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SOLVABILITY OF A (P, N-P)-TYPE MULTI-POINT
BOUNDARY-VALUE PROBLEM FOR HIGHER-ORDER

DIFFERENTIAL EQUATIONS

YUJI LIU & WEIGAO GE

Abstract. In this article, we study the differential equation

(−1)n−px(n)(t) = f(t, x(t), x′(t), . . . , x(n−1)(t)), 0 < t < 1,

subject to the multi-point boundary conditions

x(i)(0) = 0 for i = 0, 1, . . . , p− 1,

x(i)(1) = 0 for i = p + 1, . . . , n− 1,

m∑
i=1

αix
(p)(ξi) = 0,

where 1 ≤ p ≤ n− 1. We establish sufficient conditions for the existence of at

least one solution at resonance and another at non-resonance. The emphasis
in this paper is that f depends on all higher-order derivatives. Examples are

given to illustrate the main results of this article.

1. Introduction

In recent years, there have been many studies concerning the solvability of multi-
point boundary-value problems for second order differential equations at resonance
case; see for example [14, 15, 17, 20, 21, 22, 26] and the references therein. However,
there has no publication concerning the solvability of multi-point boundary-value
problems for higher order differential equations at resonance.

In this paper, we consider the differential equation

(−1)n−px(n)(t) = f(t, x(t), x′(t), . . . , x(n−1)(t)), 0 < t < 1, (1.1)
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subject to the boundary conditions

x(i)(0) = 0 for i = 0, 1, . . . , p− 1,

x(i)(1) = 0 for i = p + 1, . . . , n− 1,
m∑

i=1

αix
(p)(ξi) = 0,

(1.2)

where f : [0, 1] × Rn → R is continuous, m ≥ 2, n ≥ 2 are integers, 1 ≤ p ≤ n − 1
is a fixed value, αi ∈ R (i = 1, 2, . . . ,m) and 0 ≤ ξ1 < ξ2 < · · · < ξm ≤ 1 are fixed.

When
∑m

i=1 αi 6= 0, the linear operator Lx(t) = (−1)n−px(n)(t), defined in a
suitable Banach space, is invertible. This is called the non-resonance case; other-
wise, it is called the resonance case.

If n = 3, m = 1, p = 1, f(t, x, y) ≡ g(x) and 0 < ξ1 < 1, the boundary-value
problem (1.1)–(1.2) becomes

x′′′(t) = g(x), 0 < t < 1,

x(0) = 0, α1x
′(ξ1) = 0, x′′(1) = 0,

(1.3)

where g is continuous. Anderson [8] studied the existence of multiple positive
solutions of (1.3) when α1 6= 0.

The boundary-value problem

x(n)(t) = f(t, x(t)), 0 < t < 1,

x(i)(0) = 0, for i = 0, 1, . . . , p− 1,

x(i)(1) = 0 for i = p, . . . , n− 1,

(1.4)

is called the (p, n−p) right focal boundary-value problem [1, 3, 4, 5, 7, 13, 18], and
is a special case of (1.1)-(1.2). Many authors studied (1.4) and its special cases;
see for example [1, 13, 18, 29]. We remark that in the papers mentioned above, f
depends only on t and x(t), or on t and even order derivatives x(t), x′′(t), . . . . Since
(1.1)–(1.2) is a generalization of (1.4), we call this (p, n − p)-type boundary-value
problem.

To the best of our knowledge, (1.1)–(1.2) has not been studied till now. Mo-
tivated and inspired by [10, 15, 19, 25], we establish sufficient conditions for the
existence of at least one solution of (1.1)–(1.2) at resonance and another solution
at non-resonance. The emphasis in this paper is that f depends on all higher-order
derivatives. The method used is based on the coincidence degree method developed
by Gaines and Mawhin [16] and on Shaeffer’s theorem [27].

This paper can be placed in the existence theory of boundary-value problems for
ordinary differential equations. The foundations and many important results on this
theory were established by Agarwal, O’Regan and Wong, whose scientific output
is summarized in the monographs [1, 6]. It is observed that this particular branch
of differential equations has been developed and gained prominence since the early
1980s. In recent years, many authors have discussed the boundary-value problems
at non-resonance or resonance for second-order differential equations [1, 16, 21, 26].

This paper is organized as follows. In Section 2, we establish existence results
for solutions of (1.1)–(1.2) at resonance. In section 3, we show the existence of
solutions of (1.1)–(1.2) at non-resonance. In section 4, we give some examples to
illustrate the main results of this paper.
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2. Solvability of (1.1)–(1.2) at resonance

In this section, we establish sufficient conditions for the existence of at least one
solution of (1.1)–(1.2) in the resonance case, i.e.

∑m
i=1 αi = 0. In this case, the

operator Lx(t) = (−1)n−px(n)(t) is not invertible. We assume that
∑m

i=1 α2
i 6= 0.

For convenience, we first introduce some notation and an abstract existence theorem
proved by Gaines and Mawhin [16].

Let X and Y be Banach spaces, L : dom L ⊂ X → Y be a Fredholm operator of
index zero, P : X → X, Q : Y → Y be projectors such that

Im P = kerL, ker Q = Im L, X = kerL⊕ ker P, Y = Im L⊕ Im Q.

It follows that
L|dom L∩ker P : dom L ∩ ker P → Im L

is invertible, we denote the inverse of that map by Kp.
If Ω is an open bounded subset of X, dom L ∩ Ω 6= Φ, the map N : X → Y

will be called L-compact on Ω if QN(Ω) is bounded and Kp(I −Q)N : Ω → X is
compact.

Theorem 2.1 ([16]). Let L be a Fredholm operator of index zero and let N be
L-compact on Ω. Assume that the following conditions are satisfied:

(i) Lx 6= λNx for every (x, λ) ∈ [(dom L/ ker L) ∩ ∂Ω]× (0, 1)
(ii) Nx /∈ Im L for every x ∈ ker L ∩ ∂Ω;
(iii) deg(ΛQN

∣∣
ker L

,Ω ∩ ker L, 0) 6= 0, where Λ : Y/ Im L → ker L is an isomor-
phism.

Then the equation Lx = Nx has at least one solution in dom L ∩ Ω.

We use the classical Banach spaces Ck[0, 1]. Let X = Cn−1[0, 1] and Y = c0[0, 1].
The space Y is endowed with the norm ‖y‖∞ = maxt∈[0,1] |y(t)|. The space X

is endowed with the norm ‖x‖ = max{‖x‖∞, ‖x′‖∞, . . . , ‖x(n−1)‖∞}. Define the
linear operator L and the nonlinear operator N by

L : X ∩ dom L → Y, Lx(t) = (−1)n−px(n)(t),

N : X → Y, Nx(t) = f(t, x(t), x′(t), . . . , x(n−1)(t)),

where

dom L =
{
x ∈ Cn[0, 1] : x(i)(0) = 0 for i = 0, 1, . . . , p− 1,

x(i)(1) = 0 for i = p + 1, . . . , n− 1,
m∑

i=1

αix
(p)(ξi) = 0

}
.

Lemma 2.2. The following results hold.
(i) kerL = {ctp, t ∈ [0, 1], c ∈ R}
(ii) Im L =

{
y ∈ Y,

∑m
i=1 αi

∫ 1

ξi

(s−ξi)
n−p−1

(n−p−1)! y(s)ds = 0
}

(iii) L is a Fredholm operator of index zero
(iv) There are projectors P : X → X and Q : Y → Y such that ker L = Im P

and ker Q = Im L. Furthermore, let Ω ⊂ X be an open bounded subset with
Ω ∩ dom L 6= Φ, then N is L-compact on Ω

(v) x(t) is a solution of (1.1)–(1.2) if and only if x is a solution of the operator
equation Lx = Nx in dom L.
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Proof. (i) Let x ∈ ker L, then x(n)(t) = 0 and x(i)(0) = 0 for i = 0, 1, . . . , p − 1
and x(i)(1) = 0 for i = p + 1, . . . , n − 1 and

∑m
i=1 αx(p)(ξi) = 0. It is easy to get

x(t) = ctp, thus x ∈ {ctp : t ∈ [0, 1], c ∈ R }. On the other hand, if x(t) = ctp, then
we find that x ∈ ker L. This completes the proof of (i).
(ii) For y ∈ Im L, then there is x ∈ dom L such that (−1)n−px(n)(t) = y(t) and
x(i)(0) = 0 for i = 0, 1, . . . , p − 1 and x(i)(1) = 0 for i = p + 1, . . . , n − 1 and∑m

i=1 αx(p)(ξi) = 0. Thus

x(p)(t) =
∫ 1

t

(s− t)n−p−1

(n− p− 1)!
y(s)ds + A.

Then

x(p)(ξi) =
∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
y(s)ds + A for i = 1, . . . ,m.

Hence
m∑

i=1

αi

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
y(s)ds = 0. (2.1)

On the other hand, if (2.1) holds, we let

x(t) =
∫ t

0

(t− s)p−1

(p− 1)!

∫ 1

s

(u− s)n−p−1

(n− p− 1)!
y(u)du ds +

Atp

p!
, t ∈ [0, 1].

Then x ∈ dom L ∩X and Lx = y. Thus the proof of (ii) is completed.
(iii) From (i), dim kerL = 1. On the other hand, we claim that there is k ∈
{0, 1, . . . ,m− 1} such that

m∑
i=1

αi

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
skds 6= 0.

In fact, if for all k ∈ {0, 1, . . . ,m− 1}, we have
m∑

i=1

αi

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
skds = 0.

It is easy to see that the determinant of coefficients of above equations is∣∣∣ ∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
skds

∣∣∣
m×m

=

∣∣∣∣∣∣∣∣
∫ 1

ξ1

(s−ξ1)
n−p−1

(n−p−1)! ds . . .
∫ 1

ξ1

(s−ξ1)
n−p−1

(n−p−1)! sm−1ds
...

...∫ 1

ξm

(s−ξm)n−p−1

(n−p−1)! ds . . .
∫ 1

ξm

(s−ξm)n−p−1

(n−p−1)! sm−1ds

∣∣∣∣∣∣∣∣
=

∣∣∣ (1− ξi)n−p

(n− p)!
− k

(1− ξi)n−p+1

(n− p + 1)!
+ k(k − 1)

(1− ξi)n−p+2

(n− p + 2)!
− . . .

+ (−1)kk!
(1− ξi)n−p+k

n− p + k)!

∣∣∣
m×m

=

∣∣∣∣∣∣∣∣
(1−ξ1)

n−p

(n−p)! −k (1−ξ1)
n−p+1

(n−p+1)! . . . (−1)m−1(m− 1)! (1−ξ1)
n−p+m−1

(n−p+m−1)!

...
...

(1−ξm)n−p

(n−p)! −k (1−ξm)n−p+1

(n−p+1)! . . . (−1)m−1(m− 1)! (1−ξm)n−p+m−1

(n−p+m−1)!

∣∣∣∣∣∣∣∣ 6= 0
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since it can be transformed into a Vandermon dominant and 0 ≤ ξ1 < ξ2 < · · · <
ξm ≤ 1. Hence, we get α1 = · · · = αm = 0, which contradicts

∑m
i=1 α2

i 6= 0.
Now, for y ∈ Y , let

y0 = y −
( m∑

i=1

αi

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
y(s)ds tk

)
/
( m∑

i=1

αi

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
skds

)
.

It is easy to check that y0 ∈ Im L. Let R = {ctk : t ∈ [0, 1], c ∈ R}. Then
Y = R + Im L. Again, R ∩ Im L = {0}, so Y = R⊕ Im L. Hence dim Y/ Im L = 1.
On the other hand, Im L is closed. So L is a Fredholm operator of index zero.
(iv) Define the projectors Q : Y → Y and P : X → X by

Qy(t) = tk
m∑

i=1

αi

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
y(s)ds for y ∈ Y,

Px(t) = x(p)(1)tp for x ∈ X.

It is easy to prove that ker L = Im P and Im L = kerQ. Then the inverse Kp :
Im L → dom L ∩ ker P of the map L : dom L ∩ ker P → Im L can be written by

Kpy(t) =
∫ t

0

(t− s)p−1

(p− 1)!

∫ 1

s

(u− s)n−p−1

(n− p− 1)!
y(u)du ds for y ∈ Im L.

In fact, for y ∈ Im L, we have

(LKp)y(t) = L
( ∫ t

0

(t− s)p−1

(p− 1)!

∫ 1

s

(u− s)n−p−1

(n− p− 1)!
y(u)du ds

)
= y(t).

On the other hand, for x ∈ ker P ∩ dom L, it follows that

(KpL)x(t) = Kp((−1)n−px(n)(t))

=
∫ t

0

(t− s)p−1

(p− 1)!

∫ 1

s

(u− s)n−p−1

(n− p− 1)!
(−1)n−px(n)(u)du ds

=
∫ t

0

(t− s)p−1

(p− 1)!
(−x(p)(1) + x(p)(s))ds

=
∫ t

0

(t− s)p−1

(p− 1)!
x(p)(s)ds

= x(t).

Furthermore, one has

QNx(t) = Qf(t, x(t), x′(t), . . . , x(n−1)(t))

=
m∑

i=1

αi

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
f(s, x(s), x′(s), . . . , x(n−1)(s))ds

and

Kp(I −Q)Nx(t)

= Kp

[
f(t, x(t), x′(t), . . . , x(n−1)(t))

−
m∑

i=1

αi

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
f(s, x(s), x′(s), . . . , x(n−1)(s))ds

]
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=
∫ t

0

(t− s)p−1

(p− 1)!

( ∫ 1

s

(u− s)n−p−1

(n− p− 1)!
f(u, x(u), x′(u), . . . , x(n−1)(u))du

)
ds

−
m∑

i=1

αi

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
f(s, x(s), x′(s), . . . , x(n−1)(s))ds

×
∫ t

0

(t− s)p−1

(p− 1)!

( ∫ 1

s

(u− s)n−p−1

(n− p− 1)!

)
ds.

Since f is continuous, using the Ascoli-Arzela theorem, we can prove that QN(Ω)
is bounded and Kp(I −Q)N : Ω → X is compact, thus N is L-compact on Ω.
(v) The proof is simple and is omitted. �

For the next theorem, we set the following asumptions:
(A1) There is M > 0 such that for any x ∈ dom L/ ker L, if |x(p)(t)| > M for all

t ∈ (0, 1
2 ), then

m∑
i=1

αi

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
f(s, x(s), x′(s), . . . , x(n−1)(s))ds 6= 0

(A2) There is a function a ∈ C0[0, 1] and positive numbers ai(i = 0, 1, . . . , n− 1)
and βi ∈ [0, 1) (i = 0, 1, . . . , n− 1) such that

|f(t, x0, x1, . . . , xn−1)| ≤ a(t) +
n−1∑
i=0

ai|xi|βi

for t ∈ [0, 1] and (x0, x1, . . . , xn−1) ∈ Rn

(A3) There is M∗ > 0 such that for any c ∈ R then either

c
m∑

i=1

αi

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
f(s, csp, cpsp−1, . . . , cp!, 0, . . . , 0)ds < 0 ∀|c| > M∗

or

c
m∑

i=1

αi

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
f(s, csp, cpsp−1, . . . , cp!, 0, . . . , 0)ds > 0 ∀|c| > M∗.

Theorem 2.3. Under Assumptions (A1)–(A3), the boundary-value problem (1.1)–
(1.2) has at least one solution.

Proof. To apply Theorem 2.1, we define an open bounded subset Ω of X so that
(i), (ii) and (iii) of Theorem 2.1 hold. To obtain Ω, we do three steps. The proof
of this theorem is divide into four steps.
Step 1. Let

Ω1 = {x ∈ dom L/ ker L, Lx = λNx for some λ ∈ (0, 1)}.
For x ∈ Ω1, x /∈ ker L, λ 6= 0 and Nx ∈ Im L, thus QNx = 0. Then

m∑
i=1

αi

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
f(s, x(s), x′(s), . . . , x(n−1)(s))ds = 0.

Hence by (A1), we know that there is t0 ∈ (0, 1
2 ) such that |x(p)(t0)| ≤ M . Thus

|x(p)(t)| ≤ |x(p)(t0)|+
∣∣∣ ∫ t

t0

x(p+1)(s)ds
∣∣∣
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≤ M +
∫ 1

0

|x(p+1)(s)|ds

≤ M + ‖x(p+1)‖∞,

i.e. ‖x(p)‖∞ ≤ M + ‖x(p+1)‖∞. On the other hand, it is easy to prove that

‖x‖∞ ≤ ‖x′‖∞ ≤ · · · ≤ ‖x(p)‖∞ and ‖x(p+1)‖∞ ≤ · · · ≤ ‖x(n−1)‖∞.

So ‖x‖ = max{‖x(p)‖∞, ‖x(n−1)‖∞}. Now, we prove that there is t1 ∈ [0, 1] such
that

|x(n−1)(t1)| ≤
(n− p− 1)!M
(1− t0)n−p−1

. (2.2)

In fact, if

|x(n−1)(t)| > (n− p− 1)!M
(1− t0)n−p−1

for all t ∈ [0, 1],

then either

x(n−1)(t) >
(n− p− 1)!M
(1− t0)n−p−1

for all t ∈ [0, 1] (2.3)

or

x(n−1)(t) < − (n− p− 1)!M
(1− t0)n−p−1

for all t ∈ [0, 1], (2.4)

or

x(n−1)(t) >
(n− p− 1)!M
(1− t0)n−p−1

for some t ∈ [0, 1]

x(n−1)(t) < − (n− p− 1)!M
(1− t0)n−p−1

for other t ∈ [0, 1].
(2.5)

It is easy to see that if (2.5) holds, there exists t1 ∈ [0, 1] such that x(n−1)(t1) =
(n− p− 1)!M/(1− t0)n−p−1, thus (2.2) holds, which is a contradiction. Therefore,
for all t ∈ [0, 1], we have

(−1)n−p−1x(p)(t) >
(1− t)n−p−1

(n− p− 1)!
(n− p− 1)!M
(1− t0)n−p−1

or

(−1)n−p−1x(p)(t) < − (1− t)n−p−1

(n− p− 1)!
(n− p− 1)!M
(1− t0)n−p−1

.

Hence

|x(p)(t)| > (1− t)n−p−1

(n− p− 1)!
(n− p− 1)!M
(1− t0)n−p−1

.

Then we obtain

|x(p)(t0)| >
(1− t0)n−p−1

(n− p− 1)!
(n− p− 1)!M
(1− t0)n−p−1

= M,

which contradicts |x(p)(t0)| ≤ M . Hence there is t1 ∈ [0, 1] such that

|x(n−1)(t1)| ≤
(n− p− 1)!M
(1− t0)n−p−1

≤ 2n−p−1(n− p− 1)!M.

Thus we get

|x(n−1)(t)| ≤ |x(n−1)(t1)|+ |
∫ t

t1

x(n)(s)ds|

≤ 2n−p−1(n− p− 1)!M +
∫ 1

0

|f(s, x(s), x′(s), . . . , x(n−1)(s))|ds
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≤ 2n−p−1(n− p− 1)!M +
∫ 1

0

a(s)ds +
n−1∑
i=0

ai

∫ 1

0

|x(i)(s)|βids

≤ 2n−p−1(n− p− 1)!M +
∫ 1

0

a(s)ds +
n−1∑
i=0

ai‖x(i)‖βi
∞

≤ 2n−p−1(n− p− 1)!M +
∫ 1

0

a(s)ds +
( p∑

i=0

ai

)
‖x(p)‖βi

∞

+
( n−1∑

i=p+1

ai

)
‖x(n−1)‖βi

∞.

and

|x(p)(t)| ≤ |x(p)(t0)|+
∣∣∣ ∫ t

t0

x(p+1)(s)ds
∣∣∣

≤ M +
∫ 1

0

|x(p+1)(s)|ds

= M +
∫ 1

0

∫ 1

s

(u− s)n−p−2

(n− p− 2)!
|f(u, x(u), x′(u), . . . , x(n−1)(u))|du ds

≤ M +
∫ 1

0

sn−p−2

(n− p− 2)!
|f(s, x(s), x′(s), . . . , x(n−1)(s))|ds

≤ M +
∫ 1

0

sn−p−2

(n− p− 2)!
a(s)ds +

1
(n− p− 1)!

n−1∑
i=0

ai‖x(i)‖αi
∞

≤ M +
∫ 1

0

sn−p−2

(n− p− 2)!
a(s)ds +

1
(n− p− 1)!

p∑
i=0

ai‖x(p)‖βi
∞

+
1

(n− p− 1)!

n−1∑
i=p+1

ai‖x(n−1)‖βi
∞.

Without loss of generality, suppose that ‖x(n−1)‖∞ > 1, then

‖x(n−1)‖∞

≤ 2n−p−1(n− p− 1)!M +
∫ 1

0

a(s)ds +
p∑

i=0

ai‖x(p)‖βi
∞ +

n−1∑
i=p+1

ai‖x(n−1)‖βi
∞

≤ 2n−p−1(n− p− 1)!M +
∫ 1

0

a(s)ds +
p∑

i=0

ai(M + ‖x(p+1)‖∞)βi

+
n−1∑

i=p+1

ai‖x(n−1)‖βi
∞

≤ 2n−p−1(n− p− 1)!M +
∫ 1

0

a(s)ds +
p∑

i=0

ai(M + ‖x(n−1)‖∞)βi

+
n−1∑

i=p+1

ai‖x(n−1)‖βi
∞.
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It follows from βi ∈ [0, 1) that there is M1 > 0 such that ‖x(n−1)‖∞ ≤ M1. Hence

‖x(p)‖∞ ≤ M +
∫ 1

0

sn−p−2

(n− p− 2)!
a(s)ds +

1
(n− p− 1)!

p∑
i=0

ai‖x(p)‖∞)βi

+
1

(n− p− 1)!

n−1∑
i=p+1

aiM
βi .

We see from above inequality and βi ∈ [0, 1) that there is M2 > 0 such that
‖x(p)‖∞ ≤ M2. Hence we get ‖x‖ ≤ max{M1, M2} = M ′. It follows that Ω1 is
bounded.
Step 2. Let Ω2 = {x ∈ ker L : Nx ∈ Im L}. For x ∈ Ω2, then x(t) = ctp for some
c ∈ [0, 1]. It suffices to prove that there is M ′′ > 0 such that |c| ≤ M ′′. Nx ∈ Im L
implies

m∑
i=1

αi

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
f(s, csp, cpsp−1, . . . , cp!, 0, . . . , 0)ds = 0.

By (A3), we get |c| ≤ M∗. Thus Ω2 is bounded.
Step 3. According to (A3), for any c ∈ R if |c| > M∗, then either

c

m∑
i=1

αi

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
f(s, csp, cpsp−1, . . . , cp!, 0, . . . , 0)ds < 0 (2.6)

or
m∑

i=1

αi

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
f(s, csp, cpsp−1, . . . , cp!, 0, . . . , 0)ds > 0. (2.7)

If (2.6) holds, let

Ω3 = {x ∈ ker L : −λ ∧ x + (1− λ)QNx = 0, λ ∈ [0, 1]},
where ∧ is the isomorphism given by ∧(ctp) = ctk for all c ∈ R. Now, we shall show
that Ω3 is bounded. Since for ctp ∈ Ω3, we have

λc = (1− λ)
m∑

i=1

αi

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
f(s, csp, cpsp−1, . . . , cp!, 0, . . . , 0)ds.

If λ = 1, it follows from above equality that c = 0. Otherwise, if |c| > M∗, in view
of (2.2), one has

λc2 = (1− λ)c
m∑

i=1

αi

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
f(s, csp, cpsp−1, . . . , cp!, 0, . . . , 0)ds < 0,

which contradicts λc2 ≥ 0. Thus Ω3 is bounded.
If (2.7) holds, let

Ω3 = {x ∈ ker L : λ ∧ x + (1− λ)QNx = 0, λ ∈ [0, 1]}.
Similarly to above argument, we can prove that Ω3 is bounded.

Next, we show that all conditions of Theorem 2.1 are satisfied. Set Ω be a open
bounded subset of X such that Ω ⊃ ∪3

i=1Ωi. By Lemma 2.2, L is a Fredholm
operator of index zero and N is L-compact on Ω. From the definition of Ω, we have
the first two conditions for Theorem 2.1:

• Lx 6= λNx for x ∈ (dom L/ ker L) ∩ ∂Ω and λ ∈ (0, 1)
• Nx /∈ Im L for x ∈ ker L ∩ ∂Ω.
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Step 4. We shall prove the third condition for applying Theorem 2.1:
• deg(QN |ker L, Ω ∩ ker L, 0) 6= 0.

Let H(x, λ) = ±λ ∧ x + (1 − λ)QNx. According the definition of Ω, we know
H(x, λ) 6= 0 for x ∈ ∂Ω ∩ ker L, thus by homotopy property of degree,

deg(QN |ker L,Ω ∩ ker L, 0) = deg(H(·, 0),Ω ∩ ker L, 0)

= deg(H(·, 1),Ω ∩ ker L, 0)

= deg(±∧,Ω ∩ ker L, 0) 6= 0.

Thus by Theorem 2.1, Lx = Nx has at least one solution in dom L ∩Ω, which is a
solution of (1.1)–(1.2). �

For the following theorem, we need the following assumptions:
(A4) There exists M > 0 such that for all x ∈ dom L if |x(p)(t)| > M for all

t ∈ [0, 1], then
m∑

i=1

αi

∫ 1

ξi

(s− ξi)n−1−p

(n− 1− p)!
f(s, x(s), x′(s), . . . , x(n−1)(s))ds 6= 0.

(A5) There exists a0 ∈ C0[0, 1] and non-negative numbers ai such that

|f(t, x0, x1, . . . , xn−1)| ≤ a0(t) +
n−1∑
i=0

ai|xi|

for all t ∈ [0, 1] and (x0, . . . , xn−1) ∈ Rn.

Theorem 2.4. Under Assumptions (A3), (A4), (A5), the boundary-value problem
(1.1)–(1.2) has at least one solution provided that

p∑
i=0

ai < (n− 1− p)!,
n−1∑

i=p+1

ai < 1,

n−1∑
i=p+1

ai +

( ∑p
i=0 ai

)( ∑n−1
i=p+1 ai

)
(n− 1− p)!−

∑p
i=0 ai

< 1.

Proof. The proof is similar to that of Theorem 2.3. We need to do four steps. Let
Ωi(i = 1, 2, 3) be defined in the proof of Theorem 2.3.
Step 1. Prove that Ω1 is bounded. For x ∈ Ω1,

m∑
i=1

αi

∫ 1

ξi

(s− ξi)n−1−p

(n− 1− p)!
f(s, x(s), x′(s), . . . , x(n−1)(s))ds = 0.

It follows from (A4) that there is t0 ∈ [0, 1] such that |x(p)(t0)| ≤ M . On the other
hand, x ∈ Ω1 implies

x(n)(t) = λf(t, x(t), x′(t), . . . , x(n−1)(t)), t ∈ (0, 1).

Integrating it from 0 to t if p ≤ n− 2, or from t0 to t if p = n− 1, we get

|x(n−1)(t)| =

{∣∣x(n−1)(0) + λ
∫ t

0
f(s, x(s), . . . , x(n−1)(s))ds

∣∣ for p ≤ n− 2,∣∣x(n−1)(t0) + λ
∫ t

t0
f(s, x(s), . . . , x(n−1)(s))ds

∣∣ for p = n− 1

≤

{∫ 1

0
|f(s, x(s), . . . , x(n−1)(s))|ds,

M +
∫ 1

0
|f(s, x(s), . . . , x(n−1)(s))|ds



EJDE–2003/120 SOLVABILITY OF A (P,N-P)-PROBLEM 11

≤ M +
∫ 1

0

(a0(s) +
n−1∑
i=0

ai|x(i)(s)|)ds

≤ M +
∫ 1

0

a0(s)ds +
n−1∑
i=0

ai

∫ 1

0

|x(i)(s)|ds.

It is easy to see that x(i)(t)| ≤ ‖x(p)‖∞ for i = 0, 1, . . . , p and |x(i)(t)| ≤ ‖x(n−1)‖∞
for all i = p + 1, . . . , n− 1 and t ∈ [0, 1]. Hence

|x(n−1)(t)| ≤ M +
∫ 1

0

a0(s)ds +
( p∑

i=0

ai

)
‖x(p)‖∞ +

( n−1∑
i=p+1

ai

)
‖x(n−1)‖∞.

Thus

‖x(n−1)‖∞ ≤ M +
∫ 1

0

a0(s)ds +
( p∑

i=0

ai

)
‖x(p)‖∞ +

( n−1∑
i=p+1

ai

)
‖x(n−1)‖∞.

On the other hand, we have

x(p+1)(t) = λ

∫ 1

t

(s− t)n−1−p

(n− 1− p)!
f(s, x(s), . . . , x(n−1)(s))ds.

Integrating from t0 to t, we get

|x(p)(t)| =
∣∣∣x(p)(t0) + λ

∫ t

t0

f(s, x(s), . . . , x(n−1)(s))ds
∣∣∣

≤ M +
∫ 1

0

∫ 1

s

(u− s)n−1−p

(n− 1− p)!
f(u, x(u), . . . , x(n−1)(u))du ds

≤ M +
1

(n− 1− p)!

∫ 1

0

|f(s, x(s), . . . , x(n−1)(s))|ds

≤ M +
1

(n− 1− p)!

( ∫ 1

0

a0(s)ds +
n−1∑
i=0

ai|x(i)(s)|ds
)
.

Similarly, we get

‖x(p)‖∞ ≤ M +
1

(n− 1− p)!

( ∫ 1

0

a0(s)ds +
p∑

i=0

ai‖x(p)‖∞ +
n−1∑

i=p+1

ai‖x(n−1)‖∞
)
.

Hence (
1−

n−1∑
i=p+1

ai

)
‖x(n−1)‖∞ ≤ M +

∫ 1

0

a0(s)ds +
( p∑

i=0

ai

)
‖x(p)‖∞,

(
1− 1

(n− 1− p)!

p∑
i=0

ai

)
‖x(p)‖∞

≤ M +
1

(n− 1− p)!

( ∫ 1

0

a0(s)ds +
n−1∑

i=n−1−p

ai‖x(n−1)‖∞
)
.

Thus we get from the assumptions of the Theorem 2.4(
1−

n−1∑
i=p+1

ai

)
‖x(n−1)‖∞ ≤M +

∫ 1

0

a0(s)ds +
∑p

i=0 ai

1− 1
(n−1−p)!

∑p
i=0 ai

[
M
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+
1

(n− 1− p)!

( ∫ 1

0

a0(s)ds +
n−1∑

i=n−1−p

ai‖x(n−1)‖∞
)]

.

i.e.,(
1−

n−1∑
i=p+1

ai −
(
∑p

i=0 ai)
( ∑n−1

i=p+1 ai

)
(n− 1− p)!−

∑p
i=0 ai

)
‖x(n−1)‖∞

≤ M +
∫ 1

0

a0(s)ds +
(n− 1− p)!

∑p
i=0 ai

(n− 1− p)!−
∑p

i=0 ai

[
M +

1
(n− 1− p)!

∫ 1

0

a0(s)ds
]
.

It follows from the assumptions of Theorem 2.4 that there is M1 > 0 such that
‖x(n−1)‖|infty ≤ M1. Thus there is M2 > 0 such that ‖x(p)‖∞ ≤ M2. So ‖x‖ ≤
max{M1,M2}. Thus Ω1 is bounded.
Step2. Prove that Ω2 is bounded. It similar to the Step 2 of the proof of Theorem
2.3 and is omitted.
Step 3. Prove thatΩ3 is bounded. It is same to the Step 3 of the proof of Theorem
2.3 and is omitted.
Step 4. It is same to the Step 4 of the proof of Theorem 2.3 and is omitted.

Thus the proof is complete. �

3. Solvability of (1.1)–(1.2) at non-resonance

In this section, we obtain sufficient conditions for the existence of at least one
solution of (1.1)–(1.2) at non-resonance, i.e. when

∑n
i=1 αi 6= 0. In this case, the

operator Lx(t) = (−1)n−px(n)(t) is invertible. The method employed is based on
Scheaffer’s theorem, see for example [28, Theorem 4.3.2] or [[27].

Theorem 3.1 ([27, 28]). Let (X, ‖ ∗ ‖) be a Banach space. T is a continuous
mapping of X into X which is compact on each bounded subset of X. Then either

(i) The equation x = λTx has a solution for λ = 1, or
(ii) The set of all such solutions x, for λ ∈ (0, 1), is unbounded.

Combining the differential equation (1.1) with the boundary conditions (1.2), a
solutions x(t) satisfies

x(p)(1)− x(p)(t) =
∫ 1

t

(s− t)n−p−1

(n− p− 1)!
f(s, x(s), x′(s), . . . , x(n−1)(s))ds.

Since
∑m

i=1 αix
(p)(ξi) = 0, we have

x(p)(1) =
1∑m

i=1 αi

m∑
i=1

αi

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
f(s, x(s), x′(s), . . . , x(n−1)(s))ds.

Thus

x(p)(t) =
1∑m

i=1 αi

m∑
i=1

αi

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
f(s, x(s), x′(s), . . . , x(n−1)(s))ds

−
∫ 1

t

(s− t)n−p−1

(n− p− 1)!
f(s, x(s), x′(s), . . . , x(n−1)(s))ds.

Integrating above equation, we have

x(t) =
1∑m

i=1 αi

m∑
i=1

αi

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
f(s, x(s), x′(s), . . . , x(n−1)(s))ds

tp

p!
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−
∫ t

0

(t− s)p−1

(p− 1)!

( ∫ 1

s

(u− s)n−p−1

(n− p− 1)!
f(u, x(u), x′(u), . . . , x(n−1)(u))du

)
ds

=
1∑m

i=1 αi

m∑
i=1

αi

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
f(s, x(s), x′(s), . . . , x(n−1)(s))ds

tp

p!

+
n−p∑
j=0

(−1)jtj+p

(j + p)!

∫ 1

0

sn−p−1−j

(n− p− 1− j)!
f(s, x(s), x′(s), . . . , x(n−1)(s))ds

+ (−1)n−p+1

∫ t

0

(t− s)n−1

(n− 1)!
f(s, x(s), x′(s), . . . , x(n−1)(s))ds.

Define the Banach space

X =
{
x ∈ Cn−1[0, 1] : x(i)(0) = 0 for i = 0, 1, . . . , p− 1

and x(i)(1) = 0 for i = p + 1, . . . , n− 1
}
,

whose norm is ‖x‖ = max{‖x‖∞, . . . , ‖x(n−1)‖∞}, where ‖x‖∞ = maxt∈[0,1] |x(t)|.
It is easy to show that

‖x‖ = max{‖x(p)‖∞, ‖x(n−1)‖∞}.

Define the nonlinear operator T : X → X as

Tx(t) =
1∑m

i=1 αi

m∑
i=1

αi

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
f(s, x(s), x′(s), . . . , x(n−1)(s))ds

tp

p!

+
n−p∑
j=0

(−1)jtj+p

(j + p)!

∫ 1

0

sn−p−1−j

(n− p− 1− j)!
f(s, x(s), x′(s), . . . , x(n−1)(s))ds

+ (−1)n−p+1

∫ t

0

(t− s)n−1

(n− 1)!
f(s, x(s), x′(s), . . . , x(n−1)(s))ds .

Theorem 3.2. Assume that the nonlinearity f is bounded. Then (1.1)–(1.2) has
at least one solution.

Proof. Let M > 0 be such that |f(t, x(t), x′(t), . . . , x(n−1)(t))| ≤ M for t ∈ [0, 1],
(x0, x1, . . . , xn−1) ∈ Rn. For µ ∈ [0, 1], consider the equation

x = µTx. (3.1)

If x(t) is a solution of this equation, then:

x(t) = µ
[ 1∑m

i=1 αi

m∑
i=1

αi

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
f(s, x(s), x′(s), . . . , x(n−1)(s))ds

tp

p!

+
n−p∑
j=0

(−1)jtj+p

(j + p)!

∫ 1

0

sn−p−1−j

(n− p− 1− j)!
f(s, x(s), x′(s), . . . , x(n−1)(s))ds

+ (−1)n−p+1

∫ t

0

(t− s)n−1

(n− 1)!
f(s, x(s), x′(s), . . . , x(n−1)(s))ds

]
,

x(p)(t) = µ
[ 1∑m

i=1 αi

m∑
i=1

αi

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
f(s, x(s), x′(s), . . . , x(n−1)(s))ds
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−
∫ 1

t

(s− t)n−p−1

(n− p− 1)!
f(s, x(s), x′(s), . . . , x(n−1)(s))ds

]
,

and

(−1)n−p−1x(n−1)(t) = µ

∫ 1

t

f(s, x(s), x′(s), . . . , x(n−1)(s))ds.

So, we have

|x(p)(t)| ≤ µM
[ 1∑m

i=1 αi

m∑
i=1

αi

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
ds +

∫ 1

0

sn−p−1

(n− p− 1)!
ds

]
,

|x(n−1)(t)| ≤ µM.

This shows that all solutions of (12) satisfy ‖x‖ = max{‖x(p)‖∞, ‖x(n−1)‖∞} is
bounded. Taking into account that T is continuous and compact on each bounded
subset of X and using Schaeffer’s theorem, we obtain that T has a fixed point,
which is a solution of (1.1)–(1.2). �

We remark that the hypotheses in Theorem 3.2 are strong, but it is convenient
to apply them. Next, we give another existence result.

Theorem 3.3. Assume there exist ai ∈ [0,+∞) (i = 0, 1, . . . , n−1) and a ∈ C[0, 1]
and βi ∈ [0, 1](i = 0, 1, . . . , n− 1) such that

|f(t, x0, x1, . . . , xn−1)| ≤ a(t) + a0|x0|β0 + · · ·+ an−1|xn−1|βn−1 (3.2)

for t ∈ [0, 1] and (x0, x1, . . . , xn−1) ∈ Rn and
∑n−1

i=p+1 ai < 1. Then (1.1)–(1.2) has
at least one solution.

Proof. For x ∈ X, we have

|f(t, x(t), x′(t), . . . , x(n−1)(t))| ≤ a(t) +
n−1∑
i=0

ai|x(i)(t)|βi .

If x(t) is a solution of (3.1), then

|f(t, x(t), x′(t), . . . , x(n−1)(t))| = a(t) +
p−1∑
i=0

ait|x(i+1)(ξi)|βi + ap|x(p)(t)|βp

+
n−2∑

i=p+1

ait|x(i+1)(ξi)|βi + an−1|x(n−1)(t)|βn−1

≤ a(t) +
p∑

i=0

ai‖x(p)‖βi
∞ +

n−1∑
i=p+1

ai‖x(n−1)‖βi
∞.

Thus

|x(p)(t)|

≤ µ
[ 1
|
∑m

i=1 αi|

m∑
i=1

|αi|
∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!

(
a(s) +

p∑
i=0

ai‖x(p)‖βi
∞

+
n−1∑

i=p+1

ai‖x(n−1)‖βi
∞

)
ds +

∫ 1

0

sn−p−1

(n− p− 1)!

(
a(s) +

p∑
i=0

ai‖x(p)‖βi
∞
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+
n−1∑

i=p+1

ai‖x(n−1)‖∞
)
ds

]
≤ µ

{ 1
|
∑m

i=1 αi|

m∑
i=1

|αi|
[ ∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
a(s)ds +

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
ds

×
( p∑

i=0

ai‖x(p)‖βi
∞

)
+

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
ds

( n−1∑
i=p+1

ai‖x(n−1)‖βi
∞

)]
+

∫ 1

0

sn−p−1

(n− p− 1)!
a(s)ds +

∫ 1

0

sn−p−1

(n− p− 1)!
a(s)ds

( p∑
i=0

ai‖x(p)‖βi
∞

)
+

∫ 1

0

sn−p−1

(n− p− 1)!
a(s)ds

( n−1∑
i=p+1

ai‖x(n−1)‖βi
∞

)}
= µ

{ 1
|
∑m

i=1 αi|

m∑
i=1

|αi|
[ ∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
a(s)ds

+
(1− ξi)n−p

(n− p)!

( p∑
i=0

ai‖x(p)‖βi
∞

)
+

(1− ξi)n−p

(n− p)!

( n−1∑
i=p+1

ai‖x(n−1)‖βi
∞

)]
+

∫ 1

0

sn−p−1

(n− p− 1)!
a(s)ds +

1
(n− p)!

( p∑
i=0

ai‖x(p)‖βi
∞

)
+

1
(n− p)!

( n−1∑
i=p+1

ai‖x(n−1)‖βi
∞

)}
= µ

[ p∑
i=0

ai‖x(p)‖βi
∞

∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
a(s)ds +

∫ 1

0

sn−p−1

(n− p− 1)!
a(s)ds

+
1

(n− p)!

( ∑m
i=0 |αi|

|
∑m

i=1 αi|
(1− ξi)n−p + 1

) p∑
i=0

ai‖x(p)‖βi
∞

+
1

(n− p)!

( ∑m
i=0 |αi|

|
∑m

i=1 αi|
(1− ξi)n−p + 1

) n−1∑
i=p+1

ai‖x(n−1)‖βi
∞

]
.

and

|x(n−1)(t)| ≤ µ
[ ∫ 1

0

a(s)ds +
p∑

i=0

ai‖x(p)‖βi
∞ +

n−1∑
i=p+1

ai‖x(n−1)‖βi
∞

]
.

Hence

‖x(n−1)‖∞ ≤ µ
[ ∫ 1

0

a(s)ds +
p∑

i=0

ai‖x(p)‖βi
∞ +

n−1∑
i=p+1

ai‖x(n−1)‖βi
∞

]
.

Without loss of generality, suppose ‖x(n−1)‖∞ ≥ 1, then

‖x(n−1)‖∞ ≤
∫ 1

0

a(s)ds +
p∑

i=0

ai‖x(p)‖βi
∞ +

n−1∑
i=p+1

ai‖x(n−1)‖∞.
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Thus

‖x(n−1)‖∞ ≤
(
1−

n−1∑
i=p+1

ai

)−1( ∫ 1

0

a(s)ds +
p∑

i=0

ai‖x(p)‖βi
∞

)
.

Hence

‖x(p)‖∞

≤ µ
[∣∣ m∑

i=1

αi

∣∣−1
m∑

i=1

|αi|
∫ 1

ξi

(s− ξi)n−p−1

(n− p− 1)!
a(s)ds +

∫ 1

0

sn−p−1

(n− p− 1)!
a(s)ds

+
1

(n− p)!

( ∑m
i=0 |αi|

|
∑m

i=1 αi|
(1− ξi)n−p + 1

)( p∑
i=0

ai‖x(p)‖βi
∞

)
+

1
(n− p)!

( ∑m
i=0 |αi|

|
∑m

i=1 αi|
(1− ξi)n−p + 1

) n−1∑
j=p+1

aj

(
1−

n−1∑
i=p+1

ai

)−βj

×
( ∫ 1

0

a(s)ds +
p∑

i=0

ai‖x(p)‖βi
∞

)βj
]
.

Since βi ∈ [0, 1), there exists M1 > 0 sufficiently large and independent on µ such
that ‖x(p)‖∞ ≤ M1, and

‖x(n−1)‖∞ ≤
∫ 1

0

a(s)ds +
p∑

i=1

aiM
βi

1 +
n−1∑

i=p+1

ai‖x(n−1)‖βi
∞.

Similarly, it follows that there is M2 > 0 sufficiently large and independent on µ
such that ‖x(n−1)‖∞ ≤ M2. These show that ‖x‖ = max{‖x(p)‖∞, ‖x(n−1)‖∞ }
is bounded. On the other hand, T is continuous and compact on each bounded
subset of X. Therefore, by Schaeffer’s theorem, we obtain the existence of at least
one fixed point for the operator T , which is a solution of (1.1)–(1.2). The proof is
complete. �

4. Examples

In this section, we present some examples to illustrate the main results.

Example 1. Consider the following boundary-value problem

x′′(t) = e(t) +
1
14

[x′(t)]2/3 +
t

7
cos2 t sin[x(t)]2/3,

x(0) = 0, x′(1) =
1
2
x′(

1
2
) +

1
2
x′(0).

(4.1)

Corresponding to (1.1) and (1.2), we find n = 2, ξ1 = 0, ξ2 = 1
2 , ξ3 = 1, and

α1 = 1
2 , α2 = 1

2 , α3 = −1. f(t, x, y) = e(t)+ 1
14y2/3 + t

7 cos2 t sinx2/3. It is easy to
see |f(t, x, y)| ≤ |e(t) + 1

7 |x|
2/3 + 1

14 |y|
2/3 with β0 = 2

3 and β1 = 2
3 . So Assumption

(A2) holds. Since

1
2

∫ 1

0

f(s, x(s), x′(s))ds +
1
2

∫ 1

1/2

f(s, x(s), x′(s))ds−
∫ 1

1

f(s, x(s), x′(s))ds

=
1
2

∫ 1/2

0

f(s, x(s), x′(s))ds +
∫ 1

1/2

f(s, x(s), x′(s))ds,
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it is easy to see that if |x′(t)| > 143/2
(
‖e‖∞ + 1

7

)3/2 for all t ∈ [0, 1
2 ], and e(t) ≥

t
7 cos2 t for t ∈ [ 12 , 1], choosing M = 143/2

(
‖e‖∞ + 1

7

)3/2, Assumption (A1) holds.
Furthermore,

c
[1
2

∫ 1

0

f(s, x(s), x′(s))ds +
1
2

∫ 1

1/2

f(s, x(s), x′(s))ds−
∫ 1

1

f(s, x(s), x′(s))ds
]

=
1
2

∫ 1/2

0

(
ce(s) +

1
14

c5/3 +
cs

7
cos2 s sin(cs)2/3

)
ds

+
∫ 1

1/2

(
ce(s) +

1
14

c5/3 +
cs

7
cos2 s sin(cs)2/3

)
ds > 0

for sufficiently large |c|. So (A3) of Theorem 2.3 holds. From Theorem 2.3, (4.1)
has at least one solution for every e ∈ C0[0, 1] with e(t) ≥ t

7 cos2 t for all t ∈ [ 12 , 1].

Example 2. Consider the boundary-value problem

x′′′(t) = e(t) +
1
14

[x′(t)]2/3 +
t

7
cos2 t sin[x(t)]2/3 +

t2

8
sin2 t cos[x′′(t)]4/5,

x(0) = 0, x′(1) =
1
2
x′(

1
2
) +

1
2
x′(0), x′′(0) = 0.

(4.2)

Corresponding to (1.1)–(1.2) we find n = 3, ξ1 = 0, ξ2 = 1
2 , ξ3 = 1, and α1 = 1

2 ,
α2 = 1

2 , α3 = −1. f(t, x, y, z) = e(t) + 1
14y2/3 + t

7 cos2 t sinx2/3 + t2

8 sin2 t cos z4/5.
It is easy to see |f(t, x, y, z)| ≤ |e(t) + 1

7 |x|
2/3 + 1

14 |y|
2/3 + 1

8 |z|
4/5 with β0 = 2

3 and
β1 = 2

3 and β2 = 4
5 . So Assumption (A2) holds. Similarly, we can prove that (A1)

and (A3) hold if e(t) ≥ t
7 cos2 t+ t2

8 sin2 t for all t ∈ [ 12 , 1]. Hence from Theorem 2.3,
(4.2) has at least one solution for every e ∈ C0[0, 1] with e(t) ≥ t

7 cos2 t + t2

8 sin2 t

for all t ∈ [ 12 , 1].

Example 3. Consider the boundary-value problem

x(n)(t) =
n−1∑

i=0,i 6=p

ai sinx(i)(t) + apx
(p)(t) + e(t),

x(i)(0) = 0, for i = 0, 1, . . . , p− 1, p + 1, . . . , n− 1,

x(p)(1) =
m∑

i=1

αix
(p)(ξi),

(4.3)

where 1 ≤ p ≤ n − 1, 0 < ξ1 < · · · < ξm < 1, ap > 0, αi ≥ 0 for all i 6= p
with

∑m
i=1 αi = 1. It is easy to see above problem is a special case of (1.1)–(1.2).

Furthermore, |f(t, x0, . . . , xn−1)| ≤ |e(t)| +
∑n−1

i=1 ai|xi|. So (A5) holds. Since
|f(t, x0, . . . , xn−1)| ≥ ap|xp|−

∑n−1
i=1,i 6=p |ai‖xi|− ‖e‖∞, we find that there is M > 0

such that if |x(p)(t)| ≥ M for all t ∈ [0, 1], then (A4) holds. As in Example 1, we
find that there is M∗ > 0 such that (A3) holds. Thus from Theorem 2.4, (4.3) has
at least one solution provided that

p∑
i=0

|ai| < (n− 1− p)!,
n−1∑

i=p+1

|ai| < 1,
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n−1∑
i=p+1

|ai|+
(
∑p

i=0 |ai|)
(∑n−1

i=p+1 |ai|
)

(n− 1− p)!−
∑p

i=0 |ai|
< 1.

Acknowledgement. The authors are very thankful to the editors and one of the
referees for their valuable suggestions.

References

[1] R. P. Agarwal, Boundary Value Problems for Higher Order Differential Equations, World
Scientific, Singapore, 1986.

[2] R. P. Agarwal, Focal Boundary Value Problems for Differential and Difference Equations,
Kluwer, Dordrecht, 1998.

[3] R. P. Agarwal, D. O’Regan, Singular boundary value problems for super-linear second order
ordinary and delay equations, J. Diff. Eqn., 130(1996) 333-355.

[4] R. P. Agarwal, D. O’Regan, Two solutions to singular boundary value problems, Proc. Amer.
Math. Soc., 128(2000) 2085-2094.

[5] R. P. Agarwal, D. O’Regan, Right focal singular boundary value problems, Z. A. M. M.,
79(1999) 363-373.

[6] R. P. Agarwal, D. O’Regan, V. Lakshmikantham, Singular (p,n-p) focal and (n,p) higher
order boundary value problems, Nonlinear Anal., 42(2000) 215-228.

[7] R. P. Agarwal, D. O’Regan, P. J. Y. Wong, Positive Solutions of Differential, Difference and
Integral Equations, Kluwer Academic Publishers, Dordrecht, 1999.

[8] D. Anderson, Multiple positive solutions for a three-point boundary value problem, Math.
Comput. Modelling, 27(6)((1998) 49-57.

[9] A. Callegari, A.. Nachnan, A nonlinear singular boundary value problem in the theory of
pseudo-plastic fluids, SIAM J. Appl. Math., 38(1980) 275-282.

[10] P. W. Eloe, J. Henderson, Singular nonlinear boundary value problems for higher order

differential equations, Nonlinear Anal., 17(1991) 1-10.

[11] P. W. Eloe, J. Henderson, Existence of solutions for some higher order boundary value prob-
lems, Z.A.M.M., 73(1993) 315-323.

[12] P. W. Eloe, J. Henderson, Positive solutions for (n-1,1) boundary value problems, Nonlinear

Anal., 28(1997) 1669-1680.
[13] P. W. Eloe, J. Henderson, Positive solutions and nonlinear (k,n-k) conjugate eigenvalue

problems, Diff. Eqns. Dyn. Systems, 6(1998)309-317.

[14] W. Feng, J. R. L. Webb, Solvability of three-point boundary value problems at resonance,
Nonlinear Anal., 30(1997) 3227-3238.

[15] W. Feng, J. R. L. Webb, Solvability of m-point boundary value problems with nonlinear
growth, J. Math. Anal. Appl., 212(1997) 467-489.

[16] R. E. Gaines, J. L. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Lec-

ture Notes in Math., 568, Springer, Berlin, 1977.
[17] C. P. Gupta, S. K. Ntougas, P. C. Tsamatos, Solvability of an m-point boundary value problem

for second order ordinary differential equations, J. Math. Anal. Appl., 189(1995) 575-584.

[18] X. He, W. Ge, Positive solutions for semi-positone (p,n-p) right focal boundary value prob-
lems, Appl. Anal., 81(2002) 227-240.

[19] J. Henderson, H. B. Thompson, Existence of multiple positive solutions for some nth order

boundary value problems, Nonlinear Anal., 7(2000) 55-62.
[20] V. Il’in, E. Moiseev, Non-local boundary value problems of first kind for a Sturm-Liouville

operator in its differential and finite difference aspects, Differential Eqns., 23(1987) 803-810.

[21] B. Liu, Solvability of multi-point boundary value problems at resonance(III), Appl. Math.
Comput., 129(2002)119-143.

[22] B. Liu, Solvability of multi-point boundary value problems at resonance(IV), Appl. Math.
Comput., 143(2003)275-299.

[23] Y. Liu, W. Ge, Positive solutions for (n-1,1) three-point boundary value problems with coef-

ficient that changes sign, J. Math. Anal. Appl., 282(2003)457-468.
[24] B. Liu, J. Yu, Solvability of multi-point boundary value problems at resonance(II), Appl.

Math. Comput., 136(2003)353-377.



EJDE–2003/120 SOLVABILITY OF A (P,N-P)-PROBLEM 19

[25] B. Liu, J. Yu, Solvability of multi-point boundary value problems at resonance(I), Indian J.

Pure Appl. Math., 33(4)(2002)475-494.

[26] B. Liu, J. Yu, Existence of solutions for m-point boundary value problems of second order
differential equations with impulses, Appl. Math. Comput., 125(2002)155-175.

[27] H. Shaeffer, Vber die method der a priori schranken, Math. Ann., 129(1955)45-416.

[28] D. R. Smart, Fixed Point Theorems, Cambridge Univ. Press, Cambridge, 1980.
[29] P. Y. Wong, R. P. Agarwal, On two-point right focal eigenvalue problems, Z. A. A., 17(1998)

691-713.

Yuji Liu
Department of Applied Mathematics, Beijing Institute of Technology, Beijing, 100081,

China.
Department of Mathematics, Hunan Institue of Technology, Yueyang, Hunan, 414000,
China

E-mail address: liuyuji888@sohu.com

Weigao Ge

Department of Applied Mathematics, Beijing Institute of Technology, Beijing, 100081,

China


