u(0)−
∫ t

0

U(t, t− ξ)(Gu)(t− ξ) dξ

=
∫ t

0

U(t, t− ξ)f(t− ξ) dξ =
∫ t

0

U(t, τ)f(τ) dτ.

(jj) implies (j). Let t > 0 be fixed. We prove that

1
t
(−S(t)u + u) =

1
t

∫ t

0

S(r)fdr. (2.2)

If s ≥ t, we have:

1
t
(−S(t)u + u)(s) =

1
t
[−U(s, s− t)u(s− t) + u(s)]

=
1
t
[
∫ s

0

U(s, τ)f(τ)dτ −
∫ s−t

0

U(s, τ)f(τ)dτ ]

=
1
t

∫ t

0

U(s, s− r)f(s− r)dr

=
1
t
(
∫ t

0

S(r)fdr)(s).

If 0 ≤ s < t, we have

1
t
(−S(t)u + u)(s) =

1
t
u(s) =

1
t

∫ s

0

U(s, τ)f(τ)dτ

=
1
t

∫ s

0

U(s, s− r)f(s− r)dr

=
1
t
(
∫ s

0

S(r)fdr)(s)

=
1
t
(
∫ t

0

S(r)fdr)(s).

Passing to the limit as t → 0 in (2.2) we get the conclusion (j). �

Recall that σ(L) denotes the spectrum of the bounded linear operator L
acting on X, and ρ(L) := C \ σ(L) is the resolvent set of L. The spectral radius
of L is r(L) := sup{|λ| : λ ∈ σ(L)} and the spectral bound is s(L) := sup{Re(λ) :
λ ∈ σ(L)}. For the proof of the following result see for example ([1], Proof of
Theorem 4 and Lemma 3).

Theorem 2.5 Let U = {U(t, s) : t ≥ s} be a 1-periodic evolution family on
the Banach space X, V := U(1, 0) the monodromy operator and S the evolution
semigroup associated to U on the space AP (R, X), given in (1.5). The following
four statements are equivalent:
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(i) U is exponentially stable;

(ii) r(V ) < 1;

(iii) supn∈N ‖
∑n

k=0 eiµkV k‖ = Mµ < ∞, for all µ ∈ R;

(iv) for each f ∈ P 0
1 (R+, X) and each µ ∈ R the function

t 7→
∫ t

0
U(t, s)e−iµsf(s)ds is bounded on R+.

Proof of Theorem 2.3 (i) implies (ii). Let S denote the evolution semigroup
associated to U on the space AP0(R+, X), defined in (9) and (G, D(G)) its
infinitesimal generator. U is exponentially stable, that is, (2.1) holds with some
negative ω for every pairs (t, s) with t ≥ s, so ω0(S) is negative and 0 ∈ ρ(G).
Then G is an invertible operator. It follows that for every f ∈ AP0(R+, X) there
is u ∈ D(G) such that Gu = −f . Using Lemma 2.4 it results that u = vf (·, 0),
so vf (·, 0) belongs to AP0(R+, X).
(ii) implies (i). Let µ ∈ R and f ∈ P 0

1 (R+, X). The function t 7→ e−iµtf(t)
belongs to the space AP0(R+, X). Thus the function t 7→

∫ t

0
U(t, s)e−iµsf(s)ds

is bounded on R+ because it belongs to the space AP0(R+, X), too. Using
Theorem 2.5 ((iv) implies (i)), it follows that U is exponentially stable. �

Remark 2.6 Combining the equivalence between (i) and (iv) from Theorem 2.5
with the result from Theorem 2.3 it is easy to see that an evolution family U , as
in Theorem 2.3, is exponentially stable if and only if for each f ∈ AP0(R+, X),
the solution vf (·, 0) is bounded on R+.

3 Applications

An immediate consequence of Theorem 2.3 is the spectral mapping theorem for
the evolution semigroup S on AP0(R+, X). Similar results can be found in ([17],
Theorem 2.2) for evolution semigroups on C00(R+, X) and in [2, Theorem 5] for
evolution semigroups on AAP0(R+, X). Here C00(R+, X) denotes the space of
all X-valued continuous functions on R+ such that f(0) = limt→∞ f(t) = 0 and
AAP0(R+, X) is the space of all X-valued functions h on R+ such that h(0) = 0
and there exist f ∈ C0(R+, X) and g ∈ AP (R+, X) such that h = f + g.

Theorem 3.1 Let U be a 1-periodic evolution family of bounded linear operators
on X. The evolution semigroup S associated to U on AP0(R+, X) satisfies the
spectral mapping theorem, as follows

etσ(G) = σ(S(t)) \ {0}, t ≥ 0.

Moreover, σ(G) = {λ ∈ C : Re(λ) ≤ s(G)}, and

σ(S(t)) = {λ ∈ C : |λ| ≤ r(S(t))}, for all t > 0.
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Another application of Theorem 2.3 is the following inequality of Landau-
Kallman-Rota’s type. For more details about the theorems of this form, see
[3] and [2]. Let Y one of the following spaces: C00(R+, X), AAP0(R+, X), or
AP0(R+, X).

Theorem 3.2 Let U = {U(t, s) : t ≥ s ≥ 0} be a 1-periodic evolution family of
bounded linear operators acting on X and let f ∈ Y. Suppose that the following
conditions are fulfilled:

(i) vf (·, 0) =
∫ ·
0
U(·, s)f(s)ds belongs to Y;

(ii) wf (·) :=
∫ ·
0
(· − s)U(·, s)f(s)ds belongs to Y.

If sup{‖U(t, s)‖ : t ≥ s ≥ 0} = M < ∞ then

‖vf (·, 0)‖2Y ≤ 4M2‖f‖Y · ‖wf (·)‖Y .

For the proof of Theorem 3.2 in the cases Y = C00(R+, X) or Y = AAP0(R+, X)
we refer the reder to ([3, 2]). The last case can be obtained in a similar way.

The hypothesis from the Neerven-Vu’s theorem can be formulated as follows:

There exist a positive constant K such that

sup
t≥0

‖
∫ t

0

T (ξ)e−iµξxdξ‖ ≤ K‖eiµ·x‖BUC(R+,X),

for all x ∈ X.

Then the following result is natural.

Theorem 3.3 Let U = {U(t, s) : t ≥ s ∈ R} be a 1-periodic evolution family
of bounded linear operators acting on X. The following two statements are
equivalent:

1. U is exponentially stable;

2. for each p ∈ TP0(R+, X) the solution vp(·, 0) belongs to AP0(R+, X) and
there exists a positive constant K such that

‖vp(·, 0)‖AP0(R+,X) ≤ K‖p‖AP0(R+,X). (3.1)

Proof The proof of 1 ⇒ 2 is obvious. We will prove that 2 implies 1. Let f ∈
AP0(R+, X) and pn ∈ TP0(R+, X) be such that the sequence (pn) converges to
f in AP0(R+, X). From (3.1) it follows that (vpn

(·, 0)) converges in AP0(R+, X).
On the other hand it is easy to see that (vpn

(·, 0)) converges pointwise to vf (·, 0).
Thus vf (·, o) lies in AP0(R+, X) and the assertion follows from Theorem 2.3.
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e-mail: buse@hilbert.math.uvt.ro
Oprea Jitianu
Department of Applied Mathematics, University of Craiova
Bd. A. I. Cuza 13, 1100-Craiova, România
e-mail: jitianu@ucv.netmasters.ro


