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ON INTEGRAL INEQUALITIES FOR FUNCTIONS OF SEVERAL
INDEPENDENT VARIABLES

HASSANE KHELLAF

ABSTRACT. This paper presents some non-linear integral inequalities for func-
tions of n independent variables. These results extend the Gronwall type
inequalities obtained for two variables by Dragomir and Kim [2]

1. INTRODUCTION

Integral inequalities play a significant role in the study of differential and integral
equations. One of the most useful inequalities of Gronwall type is given in the
following lemma (see [1, 2]).

Lemma 1.1. Let u(t) and k(t) be continuous, a(t) and b(t) Riemann integrable
function on J = [, f] C R and t € R with b(t) and k(t) nonnegative on J. If
u(t) < a(t) +b(t) [1 k(s)u(s)ds fort € J, then

u(t) < a(t) + b(t)/

(o3

t

a(s)k(s) exp(/: b(T)k(T)dT)ds, ted, (11

If u(t) < a(t) + b(t) jf k(s)u(s)ds fort € J, then

u(t) < a(t) + b(t) /t ’ a()k(s) exp ( /t ) br)k(r)dr)ds, 1 (12)

In the past few years, these inequalities have been generalized to more than
one variable. Many authors have established Gronwall type integral inequalities
in two or more independent variables; see for example [3, 4, 5, 6, 7]. The results
obtained have generated a lot of research interests due to its usefulness in the
theory of differential and integral equations. Dragomir and Kim [2] considered
integral inequalities for functions with two independent variables. The purpose of
this paper is to generalize their results by obtaining new integral inequalities in n
independent variables.

In what follows we denote by R the set of real numbers and Ry = [0, 00). All the
functions appearing in the inequalities are assumed to be real valued of n-variables
which are nonnegative and continuous. All integrals exist on their domains of
definitions.
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Throughout this paper, we shall assume that z = (z1,22,...2,) and 2° =

(29,29,...,20) are in R7. We shall denote
x Ty T2 Tn
/dt:/ / / o dby . dty
0 xf Jaf zf
and D; = 8%1 for i = 1,2,...,n. For z,t € R”, we shall write ¢t < x whenever

tigxi,izl,Q,...,n.

2. RESULTS

Lemma 2.1. Let u(z),a(x) and b(x) be nonnegative continuous functions, defined
for x € RY}.

(1) Assume that a(x) is positive, continuous function, nondecreasing in each of the
variables x € R} . Suppose that

(@) < a(z) + / b(t)u(t)dt (2.1)

holds for all x € R} with x > 29, then

x

u(w) < afwyexp [

b(t)dt), (2.2)

(2) Assume that a(x) is positive, continuous function, non-increasing in each of the
variables x € R”} . Suppose that

230

u(z) < a(zx) +/ b(t)u(t)dt (2.3)

x

holds for all x € R} with x < z0, then

CEO

u(z) < a(z) exp ( / b(t)dt). (2.4)
Proof. The proof of (1) is similar to the proof of (2), so we present the proof of (2)
and refer the reader to [1, p. 112] for more details.

(2) Since a(x) is positive, non-increasing in each of the variables z € R’, with
x < 29, then

w@ gy / "M gy, (2.5)

(@) alh)
Setting
o) = 2. (2.
we have .
v(@) <1+ / )t (2.7)
Let ’

r(z) =1+ /1 b(t)v(t)dt, (2.8)
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Then 7(2Y,z2,...,2,) = 1, and v(x) < r(z), r(z) is positive and nonincreasing in
each of the variables zo,...,z, € R;. Hence

w7y ,,
Dlr(x) = / / / b(.’1317t2,...,tn)U(Z‘LtQ,...,tn)dtn...dtg
T2 xrs3 Tn
w3 oy ,
< / / / b(w1ta, .. )T (212, o tn)dty .. dis (2.9)
T2 xrs3 Tn

ST(iB)/ / / b($17t2,...7tn)dtn...dt2,
) xr3 T

Dividing both sides of (2.9) by r(z) we get

Dir(z) SR ,
< .. .. .. . 2.1
) < / /z / b(@rta, .. tn)dtn .. dts (2.10)

Integrating with respect to t; from 1 to x}, we have

3’,‘0

r(z) < exp (/ b(t)dt), (2.11)
20
Hence
zo
() gexp( / b(t)dt). (2.12)
Substituting (2.12) into (2.6), we have the result (2.4). O

Theorem 2.2. Let u(z), a(z), b(z), c(z), d(x), f(x) be real-valued non-negative
continuous functions defined for v € Rt. Let W(u(x)) be real-valued, positive,
continuous, strictly non-decreasing, subadditive, and submultiplicative function for
u(z) > 0, and let H(u(x)) be real-valued, positive, continuous, and non-decreasing
function defined for x € RY. Assume that a(x), f(x) are nondecreasing in the first
variable 1 for x1 € Ry. If

u(z) < a(z) + b(x) /xl c(8,Zay ..oy Tp)u(s, o, ..., Tp)ds
o (2.13)
@ ( [ awwaar).

fora >0, z,t € R} witha <z and 2° <t < x, then

x

u(e) < pla){alo) + f@)H G (GLAW®) + [

x0

AW (pt)f(B)dt)| |, (214)

Z1 Z1

for a >0, x € R} with o < w1, where
b(t,xa, ..., xy)c(T, X2, . .. ,xn)dT) ds,

p(x):ler(z)/ c(s,xg,...,:z:n)exp(/a
(2.15)

At) = / AW (a(t)p(t))dt. (2.16)

G’(z):/Z:Vv(jrl;(s))7 z>2>0. (2.17)
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Here G~ is the inverse function of G and

G( [ dwwatpana) + [ aowipns)

. . —1
is in the domain of G™* for x € R}.

Proof. Define a function

T

2(z) = a(z) + f(x)H( / 0 d(t)W(u(t))dt), (2.18)
Then (2.13) can be restated as

u(z) < z(z) + b(x) /9«‘1 c(s, T, ..., xp)u(s, o, ..., x,)ds. (2.19)

Clearly z(z) is a nonnegative and continuous in z1 € Ry. zo, 23, ... 2, € Ryfixed
in (2.19) and using (1) of lemma 1.1 to (2.19), we get

u(z) < z(z) + b(z) /acl 2(8,2, ..., T )e(S, @, ..., Tp)

z1
X exp (/ b(r,xa,...,xn)e(T,xa,. .. ,xn)dT) ds,

Moreover, z(x) is nondecreasing in z1, 27 € R4, we obtain

u(z) < 2(z)p(w), (2.20)
where p(z) is defined by (2.15). From (2.18) we have
u(z) < (alz) + f(x)H (v(z))) p(e), (2.21)
where v(z) = [ d(t)W (u(t))dt. From (2.21), we observe that
</d £+ FOH () p(0) di

T

S/ﬂ)WMU(»ﬂ+/ﬁ@W@®ﬂmW&Mﬁmﬁ7 (222

/wd@WNMﬂMﬂM#+/)MﬂW%MﬂﬂﬂﬂVGﬂMO»ﬁ,

0 x0

IN

Since W is subadditive and submultiplicative function. Define r(z) as the right
side of (2.22), then r(zd, z2,...,2,) = [, d(t)W (a(t)p(t))dt, v(z) < r(z), r(z) is

positive nondecreasing in each of the variables zo,...,z, € R} and
Dir(x / / / d(zy ta,. .., tn)
2 p(z1, tz,..., n)f(@ita, . . tn)) W (H(v(z1,t2,. .., tn))) diy ... dis
/ / / (0o, o tn)
><I2/V (p(z1te, ... tn)f(z1te, ... tn)) W(H(r(x1,t2, ... tn))) dby, . .. dts

// / A1 ta, o tn)

x W ( (l‘l,tg, e ,tn)f(ib‘l’tg, ey n)) dtn e dtz
(2.23)
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D
17“ / / d :L‘Ltg,...7tn)
29 Jal (2.24)

Dividing both sides of (2. 23) by W(H (r(x))) we get
x W (p I tQ, “ee t )f(ﬂ?l t27 SN ,tn)) dtn . .dtg,

Note that for

G(z) = Z: W'(i’i:@))’ z2>2">0 (2.25)
it follows that e b -
)= Gy (2.20)

From (2.25) , (2.26) and (2.24), we have

/Iz / / A1 ta, o tn) o

X W (LL'l tz,...,tn)f(.rlﬁtg,...7tn))dtn...dt27

Now setting ¥ = s in (2.27) and then integrating with respect to z{ to x1, we

obtain
xr

G(r(z)) < G(r(al, @2, ... x0)) + [ dO)W (p(t) f(1))dt (2.28)

xo
Noting that r(z0, za,...,2,) = fﬁ: d(t)W (a(t)p(t))dt, we have

oo

mm<:G4[G(£0d@nvmanx@mg-5ljaanmwfa»ﬁ] (2.29)

The required inequality in (2.14) follows from the fact v(z) < r(z), (2.19) and
(2.29) m

Theorem 2.3. Let u(x), a(x), b(x), c(z), d(x), f(z), W(u()), and H(u(x)) be
as defined in theorem 2.2. Assume that a(z), f(x) are non-increasing in the first
variable x1, for x1 € Ry. If

B
u(z) < a(z) + b(z) / c(8,Tay ..y Tp)U(8, Tay ..., Tpy)ds
o1 (2.30)

+ﬂ@H(x%awww@mo,
for 82>0, x € R} with 8> x1 and z < 2°. Then
ula) < 7o) {ata) + £ (67" [G(A®) + [ " aw e ) )

for 8>0, x € R} with 8 > x1, where
B s

p(z) = 1+b(a:)/ c(s,xg,...,xn)exp</ b(T,mg,...,xn)c(T,xg,...,xn)d7'>ds,
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Here G~ is the inverse function of G and

x0

20
G( [ amwapmna) + [ dowen o)
0 T
is in the domain of G™1 for z € R'}.
The proof is similar to the proof of Theorem 2.2 and so it is omitted.

Remark 2.4. We note that in the special case n = 2 (integral inequalities in two
independent variables) x € R% and z¢ = (29,29) = (00,00) in theorem 2.3. our

estimate reduces to Theorem 2.4 obtained by S. S. Dragomir and Y. H. Kim [2].

Theorem 2.5. Let u(x),a(zx),b(x),c(x) and f(x) be real-valued nonnegative con-
tinuous functions defined for v € R} and L : ]Ri“ — R% be a continuous functions
which satisfies the condition

0 < L(x,u) — L(z,v) < M(z,v)® *(u — v), (2.31)

for u > v > 0, where M(x,v) is a real-valued nonnegative continuous function
defined for x € R} ,v € Ry. Assume that ® : Ry — Ry be a continuous and strictly
increasing function with ®(0) = 0,®~1 is the inverse function of ® and

O Huv) < &1 (u)d 1 (v), (2.32)
for u,v € Ry, Assume that a(x), f(x) are nondecreasing in the first variable x1 for

X1 € R+. If

u(z) < a(x)+b(33)/

[

(8, T2, - .+, T3 )u(s, T2y - .. ,xn)ds+f(z)q>(/z L(t,u(t))dt),
" (2.33)

T1

for o> 0, € R} with o <1 and x° < x. Then

u(z) < p(x){a(x) + f(a:)(b{e(x) exp (/ﬂ: M(t, p(t)a() D (p(t) F (1) dt)”
for a >0, z € R} with a < xy and x° < x, where (2.34)

po) =1+ 0(0) [

[0

1

c(s,xa, ..., Ty,)exp (/ b(T,Zay ..., xn)e(T, Ta, . .. ,xn)dT)ds,
) (2.35)

e(x) = /m L(t,p(t)a(t))dt. (2.36)

0

Proof. Define the function

x

2(z) = a(z) + f(x)q)( / L(t,u(t))dt), (2.37)
Then (2.33) can be restated as

u(z) < z(x) + b(x) / (8, T2, X3, ..., Ty )u(S, Ta, T3, ..., Ty)ds. (2.38)

«
Clearly z(x) is nonnegative and continuous in x; € Ry, where z9, 23, ...
R, fixed in (2.38) and using 1 of lemma 1.1 to (2.38), we get

Z1

u(z) < z(x) + b(x) / z2(s, 22, ..., xp)c(s, o, .., Zp)

[e3
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X exp / b(T, T2y ..., xpn)c(T, xg,...,a:n)dr)ds
Moreover, z(z) is nondecreasing in 1,21 € Ry, we obtain
u(z) < z(z)p(x), (2.39)
Where p(z) is defined by (2.35). From (2.37) and (2.39) we have
u(z) < p(x) [a(z) + f(2)P(v(z))], (2.40)

where

v(x) = /"I/’ L(t,u(t))dt,

0

From (2.40), and the hypotheses on L and ®, we observe that

v(z) < /m (L (8, p(t) [a(t) + f(£)2(v(t))]) = L (£, p(t)a(t)) + L (&, p(t)a(t))) dt,

(2.41)
where e(x) is defined by (2.36). Clearly, e(x) is positive, continuous, nondecreasing
in each of the variables x, 2 € R’}. Now, by part (1) of lemma 2.1,

o) < elwexp ([ Mlepa()e pOS@E). (242
Using (2.40) in (2.42), we get the required inequality in (2.34). d

Theorem 2.6. Let u(x), a(x), b(z), c(z), f(z), L, M, ®, and ®~* be as defined
in theorem 2.5. Assume that a(zx), f(z) are non-increasing in the first variable x4

forxi e Ry, If
B

20

u(z) < a(x)—|—b(x)/ c(s, @, ..., )u(s, xa, . .. ,mn)ds+f(x)<1>(/ L(t,u(t))dt),
- : (2.43)
for 82>0, x € R} with 8> z1,  <ax°. Then
ue) <o) {ata) + S0 e exp ([ MepOa@I G0 0)ar)] .
for 82>0, z € R} with 3 > x1, x < z°, where
B s

p(z) = 1—|—b(:c)/ c(s,xg,...,a:n)exp(/ b(T,x27...,In)C(T,xz,...7$n)dT)dS

x1
20
e(x) = / L(t,p(t)a(t))dt. (2.44)
The proof is similar to the proof of Theorem 2.5 and so it is omitted.

Remark 2.7. We note that in the special casen =2 , x € R2 and 2° = (29, 29) =
(00,00) in theorem 2.6. Our estimate reduces to Theorem 2.6 obtained by Dragomir
and Kim [2].
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Remark 2.8. (1) The preceding results remaining valid if we replace
b(z) [Tt e(s, @2, ..., xn)u(s, @2, ..., x,)ds by the general case
bi() f(j Ci(xl,. ey L1, Siy Tty - - - 7$n)u($1,. X1, 84, Tig 1, . . ., x)ds;, for any
i=2,...,n fized , and a; > 0, x = (1,...2,) € R} with o; < 53 < 25, 14,85 €
RJ'_;

(2) The preceding results are also valid if b(x) ffl c(s,xa, ..., xp)u(s, o, ..., x,)ds
is replaced by the general case
bi(x) fafl Ci(T1, ooy Tim1, S, Ty - - -5 ) g(U(T1, oo Bim1, Siy Tik 1, - -+ Tp) )dSy, for
any i = 2,...,n fived , and oy > 0, x = (x1,...2,) € R} with oy < 55 <
xi,8; € Ry. where by(x) and ¢;(x) be real-valued nonnegative continuous function
defined for x € R}, For anyi=2,...,n.

3. FURTHER INEQUALITIES

In this section we require the class of function S as defined in [2]. A function
g: Ry — Ry is said to belong to the class S if it satisfies the following conditions:

(1) g(u) is positive, nondecreasing and continuous for u > 0
(2) (1/v)g(u) < g(u/v), u>0,v=1.

Theorem 3.1. Let u(z), a(x), b(x), c(x), d(z), f(x) be real-valued nonnegative
continuous function defined for x € R} and let g € S. Also let W (u(x)) be real-
valued, positive, continuous, strictly nondecreasing, subadditive, and submultiplica-
tive function for u(xz) > 0 and let H(u(x)) be a real-valued, continuous, positive,
and nondecreasing function defined for x € R™ ;and b(x) nonincreasing in the first
variable x1. Assume that a function m(x) is nondecreasing in the first variable x,
and m(x) > 1, which is defined by

X

m(z) = a(z) + f(x)H(/O d(t)W(u(t))dt), (3.1)
forzx e R?, z>2>0. If
u(z) < m(x) + b(x) /11 c(s, o, . .., xn)g(u(s, xa, ..., x,))ds, (3.2)

fora>0, x € RY with o <y, then

u(e) < Fa){a(o) + fo)t |67 (G0) +

x0

x

d(t)W (F(t) f(t))dt)] } (3.3)

for x € R}, where

F(z)=07"' (Q(l) + /zl b(s, T2, ...,Tn)c(s,Ta, ... ,xn)ds>, (3.4)
B(t) = / oo AW (a(t)F (1)) dt, (3.5)
Q(d):/é;(iz), 5> e>0. (3.6)

Here Q71 is the inverse function of Q, and G,G~' are defined in Theorem 2.2, and
Q1) + fsl b(s, @, ..., 2n)c(s, 20, ..., 2,)ds is in the domain of Q~1, and

6( [ dwwara + [

0 x0

xT

dOW (F()f(B)dt),
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. . . 71
is in the domain of G™* for x € RY}.
Proof. We have m(x) be a positive, continuous, nondecreasing in z; and g € S,

and b(x) non-increasing in the first variable z;. Then can be restated as

u(z)
m(x)

u(s, xo, T3, ..., Ty)
m(s, T, T3, .., Tn)

)ds

(3.7)
The inequality (3.7) may be treated as one-dimensional Bihari-Lasalle inequality
the inequality type was given by Gyori [3] (see [1]), for any fixed xs,x3,..., 2y,
which implies

1
§1—|—/ b(s,za,3,...,Tn)c(S, T2, 23, ..., Zn)g(
(e}

u(z) < F(x)m(x). (3.8)
Here F(x) is defined by (3.4), by (3.1) and (3.8) we get
u(z) < F(z) {a(z) + f(2)H(v(z))}, (3.9)
where v(x) is defined by

Using the last argument in the proof of Theorem 2.2, we obtain desired inequality
n (3.3). O

Theorem 3.2. Let u(x), a(x), c¢(z), d(z), f(x), W(u(z), and H(u(z)) be as defined
in the theorem 3.1 and let g € S and b(x) be nonnegative continuous functions, non-
decreasing in the first variable x1. Assume that a function m(x) is non-increasing
in the first variable 1 and m(x) > 1, which is deﬁned by

m(z) = a(x / AW (u(1))dt) (3.10)

forx € R?, 20 > . If

B
u(z) < m(x) + b(x) / c(8, 29y ..., Tn)g(uls, e, ..., T,))ds, (3.11)

for 8>0, v € R} with 3 > x1, then

u(z) gf(x){a(xwr f(x)H[G—l(G<§(t))+ /x g d(t)W(F(t)f(t))dt)]}, (3.12)

for x € R} . Here

F(x)=07! (Q(l) + /j b(s, 22, ..., 2pn)c(s, T2, . .. ,xn)ds), (3.13)

- / ’ d(t)W (a(t)F(t))dt, (3.14)
0

and Q) is defined in (3.6). Here Q L is the inverse function of Q, and G,G~!
defined in theorem 2 2, and Q(1) + f b(s,xa,...,xn)c(s,Ta,...,x,)ds is in the
domain of 071,

/ d(t VE())dt) + / S aOWE® F)dt

is in the domain of G~ for x € R%.
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Proof. We have m(x) positive, continuous, nonincreasing in z;. Also g € S and
b(x) nondecreasing in the first variable ;. Then (3.11) can be restated as

B
wz) < 1+/ b(s7x2,x3,...,J;n)c(s,xg,xg,...,xn)g(w)ds (3.15)
x

m(x) 1 W(s,:cg,...,xn)

This inequality can be treated as one-dimensional Bihari-Lasalle inequality [3] for
a fixed xo,x3, ..., 2y, which implies

u(x) < F(z)m(z) (3.16)

where F(z) is defined by (3.13). Now , by following last argument as in the proof
of Theorem 2.3 , we obtain desired inequality in (3.12) O

Corollary 3.3. If b(z) =1 for x € R}, then from

B
u(z) < m(x) + / c(s,xa,. .., xn)g(u(s,xa, ..., x,))ds
with B > x1, it follows that

:L’O

u(@) < F@){a@) + @B |G (GBW) + | dow(F@ )]}

x

for x € R}, where

0

Remark 3.4. We note that in the special case n = 2 @ = (z1,22) € R2, and
x° = (00,00) in corollary 3.3. Our estimate reduces to Theorem 3.2 obtained by
Dragomir and Kim [2].

Theorem 3.5. Let u(x), a(x), b(z), c(z), f(z), L, M, ®, and ®~* be as defined
in theorem 2.5. Let g € S and b(x) nonincreasing in the first variable x1. Assume
that a function n(x) is nondecreasing in the first variable x1 and n(x) > 1 which is
defined by

x

n(x):a(m)—i—f(x)q)(/ L(t,u(t))dt) (3.17)

zo
forz e R}, x> 20 >0. If

Z1

u(z) < n(x) + b(x) / c(s,x2, %3, ..., Tn)g(u(s, xe, T3, ..., Ty))ds (3.18)

(e

for o> 0, z € R} with o < x1, then

u(z) < F(x){a(x) + f(z)® [e(m) exp ( / Mt F ()2 f(t)F(t))dt)] }

: (3.19)
for x € R, where F(x) is defined in (8.4), e(x) is defined in (2.36), Q2 is defined
in (3.6), Here Q™' is the inverse function of Q, and
Q)+ [T b(s, m2, ..., (s, T2, . .., xy)ds is in the domain of Q for x € R'L.
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Proof. We follow an argument similar to that of Theorem 3.1. We have n(z) be a
positive, continuous, nondecreasing in z; and g € S, and b(z) nonincreasing in the
first variable ;. Then can (3.18) be restated as

u(x) o w(S, T, ..., Ty)
L b m)e(s Ty s,y )g (5 T2 )
@) = +/a (8,22, @3, ..., %Tn)c(S, T2, X3 x )g(n(s,xg,...,zn)

The inequality (3.20) may be treated as one-dimensional Bihari-Lasalle inequality,
for any fixed s, x3,...,T,, which implies

u(z) < F(x)n(z) (3.21)
where F(z) is defined by (3.4). From (3.17) and (3.21) we get

u(z) < F(z) [a(x) + f(a:)H( /I :L(t,u(t))dtﬂ (3.22)

Following the last argument in the proof of Theorem 2.5, we obtain the desired
inequality in (3.19). O

)ds. (3.20)

Theorem 3.6. Let u(z), a(x), b(z), c(x), f(z), L, M, ®, and ®~! be as defined in
theorem 2.5. Let g € S and b(x) be nondecreasing in the first variable x1. Assume
that a function m(x) is nonincreasing in the first variable v1 and m(x) > 1, which
is defined by

IO

(z) = a(z) + f(x)@( / L(t,u(t))dt) (3.23)
for x € RY, 20 >x>0. If
B
u(z) <m(x) + b(x) / (8,22, ..oy Tpn)g(ul(s, xa, ..., T,))ds (3.24)

for 8>0, x € R} with § > x1, then

ula) < Fla){aa) + @) [el@) exo [ " at(eatF)e oF))] )

for x € R}, where F(x) is defined in (3.13), €(x) is defined in (2.44), Q is defined
in (3.6). Here Q™1 is the inverse function of 2, and
Q1) + ffl b(s,x2,...,2n)c(s,22,...,2y)ds is in the domain of Q for x € R7.

The proof of this theorem follows by an argument similar to that of Theorem
3.5; therefore, we omit it.

Corollary 3.7. if b(x) =1 for x € R}, then from

B
u(z) <n(z) + / c(s,xa, ... xn)g(u(s,za,...,x,))ds,

Z1

for B >0 with B > x1, then it follows that

u(@) < Pa){a(e) + F@)@ [ela) exo [ " st a0 (10)F0)ar)

for x € R | where

B

F(z) =071 (Q(l) + / c(s,xay. .. ,xn)ds),

T
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(EO
o(z) = / L(t, p(t)a(t))dt,
xT

S

B
ﬁ(ac):l—&—/ c(s7x2,...,mn)exp(/ C(T,w27...,$n)d7')d$7

xT1 xr1
for x € RT.Q is defined in (3.6) , where Q' is the inverse function of Q, and
Q1) + ffl c(s, 2, ..., xy)ds is in the domain of Q for x € RY}.

Remark 3.8. We note that in the special case n = 2, x = (x1,22) € ]Ra_, and
2% = (00,00) in corollary 3.7. our estimate reduces to Theorem 3.4 obtained by

Dragomir and Kim [2].

Remark 3.9. (1) All the preceding results remain valid when
b(x) fsl c(8,xay .., Tn)g(u(s, e, ..., T,))ds is replaced by the general function
bi(x) f(j Ci(xl,.dOtSaxi—la Sy Tig1s- s Tn) 9T, oo Tio1, 86, Tig 1,y - -, Tn) )dSi,

with i — 2,...,n fixed, and o; > 0, = (x1,...2,) € R} and with o; < s; < 25,
X, S; € R+,
(2) The above results remain valid when

b(x) ffl c(s,xa,...,xn)g(u(s,xa,...,x,))ds is replaced by the general function

bZ(I) ffj Ci(JCL. ey Li—15S5y Lj41y -+ - 7l‘n)g(u(I17_ ey L1585, Lj1s e e vy .Tn))dSi,
with i = 2,...,n fixed, and o; > 0, x = (x1,...2,) € R} and with o < 57 < a5,
x;, 8; € Ry, where b;(x) and ¢;(z) be real-valued nonnegative continuous function
defined for z € R, for all : = 2,... ,n.

In a future work, we will present some applications for the results obtained in
this work.
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