
Electronic Journal of Differential Equations, Vol. 2003(2003), No. 13, pp. 1–4.
ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu
ftp ejde.math.swt.edu (login: ftp)

Travelling waves for a neural network ∗

Fengxin Chen

Abstract

In this note, we give another proof of existence and uniqueness of trav-
elling waves for a neural network equations and prove that all travelling
waves are monotonic.

1 Introduction

The following single-layer neural network over the real line was introduced by
Ermentrout and Mcleod [6]:

u(x, t) =
∫ t

−∞
ds

∫ ∞

−∞
dyh(t− s)k(x− y)S(u(y, s)) (1.1)

where x ∈ R and t ∈ R; u(x, t) is the mean membrane potential of a patch of
tissue at position x and at time t; S(u) is a nonlinear function and S(u(x, t))
is the firing rate; h and k are nonnegative functions defined [0,∞) and R re-
spectively. When h(t) = e−t for t > 0, then equation (1.1) is equivalent to the
following differential equation:

∂u(x, t)/∂t + u(x, t) = k ∗ S(u)(x, t), (1.2)

where k ∗ S(u) denotes the convolution of k with S(u), i.e., k ∗ S(u)(x, t) =∫∞
−∞ k(x− y)S(u(y, t))dy.

The existence and uniqueness of travelling waves of (1.1) of the form u(x, t) =
φ(x − ct) satisfying φ(−∞) = 0 and φ(∞) = 1 are established in [6], where φ
is a smooth function, called the wave profile, and c is a constant, called the
wave speed. A homotopy argument is employed to prove the existence, which
has fostered other studies in similar topics (see [2, 3, 4, 5, 7, 8], for example).
This note serves to supplement the results obtained in [6], by applying results in
[7], where a comparison argument, together with constructions of appropriate
super- and sub- solutions, is used to study travelling waves for (1.2).

First we state the conditions on h, k, and S. We assume that

(A1) h ∈ C1[0,∞) is a positive function on [0,∞) with
∫∞
0

h(t)dt = 1 and∫∞
0

th(t)dt < ∞.
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(A2) k is a nonnegative, continuous function on R with
∫

R k(x)dx = 1, k′ ∈
L1(R) and supp J

⋂
(0,∞) 6= ∅ 6= suppJ

⋂
(−∞, 0).

(A3) S ∈ C1([0, 1]) satisfies that S′(u) > 0, for u ∈ [0, 1], and that f(u) =
−u + S(u) has precisely three zeros at u = 0, a, 1 satisfying f ′(0) < 0 and
f ′(1) < 0, where 0 < a < 1.

Under the above assumptions, we can improve the results in [6]:

Theorem 1.1. Under the above assumptions on h, k and S, we have

(a) There exists a travelling wave solution u = φ(x − ct) to (1.1) satisfying
φ ∈ C1, φ(−∞) = 0 and φ(∞) = 1.

(b) Any travelling wave solution to (1.1) satisfying φ(−∞) = 0 and φ(∞) = 1
is strictly increasing.

(c) Traveling wave solution to (1.1) is unique module spatial translation.

Remark 1.2. (a) The monotonicity of travelling wave solutions to (1.1) is
established in [6] for special kernels h and k and is conjectured for general
case. Our result gives a positive answer.

(b) For the existence and uniqueness in [6], that k is even and h is mono-
tonically decreasing is assumed. While it is natural, we can relax these
restrictions.

2 Proof of Theorem 1.1

First we need the following result:

Lemma 2.1. [7] For any k and S satisfying (A2) and (A3) respectively, there
exists one and only one (modulo spatial translation) travelling wave solution
u(x, t) = φ(x − ct) to (1.2) satisfying φ(−∞) = 0 and φ(∞) = 1. Moreover,
φ′ > 0 for all x ∈ R.

For any c ∈ R, let Jc(·) =
∫∞
0

h(s)k(· + cs)ds. Then Jc satisfies (A2). For
each c ∈ R, by Lemma 2.1, there is a travelling wave solution φc(x − α(c)t) to
the equation (1.2) with k replaced by Jc, where φc is the profile and α(c) is the
wave speed, depending on c. Let ξ = x − ct. Then the pair (φc, α(c)) satisfies
the following equations:

−α(c)φ′c(ξ) + φc(ξ)− Jc ∗ S(φc)(ξ) = 0, (2.1)
φ(−∞) = 0, and φ(∞) = 1. (2.2)

On the other hand, a travelling wave solution u = u(x− ct) to (1.1) satisfies

u(ξ) = Jc ∗ S(u)(ξ). (2.3)
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Therefore, if (u, c) is a travelling wave solution to (1.1), (u, 0) is a travelling
wave solution to (1.2) corresponding to k(x) = Jc(x). Similarly, if (φc, 0) is a
travelling wave solution to (1.2) with k(x) = Jc(x), then (φc, c) is a travelling
wave solution to (1.1). Therefore to prove the existence of a travelling wave, we
only need to prove that there is a c ∈ R such that α(c) = 0. To that end, we
need:

Lemma 2.2. The wave speed α(·) is a continuous function on R.

Proof. Let c0 ∈ R and (φc0 , α(c0)) be a travelling wave solution to (1.2) corre-
sponding to k = Jc0 . Then, φ′c > 0 for all x ∈ R and (φc, α(c)) can be obtained
as a solution to (2.1) by the Implicit Function Theorem, applying in the neigh-
borhood of c0 (see [6], for example). Therefore, φ(c) is indeed continuously
differentiable.

Lemma 2.3. α(c) < 0 for c positively sufficiently large and α(c) > 0 for c
negatively sufficiently large.

Proof. We only prove the lemma when c is positive. The other case can be
proved similarly. We can choose z0 ∈ (0, 1) such that ε0 = S(z0)− z0 > 0. For
this ε0, we can choose two positive constants A = A(ε0) and B = B(ε0) such
that (

∫ A

0
+

∫∞
B

)h(s)ds < ε0/8 and (
∫ −B

−∞ +
∫∞

B
)k(s)ds < ε0/8. Since (φc, α(c))

satisfies (2.1), we have

− α(c)φ′c(x) + φc(x)− S(φc)(x)

=
∫ ∞

0

h(s)
∫ ∞

−∞
k(x + cs− y){S(φc(y))− S(φc(x))}dy ds

≥
∫ B

A

h(s)
∫ x+cs+B

x+cs−B

k(x + cs− y){S(φc(y))− S(φc(x))}dy ds− ε0/2

(2.4)

where we have used the fact that S(u(x)) ≤ 1. If c ≥ A−1B, then y > x for y
in the range of the integration on the right of (2.4). Therefore the integral on
the right side of (2.4) is positive and

−α(c)φ′c(x) + φc(x)− S(φc)(x) > −ε0/2. (2.5)

Since φc(−∞) = 0, and φc(∞) = 1, we choose x0 such that φc(x0) = z0,
Then we deduce from (2.5) that α(c)φ′c(x0) < 0. Therefore, α(c) < 0 since
φ′c(x0) > 0.

Proof of Theorem 1.1 By lemma 2.2 and 2.3, there is constant c such that
α(c) = 0. The pair (φc, c) is the travelling wave solution to (1.1). By lemma
2.1, φ′c > 0 for all x. The uniqueness is established in [6], where uniqueness for
monotonic travelling waves is proved.
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