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OSCILLATION FOR EQUATIONS WITH POSITIVE AND
NEGATIVE COEFFICIENTS AND WITH DISTRIBUTED DELAY

I: GENERAL RESULTS

LEONID BEREZANSKY & ELENA BRAVERMAN

Abstract. We study a scalar delay differential equation with a bounded dis-
tributed delay,

ẋ(t) +

∫ t

h(t)
x(s) dsR(t, s)−

∫ t

g(t)
x(s) dsT (t, s) = 0,

where R(t, s), T (t, s) are nonnegative nondecreasing in s for any t,

R(t, h(t)) = T (t, g(t)) = 0, R(t, s) ≥ T (t, s).

We establish a connection between non-oscillation of this differential equation

and the corresponding differential inequalities, and between positiveness of the
fundamental function and the existence of a nonnegative solution for a nonlin-

ear integral inequality that constructed explicitly. We also present comparison
theorems, and explicit non-oscillation and oscillation results.

In a separate publication (part II), we will consider applications of this

theory to differential equations with several concentrated delays, integrodiffer-
ential, and mixed equations.

1. Introduction

The study of oscillation properties of non-autonomous delay differential equa-
tions with positive and negative coefficients began in the eighties. It was inspired
by the study of equations with oscillating coefficients. For example, Chauanxi and
Ladas [6] considered the equation

ẋ(t) + a(t)x(t− τ)− b(t)x(t− σ) = 0, t ≥ t0, (1.1)

where a(t) ≥ 0, b(t) ≥ 0 are continuous functions, τ > σ > 0, and obtained the
following result.

Suppose ∫ t

t−τ+σ

b(s)ds ≤ 1, a(t) ≥ b(t− τ + σ), (1.2)
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lim inf
t→∞

∫ t

t−τ

[a(s)− b(s− τ + σ)]ds >
1
e
. (1.3)

Then all solutions of (1.1) are oscillatory.
In [16] the inequality (1.3) was improved to

lim inf
t→∞

( ∫ t

t−τ

[a(s)− b(s− τ + σ)] ds +
1
e

∫ t

t−τ+σ

b(s− τ) ds
)

>
1
e
. (1.4)

Recently numerous publications on the oscillation of delay equations with posi-
tive and negative coefficients have appeared, for example, [1,4-7,9-11,13-17,19,20].
However all these publications except [4, 7] consider equations with constant delays
only. Paper [4] deals with a more general case when the delays are not constant.
Some publications study the oscillation of integro-differential equations (see [12] for
positive and [18] for oscillatory kernels).

The present paper gives the general insight into the problem. We consider an
equation which includes delay differential equations with variable delays, integro-
differential equations and mixed differential equations. Thus most of the results of
[4] appear as special cases.

We consider the following equation with a distributed delay

ẏ(t) +
∫ t

−∞
y(s) dsR(t, s)−

∫ t

−∞
y(s) dsT (t, s) = 0, t ≥ t0, (1.5)

where both R(t, s) and T (t, s) are nondecreasing in s for each t.
Equation (1.5) includes the following special cases:
(1) A delay differential equation

ẋ(t) +
n∑

k=1

ak(t)x(hk(t))−
m∑

l=1

bl(t)x(gl(t)) = 0, (1.6)

if we assume

R(t, s) =
n∑

k=1

ak(t)χ[hk(t),∞)(s), T (t, s) =
m∑

l=1

bl(t)χ[gl(t),∞)(s), (1.7)

where χ[c,d] is a characteristic function of segment [c, d];
(2) An integro-differential equation

ẋ(t) +
∫ t

−∞
K1(t, s)x(s) ds−

∫ t

−∞
K2(t, s) ds = 0, (1.8)

where

R(t, s) =
∫ s

−∞
K1(t, ζ) dζ, T (t, s) =

∫ s

−∞
K2(t, ζ) dζ; (1.9)

(3) Some types of mixed equations, we will consider two of them:

ẋ(t) +
∞∑

k=1

ak(t)x(hk(t))−
∫ t

−∞
K(t, s)x(s) ds = 0, (1.10)

ẋ(t) +
n∑

k=1

ak(t)x(hk(t))−
m∑

l=1

bl(t)x(gk(t))

+
∫ t

−∞
K1(t, s)x(s) ds−

∫ t

−∞
K2(t, s)x(s) ds = 0,

(1.11)
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R(t, s) and T (t, s) are defined similarly.
The basic result of the present paper is the relation between the following prop-

erties for (1.5): the existence of a non-oscillatory solution of (1.5), the existence of
an eventually positive solution of the corresponding differential inequality and the
existence of a nonnegative solution of some nonlinear integral inequality which is
explicitly constructed by (1.5). Theorems of this kind are well known and widely
applied for delay differential equations with positive coefficients. For (1.5) a result
of this type has never been stated before.

This paper is to be continued. In the second part we will consider applications
of this theory to equations of types (1.6)–(1.11).

2. Preliminaries

We consider a scalar delay differential equation (1.5) under the following assump-
tions:

(A1) R(t, ·), T (t, ·) are left continuous functions of bounded variation and for
each s their variations on the segment [t0, s]

PR(t, s) = varτ∈[t0,s]R(t, τ), PT (t, s) = varτ∈[t0,s]T (t, τ) (2.1)

are locally integrable functions in t, R(t, s) = R(t, t+), T (t, s) = T (t, t+),
t < s;

(A2) R(t, ·), T (t, ·) are nondecreasing functions for each t, R(t, s) ≥ T (t, s) for
each t, s;

(A3) For each t1 there exist s1 = s(t1) ≤ t1, r1 = r(t1) ≤ t1, such that R(t, s) = 0
for s < s1, t > t1, T (t, s) = 0 for s < r1, t > t1; in addition, functions s(t),
r(t) satisfy

lim
t→∞

s(t) = ∞, lim
t→∞

r(t) = ∞.

If (A3) holds then we can introduce the following functions

h(t) = inf
s
{s|R(t, s) 6= 0} , g(t) = inf

s
{s|T (t, s) 6= 0} , (2.2)

such that limt→∞ h(t) = ∞, limt→∞ g(t) = ∞, and (1.5) can be rewritten as

ẏ(t) +
∫ t

h(t)

y(s) dsR(t, s)−
∫ t

g(t)

y(s) dsT (t, s) = 0, t ≥ t0. (2.3)

If (A2) and (A3) hold, then obviously h(t) ≤ g(t).
Together with (2.3) we consider for each t0 ≥ 0 an initial-value problem

ẏ(t) +
∫ t

h(t)

y(s) dsR(t, s)−
∫ t

g(t)

y(s) dsT (t, s) = f(t), t ≥ t0, (2.4)

x(t) = ϕ(t), t < t0, x(t0) = x0. (2.5)

We also assume that the following hypothesis holds
(A4) f : [t0,∞) → R is a Lebesgue measurable locally essentially bounded func-

tion, ϕ : (−∞, t0) → R is a Borel measurable bounded function.
Definition. An absolutely continuous on each interval [t0, c] function x : R → R is
called a solution of problem (2.4), (2.5), if it satisfies (2.4) for almost all t ∈ [t0,∞)
and equalities (2.5) for t ≤ t0.
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Definition. For each s ≥ t0, a solution X(t, s) of the problem

ẋ(t)+
∫ t

h(t)

x(s) dsR(t, s)−
∫ t

g(t)

x(s) dsT (t, s) = 0, x(t) = 0, t < s, x(s) = 1, (2.6)

is called a fundamental function of (2.3).
We assume X(t, s) = 0, t0 ≤ t < s.

Lemma 2.1 ([2]). Let (A1), (A3), (A4) hold. Then there exists one and only one
solution of problem (2.4), (2.5) that can be presented in the form

x(t) =X(t, t0)x0 +
∫ t

t0

X(t, s)f(s)ds−
∫ t

t0

X(t, s) ds

∫ s

−∞
ϕ(τ) dτR(s, τ)

+
∫ t

t0

X(t, s) ds

∫ s

−∞
ϕ(τ) dτT (s, τ),

(2.7)

where ϕ(τ) = 0, if τ > t0.

Definition. We will say that an equation has a non-oscillatory solution if it has an
eventually positive or an eventually negative solution. Otherwise all solutions of
this equation are oscillatory.

Consider an equation with one distributed delay:

ẋ(t) +
∫ t

−∞
x(s) dsR(t, s) = 0, t ≥ t0. (2.8)

Lemma 2.2 ([3]). Let (A1)-(A3) hold for R(t, s) (all the conditions on T (t, s) in
(A1)-(A3) are omitted)
1) If there exists t1 ≥ t0 such that the inequality

u(t) ≥
∫ t

h(t)

exp
{∫ t

s

u(τ) dτ

}
dsR(t, s) (2.9)

has a nonnegative locally integrable solution u for t ≥ t1 (in (2.9) we assume
u(t) = 0 for t < t1), then (2.8) has a non-oscillatory solution.
2) If

lim sup
t→∞

∫ t

h(t)

dτ

∫ τ

h(τ)

dsR(t, s) = lim sup
t→∞

∫ t

h(t)

vars∈[h(τ),τ ]R(t, s) dτ <
1
e
, (2.10)

where h(t) is defined by (2.2), then (2.8) has a non-oscillatory solution.
3) If

lim inf
t→∞

∫ t

h(t)

dτ

∫ τ

h(τ)

dsR(t, s) = lim inf
t→∞

∫ t

h(t)

vars∈[h(τ),τ ]R(t, s) dτ >
1
e
, (2.11)

then all the solutions of (2.8) are oscillatory.

Let us also consider the equation

ẋ(t) +
∫ t

−∞
x(s) dsR1(t, s) = 0, t ≥ t0. (2.12)

Lemma 2.3 ([3]). Suppose (A1)-(A3) hold for R(t, s) and R1(t, s). If a function
R(t, ·)−R1(t, ·) is nondecreasing for each t and (2.8) has a non-oscillatory solution,
then (2.12) also has a non-oscillatory solution. If a function R1(t, ·) − R(t, ·) is
nondecreasing for each t and all the solutions of (2.12) are oscillatory then all
solutions of (2.8) are oscillatory.
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We will also need the following trivial result.

Lemma 2.4. Let f, µ be nonnegative functions of bounded variation in [a, b]. Sup-
pose in addition that f is non-increasing and µ(a) = 0. Then

∫ b

a
f(t) dµ(t) ≥ 0.

Proof. Evidently,∫ b

a

f(t) dµ(t) = f(b)µ(b)− f(a)µ(a)−
∫ b

a

µ(t) df(t) = f(b)µ(b)−
∫ b

a

µ(t) df(t) ≥ 0.

3. Non-oscillation criteria

Consider together with (2.3) the delay differential inequality

ẏ(t) +
∫ t

h(t)

y(s) dsR(t, s)−
∫ t

g(t)

y(s) dsT (t, s) ≤ 0, t ≥ t0. (3.1)

The next theorem establishes sufficient non-oscillation conditions.

Theorem 3.1. Suppose (A1)-(A3) hold. Consider the following hypotheses:
1) There exists t1 ≥ t0 such that the inequality

u(t) ≥
∫ t

h(t)

exp
{∫ t

s

u(τ)dτ

}
dsR(t, s)−

∫ t

g(t)

exp
{∫ t

s

u(τ)dτ

}
dsT (t, s), (3.2)

with t ≥ t1, has a nonnegative locally integrable solution (we assume u(t) = 0 for
t < t1);
2) There exists t2 ≥ t0 such that X(t, s) > 0, t ≥ s ≥ t2;
3) Equation (2.3) has a non-oscillatory solution;
4) Inequality (3.1) has an eventually positive solution.
Then the implications 1) ⇒ 2) ⇒ 3) ⇒ 4) are valid.

Proof. 1) ⇒ 2). Step 1. Let us prove that the fundamental solution is nonnegative
for t ≥ s ≥ t1. To this end consider an initial-value problem

ẋ(t) +
∫ t

t1

x(s) dsR(t, s)−
∫ t

t1

x(s) dsT (t, s) = f(t), t ≥ t1, x(t) = 0, t ≤ t1.

(3.3)
Denote

z(t) = ẋ(t) + u(t)x(t), z(t) = 0, t ≤ t1, (3.4)

where x is the solution of (3.3) and u is a nonnegative solution of (3.2). Equality
(3.4) implies

x(t) =
∫ t

t1

exp
{
−

∫ t

s

u(τ)dτ
}

z(s)ds, t ≥ t1. (3.5)

After substituting (3.5) into (3.3) we have

z(t)− u(t)
∫ t

t1

exp
{
−

∫ t

s

u(τ) dτ
}

z(s) ds

+
∫ t

t1

( ∫ s

t1

exp
{
−

∫ s

θ

u(τ) dτ
}

z(θ) dθ
)
dsR(t, s)

−
∫ t

t1

( ∫ s

t1

exp
{
−

∫ s

θ

u(τ) dτ
}

z(θ) dθ
)
dsT (t, s) = f(t).
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In the second and the third integrals (in s) the integrand vanishes for s < t1. After
changing the order of integration in the second and the third integrals we have

z(t)− u(t)
∫ t

t1

exp
{
−

∫ t

s

u(τ) dτ
}

z(s) ds

+
∫ t

t1

z(s) ds

∫ t

s

exp
{
−

∫ θ

s

u(τ) dτ
}

dθR(t, θ)

−
∫ t

t1

z(s) ds

∫ t

s

exp
{
−

∫ θ

s

u(τ) dτ
}

dθT (t, θ) = f(t).

Thus the left hand side equals to

z(t)− u(t)
∫ h(t)

t1

exp
{
−

∫ t

s

u(τ) dτ
}

z(s) ds

+
∫ h(t)

t1

z(s) ds

∫ t

s

exp
{
−

∫ t

s

u(τ)dτ
}

exp
{∫ t

θ

u(τ) dτ
}

dθR(t, θ)

−
∫ h(t)

t1

z(s) ds

∫ t

s

exp
{
−

∫ t

s

u(τ)dτ
}

exp
{∫ t

θ

u(τ) dτ
}

dθT (t, θ)

− u(t)
∫ t

h(t)

exp
{
−

∫ t

s

u(τ) dτ
}

z(s) ds

+
∫ t

h(t)

z(s) ds

∫ t

h(t)

exp
{
−

∫ t

s

u(τ)dτ
}

exp
{∫ t

θ

u(τ) dτ
}

dθR(t, θ)

−
∫ t

h(t)

z(s) ds

∫ t

g(t)

exp
{
−

∫ t

s

u(τ)dτ
}

exp
{∫ t

θ

u(τ) dτ
}

dθT (t, θ)

−
∫ t

h(t)

z(s) ds

∫ s

h(t)

exp
{
−

∫ θ

s

u(τ) dτ
}

dθ[R(t, θ)− T (t, θ)]

−
∫ t

h(t)

z(s) ds

∫ g(t)

h(t)

exp
{
−

∫ θ

s

u(τ) dτ
}

dθT (t, θ)

which is equal to

z(t)− u(t)
∫ h(t)

t1

exp
{
−

∫ t

s

u(τ) dτ
}

z(s) ds

+
∫ h(t)

t1

z(s) ds

∫ t

s

exp
{
−

∫ t

h(t)

u(τ)dτ
}

exp
{∫ t

θ

u(τ) dτ
}

dθR(t, θ)

−
∫ h(t)

t1

z(s) ds

∫ t

s

exp
{
−

∫ t

g(t)

u(τ)dτ
}

exp
{∫ t

θ

u(τ) dτ
}

dθT (t, θ)

− u(t)
∫ t

h(t)

exp
{
−

∫ t

s

u(τ) dτ
}

z(s) ds

+
∫ t

h(t)

z(s) ds

∫ t

h(t)

exp
{
−

∫ t

s

u(τ)dτ
}

exp
{∫ t

θ

u(τ) dτ
}

dθR(t, θ)

−
∫ t

h(t)

z(s) ds

∫ t

g(t)

exp
{
−

∫ t

s

u(τ)dτ
}

exp
{∫ t

θ

u(τ) dτ
}

dθT (t, θ)
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−
∫ t

h(t)

z(s) ds

∫ s

h(t)

exp
{
−

∫ θ

s

u(τ) dτ
}

dθ[R(t, θ)− T (t, θ)]

−
∫ t

h(t)

z(s) ds

∫ g(t)

h(t)

exp
{
−

∫ θ

s

u(τ) dτ
}

dθT (t, θ)

This in turn is equal to

z(t)−
∫ t

t1

exp
{
−

∫ t

s

u(τ)dτ

}
z(s) ds

×
[
u(t)−

∫ t

h(t)

exp
{∫ t

θ

u(τ) dτ
}

dθR(t, θ) +
∫ t

g(t)

exp
{∫ t

θ

u(τ) dτ
}

dθT (t, θ)
]

− u(t)
∫ h(t)

t1

exp
{
−

∫ t

s

u(τ) dτ
}

z(s) ds

−
∫ t

h(t)

z(s) ds

∫ s

h(t)

exp
{
−

∫ θ

s

u(τ) dτ
}

dθ[R(t, θ)− T (t, θ)]

−
∫ t

h(t)

z(s) ds

∫ g(t)

h(t)

exp
{
−

∫ θ

s

u(τ) dτ
}

dθT (t, θ),

since R(t, s) = 0, s < h(t), T (t, s) = 0, s < g(t). Consequently we obtain an
operator equation

z −Hz = f, (3.6)

which is equivalent to (3.3), where

(Hz)(t) =
∫ t

t1

exp
{
−

∫ t

s

u(τ) dτ
}

z(s) ds
[
u(t)−

∫ t

h(t)

exp
{∫ t

θ

u(τ) dτ
}

dθR(t, θ)

+
∫ t

g(t)

exp
{∫ t

θ

u(τ) dτ
}

dθT (t, θ)
]

+
∫ t

h(t)

z(s) ds

∫ g(t)

h(t)

exp
{
−

∫ θ

s

u(τ) dτ
}

dθT (t, θ)

+ u(t)
∫ h(t)

t1

exp
{
−

∫ t

s

u(τ) dτ
}

z(s) ds

+
∫ t

h(t)

z(s) ds

∫ s

h(t)

exp
{
−

∫ θ

s

u(τ) dτ
}

dθ[R(t, θ)− T (t, θ)].

Let z(t) ≥ 0. Then by (3.2) the first term is positive, the last term is nonnegative
due to Lemma 2.4 (R(t, θ)− T (t, θ) is nonnegative and exp

{
−

∫ θ

s
u(τ) dτ

}
is non-

increasing in θ), i.e. operator H is positive.
Besides, in each final interval [t2, b] H is a sum of integral Volterra operators,

which are compact in the space of integrable functions. Hence [8], p.519 its spectral
radius r(H) = 0 < 1 and consequently if in (3.6) right hand side f is nonnegative,
then

z(t) = f(t) + (Hf)(t) + (H2f)(t) + (H3f)(t) + · · · ≥ 0.

We recall that the solution of (3.3) has form (3.5), with z being a solution of (3.6).
Thus if in (3.3) f(t) ≥ 0, then x(t) ≥ 0. On the other hand, the solution of (3.3)
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has representation

x(t) =
∫ t

t1

X(t, s)f(s) ds.

As was demonstrated above, f(t) ≥ 0 implies x(t) ≥ 0. Hence the kernel of the
integral operator is nonnegative, i.e. X(t, s) ≥ 0 for t ≥ s > t1.
Step 2 Let us prove that in fact the strict inequality X(t, s) > 0 holds. Denote

x(t) = X(t, t1)− exp
{
−

∫ t

t1

u(s)ds
}

, x(t) = 0, t ≤ t1.

and substitute it into the left hand side of (3.3):

X ′
t(t, t1) + u(t) exp

{
−

∫ t

t1

u(s) ds
}

+
∫ t

t1

X(s, t1) dsR(t, s)−
∫ t

t1

X(s, t1) dsT (t, s)

−
∫ t

t1

exp
{
−

∫ s

t1

u(τ) dτ
}

dsR(t, s) +
∫ t

t1

exp
{
−

∫ s

t1

u(τ) dτ
}

dsT (t, s)

= 0 + exp
{
−

∫ t

t1

u(s) ds
}[

u(t)−
∫ t

t1

exp
{∫ t

s

u(s) ds
}

ds(R(t, s)− T (t, s))
]
≥ 0.

Therefore, x(t) is a solution of (3.3) with a nonnegative right hand side. Hence as
shown above x(t) ≥ 0. Consequently

X(t, t1) ≥ exp
{
−

∫ t

t1

u(s)ds
}

> 0.

For s > t1 inequality X(t, s) > 0 can be proved similarly.

Implication 2) ⇒ 3): A function x(t) = X(t, t1) is a positive solution of (2.3) for
t ≥ t1.
Implication 3) ⇒ 4) is evident, which completes the proof. �

Necessary conditions for non-oscillation require some more constraints on R and
T .

(A5) For any t, R(t, s)− T (t, s− h(t) + g(t)) is non-decreasing in s and

lim sup
t→∞

T (t, t+)[g(t)− h(t)] ≤ l < 1.

Theorem 3.2. Under assumptions (A1), (A2), (A3), and (A5), the hypotheses
1)-4) of Theorem 3.1 are equivalent.

Proof. Let us prove that 4) ⇒ 1). Let y(t) be a positive solution of inequality (3.1)
for t ≥ t1.
Step 1. First we will prove that ẏ(t) ≤ 0. Hypotheses (A3),(A5) imply the
existence of a point t2 such that h(t) ≥ t1, g(t) ≥ t1 and for t ≥ t2,

T (t, t+)[g(t)− h(t)] ≤ l < 1 . (3.7)
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Inequality (3.1) for t ≥ t2 can be rewritten as

ẏ(t) +
∫ t

h(t)

y(s) dsR(t, s)−
∫ t

g(t)

y(s) dsT (t, s)

= ẏ(t) +
∫ t−g(t)+h(t)

h(t)

y(s) dsR(t, s)

−
∫ t−g(t)+h(t)

h(t)

y(s− h(t) + g(t)) dsT (t, s− h(t) + g(t))

+
∫ t

t−g(t)+h(t)

y(s) dsR(t, s)

= ẏ(t) +
∫ t

t−g(t)+h(t)

y(s) dsR(t, s)

+
∫ t−g(t)+h(t)

h(t)

(y(s)− y(s− h(t) + g(t))) dsT (t, s− h(t) + g(t))

+
∫ t−g(t)+h(t)

h(t)

y(s) ds(R(t, s)− T (t, s− h(t) + g(t))) ≤ 0.

(3.8)

Here the first integral term is nonnegative, the third term is also nonnegative by
(A5) and ∫ t−g(t)+h(t)

h(t)

[y(s)− y(s− h(t) + g(t))] dsT (t, s− h(t) + g(t))

=
∫ t

g(t)

[y(s + h(t)− g(t))− y(s)] dsT (t, s)

=
∫ t

g(t)

dsT (t, s)
∫ s+h(t)−g(t)

s

ẏ(τ) dτ .

Let us denote by L∞[t2, c] the space of all essentially bounded on [t2, c] functions
with the norm ‖x‖ = ess sup t2≤t≤c|x(t)| and evaluate the norm of the following
operator in this space

(Hx)(t) =
∫ t

g(t)

dsT (t, s)
∫ s

s+h(t)−g(t)

x(τ) dτ.

Then in the L∞[t2, c]-norm

‖Hx1 −Hx2‖ = ess sup
t2≤t≤c

∣∣∣ ∫ t

g(t)

dsT (t, s)
∫ s

s+h(t)−g(t)

[x1(τ)− x2(τ)] dτ
∣∣∣

≤ ess sup
s∈[t2,c)

∫ s

s+h(t)−g(t)

|x1(τ)− x2(τ)| dτ · vars∈[g(t),t]T (t, s)

≤ (T (t, t+)− T (t, g(t))‖x1 − x2‖(g(t)− h(t))

= T (t, t+)‖x1 − x2‖(g(t)− h(t)).

(here T (t, g(t)) = 0 by the definition of g(t)).
Since T (t, t+)(g(t)−h(t)) ≤ l < 1, then H is a contracting mapping in L∞[t2, c].

Besides, Hz ≥ 0, if z ≥ 0, Hz ≤ 0, if z ≤ 0. For any y, (3.8) can be rewritten in
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the form
ẏ = Hẏ + q, (3.9)

where q(t) ≤ 0 for t ≥ t2. Banach contraction theorem implies (3.9) has the unique
solution and for this solution we have ẏ = lim zn, where

zn = Hzn−1 + q, z0 = q.

Inequality q(t) ≤ 0 yields zn(t) ≤ 0, hence ẏ(t) ≤ 0, t2 ≤ t ≤ c. Since c ≥ t2 is an
arbitrary number we have ẏ(t) ≤ 0, t ≥ t2.
Step 2. Now let us prove that inequality (3.2) has an eventually nonnegative
solution. Denote

u(t) = − d

dt
ln

y(t)
y(t2)

, t ≥ t2,

where inequality ẏ(t) ≤ 0 implies that u(t) ≥ 0. Then

y(t) = y(t2) exp
{
−

∫ t

t2

u(s)ds
}

, t ≥ t2. (3.10)

We substitute (3.10) into (3.1) and obtain by carrying the exponent out of the
brackets:

− exp
{
−

∫ s

t2

u(τ) dτ
}

y(t2)
[
u(t)−

∫ t

h(t)

exp
{∫ t

s

u(τ) dτ
}

dsR(t, s)

+
∫ t

g(t)

exp
{∫ t

s

u(τ) dτ
}

dsT (t, s)
]
≤ 0, t ≥ t2,

which implies (3.2) and completes the proof of the theorem. �
Remark. Condition (A5) is rather restrictive, for the delay equation (1.6) it de-
scribes the case of two delays (n = m = 1), with a(t) ≥ b(t), h(t) ≤ g(t) and
lim supt→∞ b(t)[g(t)− h(t)] ≤ l < 1. This result coincides with [4, Thm. 1].

To obtain other necessary oscillation conditions we consider the following form
of equation (2.3):

ẏ(t) +
n∑

k=1

∫ t

hk(t)

y(s) dsRk(t, s)−
m∑

l=1

∫ t

gl(t)

y(s) dsTl(t, s) = 0, t ≥ t0, (3.11)

where Rk, Tl, hk, gl satisfy the following conditions:

(A1?) Rk(t, ·), Tl(t, ·) are left continuous functions of bounded variation and for
each s their variations on the segment [t0, s] PRk

(t, s), PTl
(t, s) are locally

integrable functions in t, Rk(t, s) = Rk(t, t+), Tl(t, s) = Tl(t, t+), t < s;
(A2?) Rk(t, ·), Tl(t, ·) are nondecreasing functions for each t, and

∑
k Rk(t, s) ≥∑

l Tl(t, s) for each t, s;
(A3?) For each k, l limt→∞ hk(t) = ∞, limt→∞ gl(t) = ∞.

Denote

R(t, s) =
n∑

k=1

Rk(t, s), T (t, s) =
m∑

l=1

Tl(t, s),

h(t) = max
k

hk(t), g(t) = min
l

gl(t).
(3.12)

Let us also introduce the following additional constraints:
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(add1) m = n, Rk(t, s) ≥ Tk(t, s) for each t, s, k = 1, . . . , n, for any t, k, function
Rk(t, s)− Tk(t, s− hk(t) + gk(t)) is nondecreasing in s and

lim sup
t→∞

n∑
k=1

Tk(t, t+)[gk(t)− hk(t)] < 1.

(add2) h(t) ≤ g(t), R(t, s) > T (t, s), R(t, s)−T (t, s−h(t) + g(t)) is nondecreasing
in s for any t and

lim sup
t→∞

[
T (t, t+)[g(t)− h(t)] +

n∑
k=1

Rk(t, t+) (h(t)− hk(t))

+
m∑

l=1

Tl(t, t+) (gl(t)− g(t))
]

< 1.

(3.13)

Remark. If (add2) holds, then (3.11) can be reduced to an equation for which (add1)
is satisfied with n + m + 1 terms:

ẏ(t) +
n∑

k=1

∫ t

hk(t)

y(s) dsRk(t, s)−
n∑

k=1

∫ t

h(t)

y(s) dsRk(t, s)

+
∫ t

h(t)

y(s) dsR(t, s)−
∫ t

g(t)

y(s) dsT (t, s)

+
m∑

l=1

∫ t

g(t)

y(s) dsTl(t, s)−
m∑

l=1

∫ t

gl(t)

y(s) dsTl(t, s) = 0, t ≥ t0,

(3.14)

Together with (3.11) consider the delay differential inequality

ẏ(t) +
n∑

k=1

∫ t

hk(t)

y(s) dsRk(t, s)−
m∑

l=1

∫ t

gl(t)

y(s) dsTl(t, s) ≤ 0, t ≥ t0. (3.15)

The following theorem establishes non-oscillation criteria for (3.11).

Theorem 3.3. Suppose Rk, Tl, hk, gk satisfy (A1?)-(A3?) and at least one of con-
ditions (add1), (add2) hold. Then the following hypotheses are equivalent:
1) There exists t1 ≥ t0 such that the inequality

u(t) ≥
n∑

k=1

∫ t

hk(t)

exp
{∫ t

s

u(τ)dτ

}
dsRk(t, s)

−
m∑

l=1

∫ t

gl(t)

exp
{∫ t

s

u(τ)dτ

}
dsTl(t, s), t ≥ t1,

(3.16)

has a nonnegative locally integrable solution (we assume u(t) = 0 for t < t1);
2) There exists t2 ≥ t0 such that X(t, s) > 0, t ≥ s ≥ t2;
3) Equation (3.11) has a non-oscillatory solution;
4) Inequality (3.15) has an eventually positive solution.

Proof. Since (3.11) is a special case of (2.3), it is enough to prove the implication
4) ⇒ 1). Step 2 of the proof repeats the proof in the case n = m = 1, so we will
present here only Step 1.

Suppose (add1) holds. Let us prove that 4) ⇒ 1). Let y(t) be a positive solution
of inequality (3.15) for t ≥ t1.
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First we will prove that ẏ(t) ≤ 0. Hypotheses (A3?), (add1) imply the existence
of a point t2 such that h(t) ≥ t1, g(t) ≥ t1 and for t ≥ t2,

n∑
k=1

Tk(t, t+)[gk(t)− hk(t)] ≤ l < 1 . (3.17)

Inequality (3.15) for t ≥ t2 can be rewritten as

ẏ(t) +
n∑

k=1

[ ∫ t

hk(t)

y(s) dsRk(t, s)−
∫ t

gk(t)

y(s) dsTk(t, s)
]

= ẏ(t) +
n∑

k=1

[ ∫ t−gk(t)+hk(t)

hk(t)

y(s) dsR(t, s)

−
∫ t−gk(t)+hk(t)

hk(t)

y(s− hk(t) + gk(t)) dsTk(t, s− hk(t) + gk(t))

+
∫ t

t−gk(t)+hk(t)

y(s) dsRk(t, s)
]

= ẏ(t) +
n∑

k=1

[ ∫ t

t−g(t)+h(t)

y(s) dsRk(t, s)

+
∫ t−gk(t)+hk(t)

hk(t)

(y(s)− y(s− h(t) + g(t))) dsTk(t, s− hk(t) + gk(t))

+
∫ t−gk(t)+hk(t)

hk(t)

y(s) ds(Rk(t, s)− Tk(t, s− hk(t) + gk(t)))
]
≤ 0.

Here the first integral term in the brackets is nonnegative, the third term is also
nonnegative by (add1) for each k and∫ t−gk(t)+hk(t)

hk(t)

[y(s)− y(s− hk(t) + gk(t))] dsTk(t, s− hk(t) + gk(t))

=
∫ t

gk(t)

[y(s + hk(t)− gk(t))− y(s)] dsTk(t, s)

=
∫ t

gk(t)

dsTk(t, s)
∫ s+hk(t)−gk(t)

s

ẏ(τ) dτ.

Let us evaluate the norm of the operators

(Hkx)(t) =
∫ t

gk(t)

dsTk(t, s)
∫ s

s+hk(t)−gk(t)

x(τ) dτ, (Hx)(t) =
n∑

k=1

(Hkx)(t)

in L∞[t2, c]. Then, similar to the proof of Theorem 3.2, in L∞[t2, c]-norm,

‖Hkx1 −Hkx2‖ ≤ Tk(t, t+)‖x1 − x2‖(gk(t)− hk(t)),

thus ‖Hk‖ ≤ Tk(t, t+)(gk(t)− hk(t)) and

‖H‖ ≤
n∑

k=1

‖Hk‖ ≤
n∑

k=1

Tk(t, t+)(gk(t)− hk(t)) < 1.
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Consequently, H is a contracting mapping in L∞[t2, c]. Besides, Hz ≥ 0, if z ≥ 0,
Hz ≤ 0, if z ≤ 0. The rest of the proof coincides with the proof of Theorem 3.2.
The case (add2) is reduced to (add1). �

Theorems 1-3 yield the following comparison result between the oscillation prop-
erties of the equation

ẏ(t) +
n∑

k=1

∫ t

−∞
y(s) dsLk(t, s)−

m∑
l=1

∫ t

−∞
y(s) dsDl(t, s) = 0, t ≥ t0, (3.18)

and the oscillation properties of (3.11).

Theorem 3.4. 1. If (A1?) − (A3?) and anyone of the conditions (add1),(add2)
holds for (3.18) (where Rk, Tl are changed by Lk, Dl), Lk(t, s) ≥ Rk(t, s), Dl(t, s) ≤
Tl(t, s) and (3.18) has a non-oscillatory solution, then (3.11) has a non-oscillatory
solution.
2. If (A1?)− (A3?) and any one of the conditions (add1),(add2) holds for (3.11),
Lk(t, s) ≤ Rk(t, s), Dl(t, s) ≥ Tl(t, s) and all solutions of (3.18) are oscillatory,
then all solutions of (3.11) are oscillatory.

Proof. 1). If (3.18) has a non-oscillatory solution, then there exists a solution
u(t) ≥ 0 of inequality (3.16), where the functions Rk, Tl are replaced by Lk, Dl.
Hence u is also a solution of (3.16) with parameters Rk, Tl. Theorem 3.3 implies
now (3.11) has a non-oscillatory solution.
2) follows from 1) which completes the proof. �

Let us study the asymptotic behavior of non-oscillatory solutions of (3.11).

Theorem 3.5. Suppose (A1?)-(A3?) and anyone of the following conditions holds:
1) (add1) is satisfied and for some k∫ ∞

t0

[Rk(t, t+)− Tk(t, t+)] dt = ∞; (3.19)

2) (add2) is satisfied and∫ ∞

t0

[R(t, t+)− T (t, t+)] dt = ∞. (3.20)

Then any non-oscillatory solution y of (3.11) satisfies limt→∞ y(t) = 0.

Proof. Assume y(t) > 0, t ≥ t1, is a positive solution of (3.11). The proof of
Theorem 3.2 implies the existence of a point t2 ≥ t1 such that ẏ(t) ≤ 0 for t ≥ t2.
Then u(t) = − ẏ(t)

y(t) , t ≥ t2, is a nonnegative solution of (3.16). Suppose 1) holds.
Then this inequality yields

u(t) ≥
n∑

k=1

[ ∫ t−gk(t)+hk(t)

hk(t)

exp
{∫ t

s

u(τ)dτ
}

dsRk(t, s)

−
∫ t−gk(t)+hk(t)

hk(t)

exp
{∫ t

s+g(t)−h(t)

u(τ)dτ
}

dsTk(t, s + g(t)− h(t))

+
∫ t

t−gk(t)+hk(t)

exp
{∫ t

s

u(τ)dτ
}

dsRk(t, s)
]

≥
n∑

k=1

[ ∫ t−gk(t)+hk(t)

hk(t)

exp
{∫ t

s

u(τ)dτ
}

ds(Rk(t, s)− Tk(t, s + g(t)− h(t)))
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+
∫ t−gk(t)+hk(t)

hk(t)

(
exp

{∫ t

s

u(τ)dτ
}
− exp

{∫ t

s+g(t)−h(t)

u(τ)dτ
})

× dsTk(t, s + g(t)− h(t))
]

+
∫ t

t−gk(t)+hk(t)

exp
{∫ t

s

u(τ)dτ

}
dsRk(t, s)

≥
∫ t+hk(t)−gk(t)

hk(t)

ds[Rk(t, s)− Tk(t, s− hk(t) + gk(t))]

+
∫ t

t−gk(t)+hk(t)

dsRk(t, s)

=
∫ t

hk(t)

dsRk(t, s)−
∫ t+hk(t)−gk(t)

hk(t)

dsTk(t, s− hk(t) + gk(t))

= Rk(t, t+)− Tk(t, t+).

Thus if (3.19) holds, then
∫∞

t0
u(s)ds = ∞. The solution y of (3.11) has the form

(3.10). Then limt→∞ y(t) = 0. Case 2) is treated similarly. �

4. Explicit Oscillation and Non-Oscillation Results

To obtain some explicit oscillation results we will need to reformulate Lemma
2.2. Consider the equation

ẋ(t) +
n∑

k=1

∫ t

hk(t)

x(s)mk(t, s) dsRk(t, s) = 0, (4.1)

which is a special case of (2.8). Denote H1(t) = mink hk(t),H2(t) = maxk hk(t).
Then Lemma 2.2 can be reformulated in the following way.

Lemma 4.1. Suppose (A1)-(A3) hold for Rk(t, s) (all the constraints on Tk(t, s)
in (A1)-(A3) are omitted), mk are locally absolutely continuous in s for each t and
locally essentially bounded in t for each s, mk ≥ 0.
1) If there exists t1 ≥ t0 such that the inequality

u(t) ≥
n∑

k=1

∫ t

hk(t)

exp
{∫ t

s

u(τ) dτ
}

mk(t, s)dsRk(t, s) (4.2)

has a nonnegative locally integrable solution u for t ≥ t1 (in (4.2) we assume
u(t) = 0 for t < t2), then (4.1) has a non-oscillatory solution.
2) If

lim sup
t→∞

n∑
k=1

∫ t

H1(t)

dτ

∫ τ

h(τ)

mk(t, s)dsR(t, s) <
1
e
, (4.3)

where h(t) is defined by (2.2), then equation (4.1) has a non-oscillatory solution.
3) If

lim inf
t→∞

n∑
k=1

∫ t

H2(t)

dτ

∫ τ

h(τ)

mk(t, s)dsRk(t, s) >
1
e
, (4.4)

then all the solutions of (4.1) are oscillatory.
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Consider the following two equations which are also partial cases of (2.8):

ẋ(t) +
∫ t

h(t)

x(s) ds[R(t, s)− T (t, s− h(t) + g(t))]

+
∫ t

g(t)

x(s)
(

exp
{∫ s

s+h(t)−g(t)

[R(τ, τ+)− T (τ, τ+)]dτ
}
− 1

)
dsT (t, s) = 0

(4.5)

and

ẋ(t) +
∫ t

g(t)

x(s)
(

exp
{∫ s

s−g(t)+h(t)

[R(τ, τ+)− T (τ, τ+)]dτ
}
− 1

)
×dsR(t, s− g(t) + h(t)) +

∫ t

g(t)

x(s) ds[R(t, s− g(t) + h(t))− T (t, s)] = 0.

(4.6)

The oscillation properties of these equations will be compared to the properties of
(2.3).

Theorem 4.2. Suppose (A1)-(A3), (A5) hold for (2.3). If all solutions of either
(4.5) or (4.6) are oscillatory, then all solutions of (2.3) are also oscillatory.

Proof. 1) Suppose all solutions of (4.5) are oscillatory and (2.3) has a non-oscillatory
solution. By Theorem 3.2 there exists a nonnegative solution u(t) of the inequality
(3.2), i.e.

u(t)

≥
∫ t

h(t)

exp
{∫ t

s

u(τ)dτ
}

dsR(t, s)−
∫ t

g(t)

exp
{∫ t

s

u(τ)dτ
}

dsT (t, s)

=
∫ t

h(t)

exp
{∫ t

s

u(τ)dτ
}

dsR(t, s)−
∫ t

h(t)

exp
{∫ t

s

u(τ)dτ
}

dsT (t, s− h(t) + g(t))

+
∫ t

h(t)

exp
{∫ t

s

u(τ)dτ
}

dsT (t, s− h(t) + g(t))−
∫ t

g(t)

exp
{∫ t

s

u(τ)dτ
}

dsT (t, s)

=
∫ t

h(t)

exp
{∫ t

s

u(τ)dτ
}

ds[R(t, s)− T (t, s− h(t) + g(t))]

+
∫ t+g(t)−h(t)

g(t)

exp
{∫ t

s+h(t)−g(t)

u(τ)dτ
}

dsT (t, s)

−
∫ t

g(t)

exp
{∫ t

s

u(τ)dτ
}

dsT (t, s)

≥
∫ t

h(t)

exp
{∫ t

s

u(τ)dτ
}

ds[R(t, s)− T (t, s− h(t) + g(t))]

+
∫ t

g(t)

exp
{∫ t

s

u(τ)dτ
}(

exp
{∫ s

s+h(t)−g(t)

u(τ)dτ
}
− 1

)
dsT (t, s).

The second term in the right hand side is obviously nonnegative, thus

u(t) ≥
∫ t

h(t)

exp
{∫ t

s

u(τ)dτ
}

ds[R(t, s)− T (t, s− h(t) + g(t))]

≥
∫ t

h(t)

ds[R(t, s)− T (t, s− h(t) + g(t))]
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= R(t, t+)− T (t, t+),

which yields

u(t) ≥
∫ t

h(t)

exp
{∫ t

s

u(τ)dτ
}

ds[R(t, s)− T (t, s− h(t) + g(t))]

+
∫ t

g(t)

exp
{∫ t

s

u(τ)dτ
}

×
(

exp
{∫ s

s+h(t)−g(t)

[R(τ, τ)− T (τ, τ)]dτ
}
− 1

)
dsT (t, s).

By Lemma 4.1 equation (4.5) has a non-oscillatory solution, which leads to a con-
tradiction.
2) Similarly, let (2.3) have a non-oscillatory solution. Then there exists a nonneg-
ative function u(t), such that

u(t)

≥
∫ t+g(t)−h(t)

g(t)

exp
{∫ t

s−g(t)+h(t)

u(τ)dτ
}

dsR(t, s− g(t) + h(t))

−
∫ t

g(t)

exp
{∫ t

s

u(τ)dτ
}

dsT (t, s)

=
∫ t+g(t)−h(t)

t

exp
{∫ t

s−g(t)+h(t)

u(τ)dτ
}

dsR(t, s− g(t) + h(t))

+
∫ t

g(t)

exp
{∫ t

s−g(t)+h(t)

u(τ)dτ
}

dsR(t, s− g(t) + h(t))

−
∫ t

g(t)

exp
{∫ t

s

u(τ)dτ
}

dsT (t, s)

=
∫ t

t−g(t)+h(t)

exp
{∫ t

s

u(τ)dτ
}

dsR(t, s)

+
∫ t

g(t)

exp
{∫ t

s

u(τ)dτ
}(

exp
{∫ s

s−g(t)+h(t)

u(τ)dτ
}
− 1

)
dsR(t, s− g(t) + h(t))

+
∫ t

g(t)

exp
{∫ t

s

u(τ)dτ
}

ds[R(t, s− g(t) + h(t))− T (t, s)]

≥
∫ t

g(t)

exp
{∫ t

s

[R(τ, τ+)− T (τ, τ+)]dτ
}

×
(

exp
{∫ s

s−g(t)+h(t)

u(τ)dτ
}
− 1

)
dsR(t, s− g(t) + h(t))

+
∫ t

g(t)

exp
{∫ t

s

u(τ)dτ
}

ds[R(t, s− g(t) + h(t))− T (t, s)].

Therefore, by Lemma 4.1 equation (4.6) has a non-oscillatory solution.
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Corollary 4.3. Suppose (A1)-(A3), (A5) hold for (2.3). If all solutions of either

ẋ(t) +
∫ t

h(t)

x(s) ds[R(t, s)− T (t, s− h(t) + g(t))]

+
∫ t

g(t)

x(s)
( ∫ s

s+h(t)−g(t)

[R(τ, τ+)− T (τ, τ+)]
)

dsT (t, s) = 0
(4.7)

or

ẋ(t) +
∫ t

g(t)

x(s)
( ∫ s

s−g(t)+h(t)

[R(τ, τ+)− T (τ, τ+)]dτ
)

dsR(t, s− g(t) + h(t))

+
∫ t

g(t)

x(s) ds[R(t, s− g(t) + h(t))− T (t, s)] = 0 (4.8)

are oscillatory, then all solutions of (2.3) are also oscillatory.

Proof. The statement of the corollary is an immediate consequence of the inequality
ex − 1 ≥ x, x ≥ 0, and comparison Lemma 2.3 (preliminary Lemma 2.3 has to be
reformulated to include a more general case, similar to the statement of Lemma 4.1
when compared to Lemma 2.2).

Corollary 4.4. Suppose (A1)-(A3), (A5) hold for (2.3) and at least one of the
following four inequalities hold:

lim inf
t→∞

{∫ t

h(t)

[R(t, τ)− T (t, τ − h(t) + g(t))]dτ

+
∫ t

g(t)

dτ

∫ τ

h(τ)

(
exp

{∫ s

s+h(t)−g(t)

[R(u, u+)−T (u, u+)]du
}
− 1

)
dsT (t, s)

}
>

1
e

lim inf
t→∞

{∫ t

h(t)

[R(t, τ+)− T (t, τ − h(t) + g(t))] dτ

+
∫ t

g(t)

dτ

∫ τ

h(τ)

( ∫ s

s+h(t)−g(t)

[R(u, u+)− T (u, u+)]du
)

dsT (t, s)
}

>
1
e

lim inf
t→∞

{∫ t

g(t)

dτ

∫ τ

g(τ)

(
exp

{∫ s

s−g(t)+h(t)

[R(u, u+)− T (u, u+)]du
}
− 1

)
× dsR(t, s− g(t) + h(t)) +

∫ t

g(t)

[R(t, τ − g(t) + h(t))− T (t, τ)] dτ
}

>
1
e

lim inf
t→∞

{∫ t

g(t)

dτ

∫ τ

g(τ)

( ∫ s

s−g(t)+h(t)

[R(u, u+)− T (u, u+)]

× du
)

dsR(t, s− g(t) + h(t)) +
∫ t

g(t)

[R(t, τ − g(t) + h(t))− T (t, τ)]
}

>
1
e

Then all solutions of (1.5) are oscillatory.

The proof of this corollary follows from Lemma 4.1. Similar results can be
obtained for (3.11).
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Theorem 4.5. Suppose Rk, Tl, hk, gl satisfy (A1?)-(A3?) and condition (add1).
If all solutions of either

ẋ(t) +
n∑

k=1

∫ t

hk(t)

x(s) ds[Rk(t, s)− Tk(t, s− hk(t) + gk(t))] +
n∑

k=1

∫ t

gk(t)

x(s)

×
(

exp
{∫ s

s+hk(t)−gk(t)

[Rk(τ, τ+)− Tk(τ, τ+)]dτ
}
− 1

)
dsTk(t, s) = 0 (4.9)

or

ẋ(t) +
n∑

k=1

∫ t

gk(t)

x(s)
(

exp
{∫ s

s−gk(t)+hk(t)

[Rk(τ, τ+)− Tk(τ, τ+)]dτ
}
− 1

)
× dsRk(t, s−gk(t)+hk(t))+

n∑
k=1

∫ t

gk(t)

x(s) ds[Rk(t, s−gk(t)+hk(t))−Tk(t, s)] = 0

(4.10)

are oscillatory, then all solutions of (3.11) are also oscillatory.

Let us proceed to non-oscillation conditions.

Theorem 4.6. Suppose (A1)-(A3), (A5) hold for (2.3) and there exists λ, 0 <
λ < 1, such that

lim sup
t→∞

∫ g(t)

h(t)

[R(s, s+)− λT (s, s+)] ds <
1
e

ln
1
λ

, (4.11)

lim sup
t→∞

∫ t

h(t)

[R(s, s+)− λT (s, s+)]ds <
1
e
. (4.12)

Then (2.3) has a non-oscillatory solution.

Proof. By (4.12) there exists t1 ≥ t0 such that for t ≥ t1 the function

u(t) = e[R(t, t+)− λT (t, t+)] (4.13)

is a solution of the inequality

u(t) ≥ exp
{∫ t

h(t)

u(τ)dτ
}

[R(t, t+)− λT (t, t+)],

which can be rewritten in the form

u(t) ≥ exp
{∫ t

h(t)

u(τ)dτ
}[ ∫ t

h(t)

dsR(t, s)− λ

∫ t

g(t)

dsT (t, s)
]

= exp
{∫ t

h(t)

u(τ)dτ
}∫ t

h(t)

ds[R(t, s)− λT (t, s− h(t) + g(t))]

=
∫ t

h(t)

exp
{∫ t

h(t)

u(τ)dτ
}

ds[R(t, s)− λT (t, s− h(t) + g(t))].

The function R(t, s)− λT (t, s− h(t) + g(t)) = (R(t, s)− T (t, s− h(t) + g(t)) + (1−
λT (t, s − h(t) + g(t))) is nondecreasing as a sum of two nondecreasing functions,
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consequently, the integral becomes smaller if the function under the integral is
changed by a smaller one:

u(t) ≥
∫ t

h(t)

exp
{∫ t

s

u(τ)dτ
}

ds[R(t, s)− λT (t, s− h(t) + g(t))]

=
∫ t

h(t)

exp
{∫ t

s

u(τ)dτ
}

dsR(t, s)−
∫ t

g(t)

exp
{∫ t

s

u(τ)dτ
}

dsT (t, s)

+
[ ∫ t

g(t)

exp
{∫ t

s

u(τ)dτ
}

dsT (t, s)

− λ

∫ t

h(t)

exp
{∫ t

s

u(τ)dτ
}

dsT (t, s− h(t) + g(t))
]

(4.14)

Let us demonstrate that the expression in the brackets is nonnegative. Inequality
(4.11) implies for u defined by (4.13), t being large enough and any s ≥ g(t):∫ s

s+h(t)−g(t)

u(τ)dτ ≤ ln
1
λ

, (4.15)

which yields∫ t

g(t)

exp
{∫ t

s

u(τ)dτ
}

dsT (t, s)− λ

∫ t

h(t)

exp
{∫ t

s

u(τ)dτ
}

dsT (t, s− h(t) + g(t))

=
∫ t

g(t)

(
exp

{∫ t

s

u(τ)dτ
}
− λ exp

{∫ t

s+h(t)−g(t)

u(τ)dτ
})

dsT (t, s)

=
∫ t

g(t)

exp
{∫ t

s

u(τ)dτ
}(

1− λ exp
{∫ s

s+h(t)−g(t)

u(τ)dτ
})

dsT (t, s) ≥ 0.

By inequalities (4.14) and (4.15) we have

u(t) ≥
∫ t

h(t)

exp
{∫ t

s

u(τ)dτ
}

dsR(t, s)−
∫ t

g(t)

exp
{∫ t

s

u(τ)dτ
}

dsT (t, s),

Hence u is a nonnegative solution of (3.2). By Theorem 3.1 equation (2.3) has a
non-oscillatory solution. �

Corollary 4.7. Suppose (A1)-(A3), (A5) hold for (2.3) and

lim sup
t→∞

∫ t

h(t)

[
R(s, s+)− 1

e
T (s, s+)

]
ds <

1
e
. (4.16)

Then (2.3) has a non-oscillatory solution.

This corollary is obtained by setting λ = 1/e in Theorem 4.6. Similar to Theorem
4.6 the following result is obtained.

Theorem 4.8. Suppose n = m, conditions (A1?)-(A3?), (add1) and the following
inequality

lim sup
t→∞

n∑
k=1

∫ t

hk(t)

[Rk(s, s+)− 1
e
Tk(s, s+)]ds <

1
e

(4.17)

hold. Then (3.11) has a non-oscillatory solution.
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Remark. The coefficient 1
e of b(s) is not improvable. Indeed, for the equation

ẋ(t) + ax(t− τ)− bx(t) = 0 (4.18)

the inequality

a ≤ ebτ

τe
(4.19)

is necessary and sufficient for non-oscillation.

Theorem 4.9. Suppose (A1)-(A3), (A5) hold for (2.3) and there exist nondecreas-
ing for each t functions L(t, s), D(t, s), such that

D(t, s) ≤ T (t, s) ≤ R(t, s) ≤ L(t, s)

and there exist finite limits

B11 = lim
t→∞

∫ t

h(t)

L(s, s+)ds, B12 = lim
t→∞

∫ t

h(t)

D(s, s+)ds,

B21 = lim
t→∞

∫ t

g(t)

L(s, s+)ds, B22 = lim
t→∞

∫ t

g(t)

D(s, s+)ds.

(4.20)

Suppose in addition that the system
lnx1 > x1B11 − x2B12

lnx2 < x1B21 − x2B22
(4.21)

has a positive solution {x1;x2} such that eventually x1L(t, T+) ≥ x2D(t, t+). Then
(2.3) has a non-oscillatory solution.

Proof. Consider the function u(t) = x1L(t, t+) − x2D(t, t+) which is eventually
nonnegative. The system (4.21) yields

x1 > exp{x1B11 − x2B12}, x2 < exp{x1B21 − x2B22}.
By definitions (4.20) there exists t1 ≥ t0 such that for t ≥ t1

x1 ≥ exp
{

x1

∫ t

h(t)

L(s, s+)ds− x2

∫ t

h(t)

D(s, s+)ds
}

= exp
{∫ t

h(t)

u(s)ds
}

,

−x2 ≥ − exp
{

x1

∫ t

g(t)

L(s, s+)ds− x2

∫ t

g(t)

D(s, s+)ds
}

= − exp
{∫ t

g(t)

u(s)ds
}

.

Similar to the definition of h, g in (h) let us define functions H(t), G(t) for
L(t, s), D(t, s). Then H(t) ≤ h(t), G(t) ≥ g(t). Since L(t, ·), D(t, ·) are nonde-
creasing for each t, then for any t ≥ t1

x1L(t, t+) =
∫ t

H(t)

x1dsL(t, s) ≥
∫ t

h(t)

exp
{∫ s

h(s)

u(τ)dτ
}

dsL(t, s),

−x2D(t, t+) = −
∫ t

G(t)

x2dsD(t, s) ≥ −
∫ t

g(t)

exp
{∫ s

g(s)

u(τ)dτ
}

dsD(t, s).

The summation gives

u(t) ≥
∫ t

h(t)

exp
{∫ s

h(s)

u(τ)dτ
}

dsL(t, s)−
∫ t

g(t)

exp
{∫ s

g(s)

u(τ)dτ
}

dsD(t, s).

By Theorem 3.1 equation (2.3), where R, T are changed by L,D, respectively,
has a non-oscillatory solution. Theorem 3.4 implis (2.3) also has a non-oscillatory
solution. �
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