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VANISHING NON-LOCAL REGULARIZATION OF A SCALAR
CONSERVATION LAW

JÉRÔME DRONIOU

Abstract. We prove that the solution to the regularization of a scalar con-
servation law by a fractional power of the Laplacian converges, as the regular-

ization vanishes, to the entropy solution of the hyperbolic problem. We also

give an error estimate when the initial condition has bounded variation.

1. Introduction

We consider the problem

∂tu
ε(t, x) + div(f(uε))(t, x) + εg[uε(t, ·)](x) = 0 , t > 0 , x ∈ RN ,

uε(0, x) = u0(x) , x ∈ RN ,
(1.1)

where f = (f1, . . . , fN ) ∈ (C∞(R))N , u0 ∈ L∞(RN ) and g is the non-local operator
defined through the Fourier transform by

F(g[uε(t, ·)])(ξ) = |ξ|λF(uε(t, ·))(ξ) , with λ ∈]1, 2], (1.2)

that is to say g is the fractionnal power, of order λ/2 of the Laplacian.
In the case ε = 0, this equation reduces to the classical scalar conservation law

∂tu(t, x) + div(f(u))(t, x) = 0 , t > 0 , x ∈ RN ,

u(0, x) = u0(x) , x ∈ RN .
(1.3)

Existence and uniqueness of a solution to this equation, in the L∞ framework, has
been established by Kruzhkov [8]; it relies on so-called “entropy solutions”, which
must satisfy particular inequalities. The case λ = 2 and ε > 0 in (1.1) corresponds
to g[uε(t, ·)](x) = −(2π)2∆uε(t, x) and is called the parabolic regularization of
(1.3). In this situation, existence, uniqueness and regularity of solutions to this
equation are well-known (see e.g. [10]), and an entropy solution of (1.3) can be
obtained by proving that, as ε → 0, the solution to this parabolic regularization
converges to a function which satisfies the entropy inequalities of (1.3).

For general λ ∈]1, 2] and ε > 0, the study of (1.1) less classical, though moti-
vated by physical problems of detonation (see [4], [5] for example), hydrodynamics,
molecular biology, etc... (see the introduction of [1] and references therein). A
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number of papers ([1], [2]...) have studied this equation (also called “fractal con-
servation law”). The existence results in [1] for (1.1) give global solutions in the
case N = 1, but which are not very regular, or local (in time) solutions for general
N ≥ 1 and small initial data, but still not regular (in Morrey spaces). In [2] or [3],
the authors consider a parabolic regularization of (1.1), that is to say they add a
Laplacian operator to the equation; thanks to this second order operator, a global
solution is obtained and regularity results can be proved. These papers are mainly
interested in asymptotic behaviours for this equation.

However, one could consider (1.1) as a (possible) regularization of (1.3), without
having to add another term. In this case, a natural space for the initial data is
L∞(RN ), and the question is whether or not (1.1) gives rise to a solution which is
regular for t > 0 (i.e. whether or not g has the same effect on the regularity as −∆).
It has been proved in [6] that this indeed happens: there exists a unique bounded
solution to (1.1), in a suitable sense, and this solution belongs to C∞(]0,∞[×RN ).
It is constructed via a splitting method, and inherits thus all the properties that
are common to both the conservation law and the equation ∂tv + εg[v] = 0, such
as essential bounds, comparison and contraction principles, etc...; its regularity is
proved using the Banach fixed point theorem on Duhamel’s formula for ∂tu

ε +
εg[uε] = −div(f(uε)).

Once it has been established that (1.1) has the same regularizing effect, with
respect to (1.3), as the parabolic equation, the next question is to know if, as in the
parabolic case, the solution to (1.1) remains close to the solution of (1.3) for small
ε. This is the aim of the present work, and our main results are the following.

Theorem 1.1. Let u0 ∈ L∞(RN ). The solution to (1.1) converges, as ε → 0 and
in C([0, T ];L1

loc(RN )) for all T > 0, to the entropy solution of (1.3).

Remark 1.2. This theorem (as well as the results of [6]) is valid for more general g
(roughly speaking, the methods work for operators whose kernels are approximate
units — see subsection 2.1). For example, sums of operators of the kind (1.2)
(or more general Lévy operators) can be considered, with, as a special case, the
equation ∂tu

ε + div(f(uε)) + εg[uε]− ε∆uε = 0 (as in [2], [3]).

As a by-product of the proof of Theorem 1.1, we also obtain the following error
estimate.

Theorem 1.3. Let u0 ∈ L∞(RN )∩L1(RN )∩BV (RN ), uε be the solution to (1.1)
and u be the entropy solution to (1.3). Then, for all T > 0, ‖uε−u‖C([0,T ];L1(RN )) =
O(ε1/λ).

Remark 1.4. This result in the case of parabolic regularization (λ = 2) has already
been proved in [9]. The special feature of Theorem 1.3 is that it establishes an
elegant relationship between the rate of convergence and the order of the operator
chosen for the regularization of (1.3); in fact, this error estimate is optimal (see
Remark 2.1).

Remark 1.5. Note that, since uε and u are bounded (by ‖u0‖∞), a conver-
gence in L1(RN ) (respectively in L1

loc(RN )) implies, by interpolation, a conver-
gence in Lp(RN ) (respectively in Lp

loc(RN )) for all finite p. For example, un-
der the hypotheses of Theorem 1.3, we have, for all p ∈ [1,∞[ and all T > 0,
‖uε − u‖C([0,T ];Lp(RN )) = O(ε

1
pλ ).



EJDE–2003/117 VANISHING NON-LOCAL REGULARIZATION 3

This paper is organized as follows. In the next section, we prove approximate
entropy inequalities for uε; this function has been obtained in [6], using a splitting
method, as a limit of explicit functions: we first prove approximate entropy inequal-
ities on those explicit functions, and then deduce the corresponding inequalities for
uε; it is not clear that these estimates could be inferred from the methods of [1]. In
Section 3, we use Kruzhkov’s classical doubling variable technique to combine the
approximate entropy inequalities on uε and the entropy inequalities on u, which
gives an estimate on |uε − u| and proves Theorem 1.1. Section 4 is devoted to the
proof of Theorem 1.3, which is an easy consequence of the estimates obtained in
Section 3. We have gathered, in Section 5, some results concerning g and its kernel,
which we use in the rest of the work.

2. Approximate entropy inequalities for the solution of (1.1)

To prove approximate entropy inequalities for uε, we need to recall the construc-
tion of this function (see [6]).

2.1. Construction of uε. The solution to ∂tv + εg[v] = 0 with initial condition
v(0, ·) = v0 is (at least formally) given by v(t, ·) = Kε(t, ·) ∗ v0, where

Kε(t, x) = F−1(e−εt|·|λ)(x).

The main property of this kernel is that (Kε(t, ·))t→0 is an approximate unit. This
means that Kε(t, ·) is non-negative (see [11]), has integral equal to 1 and that, for
all ν > 0,

∫
|y|≥ν

Kε(t, y) dy → 0 as t→ 0 (1).
We assume here that u0 ∈ C∞c (RN ) (though u0 ∈ L∞(RN )∩L1(RN )∩BV (RN )

would be enough). Let δ > 0 and uε,δ : [0,∞[×RN 7→ R be defined by uε,δ(0, ·) = u0

and
• For all even p, uε,δ is, on ]pδ, (p + 1)δ] × RN , the solution to ∂tu

ε,δ +
2εg[uε,δ] = 0 with initial condition uε,δ(pδ, ·), that is to say uε,δ(t, x) =
Kε(2(t− pδ), ·) ∗ uε,δ(pδ, ·)(x) for (t, x) ∈]pδ, (p+ 1)δ]× RN .

• For all odd p, uε,δ is, on ]pδ, (p+1)δ]×RN , the entropy solution to ∂tu
ε,δ +

2 div(f(uε,δ)) = 0 with initial condition uε,δ(pδ, ·).
We have then uε,δ ∈ C([0,∞[;L1(RN )) with uε,δ(0, ·) = u0 and for all t ≥ 0,

‖uε,δ(t, ·)‖L∞(RN ) ≤ ‖u0‖L∞(RN ) , ‖uε,δ(t, ·)‖L1(RN ) ≤ ‖u0‖L1(RN ),

|uε,δ(t, ·)|BV (RN ) ≤ ‖∇u0‖L1(RN ).
(2.1)

It has been proved in [6] that uε,δ converges, as δ → 0 and in C([0, T ];L1
loc(RN ))

for all T > 0, to the solution uε of (1.1). It has also been noticed that, for δ small
enough, uε,δ is in fact, on [pδ, (p + 1)δ] × RN for all odd p, a regular solution to
∂tu

ε,δ + 2 div(f(uε,δ)) = 0; moreover, for such δ and all t ≥ 0, uε,δ(t, ·) is regular.
The results of [6] are stated in dimension N = 1 and with g instead of εg (with

K1 instead ofKε) but, as indicated in this reference, they are valid in any dimension
N ≥ 1 and substituting Kε for K1 (Kε has the same properties, for a fixed ε > 0,
as K1: in fact, Kε(t, x) = K1(εt, x)), they also hold with εg.

1This comes from Kε(t, x) = t−N/λKε(1, t−1/λx) (change of variable in the definition of Kε)

and from Kε(1, ·) ∈ L1(RN ) (because the N + 1 first derivatives of ξ 7→ e−ε|ξ|λ are integrable on

RN ).
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Remark 2.1. If f = 0, the solution to (1.1) is uε(t, x) = Kε(t, ·) ∗ u0(x) and
the solution to (1.3) is u(t, x) = u0(x). Taking, for example, u0 the character-
istic function of [−1, 1]N , some easy computations and the homogeneity property
Kε(1, x) = K1(ε, x) = ε−N/λK1(1, ε−1/λx) (see footnote 1 on page 3) show that
‖uε(1, ·)‖L1(RN\[−1,1]N ) ≥ cε1/λ for some c > 0. Hence, the estimate of Theorem
1.3 is optimal.

2.2. The approximate entropy inequalities. We now establish the following
approximate entropy inequalities for the solution to (1.1).

Proposition 2.2. Assume that u0 ∈ L∞(RN ) and let uε be the solution to (1.1).
Let η : R 7→ R be a regular convex function and φ = (φ1, . . . , φN ) such that φ′i =
η′f ′i . Then, for all non-negative ϕ ∈ C∞c ([0,∞[×RN ), we have∫ ∞

0

∫
RN

η(uε(t, x))∂tϕ(t, x) + φ(uε(t, x)) · ∇ϕ(t, x) dt dx

+
∫

RN

η(u0(x))ϕ(0, x) dx

≥ ε

∫ ∞

0

∫
RN

η(uε(t, x))g[ϕ(t, ·)](x) dt dx.

(2.2)

Remark 2.3. If ϕ ∈ C∞c ([0,∞[×RN ), then t ∈ [0,∞[7→ ∇ϕ(t, ·) ∈ L1(RN )N

and t ∈ [0,∞[7→ ∆ϕ(t, ·) ∈ L1(RN ) are continuous; hence, by Lemma 5.1 and
the linearity of g, the function t ∈ [0,∞[7→ g[ϕ(t, ·)] ∈ L1(RN ) is continuous. In
particular, since ϕ(t, ·) = 0 for t large enough, (t, x) 7→ g[ϕ(t, ·)](x) is integrable on
]0,∞[×RN .

Proof of Proposition 2.2. Note that (2.2) with η or η− η(0) are the same inequali-
ties. Indeed, the entropy fluxes φ associated to η and η − η(0) are identical,∫ ∞

0

∫
RN

∂tϕ(t, x) dt dx+
∫

RN

ϕ(0, x) dx = 0

and, since g[ϕ(t, ·)] ∈ L1(RN ) for all t ≥ 0 (see Lemma 5.1),∫
RN

g[ϕ(t, ·)](x) dx = F(g[ϕ(t, ·)])(0) = (| · |λF(ϕ(t, ·)))(0) = 0.

Hence, there is no loss in generality if we assume that η(0) = 0, which we do from
now on.

The proof is done in two steps. We first suppose that the initial condition is reg-
ular, in which case we establish approximate entropy inequalities for the functions
uε,δ constructed in subsection 2.1, and we deduce the result of the proposition by
letting δ → 0. We then prove the proposition for general initial conditions.
Step 1: Assume that u0 ∈ C∞c (RN ). We take δ small enough so that uε,δ is, on
[pδ, (p + 1)δ] × RN for all odd p, a regular solution to ∂tu

ε,δ + 2 div(f(uε,δ)) = 0.
For odd p, we therefore have∫ (p+1)δ

pδ

∫
RN

η(uε,δ(t, x))∂tϕ(t, x) + 2φ(uε,δ(t, x)) · ∇ϕ(t, x) dt dx

=
∫

RN

η(uε,δ((p+ 1)δ, x))ϕ((p+ 1)δ, x) dx−
∫

RN

η(uε,δ(pδ, x))ϕ(pδ, x) dx.
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Summing on odd p’s (note that, since the support of ϕ is compact, this sum is
finite), and defining χδ as the characteristic function of ∪odd p]pδ, (p+ 1)δ], we find∫ ∞

0

∫
RN

(
η(uε,δ(t, x))∂tϕ(t, x) + 2φ(uε,δ(t, x)) · ∇ϕ(t, x)

)
χδ(t) dt dx

=
∑
odd p

(ap+1 − ap)

where ap =
∫

RN η(uε,δ(pδ, x))ϕ(pδ, x) dx. Since∑
odd p

(ap+1 − ap) =
∑

even p , p≥2

ap −
∑
odd p

ap =
∑

even p

(ap − ap+1)− a0 ,

we deduce that∫ ∞

0

∫
RN

(
η(uε,δ(t, x))∂tϕ(t, x) + 2φ(uε,δ(t, x)) · ∇ϕ(t, x)

)
χδ(t) dt dx

+
∫

RN

η(u0(x))ϕ(0, x) dx

=
∑

even p

(ap − ap+1).

(2.3)

If p is even, we have, by definition, uε,δ((p + 1)δ) = Kε(2δ) ∗ uε,δ(pδ) (it is
convenient, because of the convolution product, to omit the space variable). Since
η is convex and Kε(2δ) is positive with integral equal to 1, Jensen’s inequality gives
then η(uε,δ((p + 1)δ)) ≤ Kε(2δ) ∗ η(uε,δ(pδ)). The function ϕ being non-negative,
we deduce that η(uε,δ((p+ 1)δ))ϕ((p+ 1)δ) ≤ Kε(2δ) ∗ η(uε,δ(pδ))ϕ((p+ 1)δ) and
thus

ap+1 − ap ≤
∫

RN

Kε(2δ) ∗ η(uε,δ(pδ))ϕ((p+ 1)δ)− η(uε,δ(pδ))ϕ(pδ)

=
∫

RN

F ((p+ 1)δ)ϕ((p+ 1)δ)− F (pδ)ϕ(pδ),

where F (pδ) = η(uε,δ(pδ)) and, for t ∈]pδ, (p + 1)δ], F (t) = Kε(2(t − pδ)) ∗ F (pδ)
(i.e. F satisfies ∂tF + 2εg[F ] = 0 on ]pδ, (p + 1)δ]). We have η(0) = 0, so that,
letting C0 be the Lipschitz constant of η on [−‖u0‖∞, ‖u0‖∞] and using (2.1),

‖F (pδ)‖L1(RN ) ≤ C0‖uε,δ(pδ)‖L1(RN ) ≤ C0‖u0‖L1(RN ) (2.4)

‖∇F (pδ)‖L1(RN ) ≤ C0‖∇uε,δ(pδ)‖L1(RN ) ≤ C0‖∇u0‖L1(RN ) (2.5)

(recall that δ is small enough so that uε,δ(t, ·) is regular for all t ≥ 0). Lemma 5.2
in the appendix enables then to write

ap+1 − ap ≤
∫

RN

F ((p+ 1)δ)ϕ((p+ 1)δ)− F (pδ)ϕ(pδ)

=
∫ (p+1)δ

pδ

∫
RN

F (t, x)∂tϕ(t, x)− 2εF (t, x)g[ϕ(t, ·)](x) dt dx.
(2.6)
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We have, by Lemma 5.3 in the appendix, for all ν > 0 and all t ∈]pδ, (p+ 1)δ],

‖F (t)− η(uε,δ(pδ))‖L1(RN )

= ‖Kε(2(t− pδ)) ∗ F (pδ)− F (pδ)‖L1(RN )

≤ 2‖F (pδ)‖L1(RN )

∫
|y|≥ν

Kε(2(t− pδ), y) dy + ν‖∇F (pδ)‖L1(RN ).

Using (2.4) and (2.5), we deduce

‖F (t)− η(uε,δ(pδ))‖L1(RN )

≤ 2C0‖u0‖L1(RN ) sup
0<s≤2δ

∫
|y|≥ν

Kε(s, y) dy + C0ν‖∇u0‖L1(RN ).
(2.7)

We have |η(uε,δ(t))− η(uε,δ(pδ))| ≤ C0|uε,δ(t)− uε,δ(pδ)| and, for t ∈]pδ, (p+ 1)δ],
uε,δ(t) = Kε(2(t − pδ)) ∗ uε,δ(pδ). Hence, Lemma 5.3 and (2.1) give, for all t ∈
]pδ, (p+ 1)δ] and all ν > 0,

‖η(uε,δ(t))− η(uε,δ(pδ))‖L1(RN )

≤ 2C0‖u0‖L1(RN ) sup
0<s≤2δ

∫
|y|≥ν

Kε(s, y) dy + C0ν‖∇u0‖L1(RN ).
(2.8)

Gathering (2.7) and (2.8), we find, for all t ∈]pδ, (p+ 1)δ] and all ν > 0,

‖F (t)− η(uε,δ(t))‖L1(RN )

≤ 4C0‖u0‖L1(RN ) sup
0<s≤2δ

∫
|y|≥ν

Kε(s, y) dy + 2C0ν‖∇u0‖L1(RN ) = ωε(δ, ν)

with limν→0(limδ→0 ωε(δ, ν)) = 0 (because (Kε(t, ·))t→0 is an approximate unit).
Using this inequality in (2.6), we obtain, for all ν > 0,

ap+1 − ap

≤
∫ (p+1)δ

pδ

∫
RN

η(uε,δ(t, x))∂tϕ(t, x)− 2εη(uε,δ(t, x))g[ϕ(t, ·)](x) dt dx

+ ωε(δ, ν)
∫ (p+1)δ

pδ

(
‖∂tϕ(t, ·)‖L∞(RN ) + 2ε‖g[ϕ(t, ·)]‖L∞(RN )

)
dt.

(2.9)

Note that, by definition of g, we can write

‖g[ϕ(t, ·)]‖L∞(RN )

≤ ‖ | · |λF(ϕ(t, ·))‖L1(RN )

=
∥∥ | · |λ

1 + (2π| · |)2(N+1)
F

(
ϕ(t, ·) + (−∆)N+1ϕ(t, ·)

) ∥∥
L1(RN )

≤
∥∥ | · |λ

1 + (2π| · |)2(N+1)

∥∥
L1(RN )

‖F
(
ϕ(t, ·) + (−∆)N+1ϕ(t, ·)

)
‖L∞(RN )

≤
∥∥ | · |λ

1 + (2π| · |)2(N+1)

∥∥
L1(RN )

‖ϕ(t, ·) + (−∆)N+1ϕ(t, ·)‖L1(RN )

(2.10)

with λ − 2(N + 1) ≤ −2N < −N . Hence, t 7→ ‖g[ϕ(t, ·)]‖L∞(RN ) is integrable on
[0,∞[ (in fact, this function is continuous and null for t large).
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Summing (2.9) on even p’s and coming back to (2.3), we deduce∫ ∞

0

∫
RN

(
η(uε,δ(t, x))∂tϕ(t, x) + 2φ(uε,δ(t, x)) · ∇ϕ(t, x)

)
χδ(t) dt dx

+
∫

RN

η(u0(x))ϕ(0, x) dx

≥ −
∫ ∞

0

∫
RN

(
η(uε,δ(t, x))∂tϕ(t, x)− 2εη(uε,δ(t, x))g[ϕ(t, ·)](x)

)
(1− χδ(t)) dt dx

− ωε(δ, ν)
∫ ∞

0

(
‖∂tϕ(t, ·)‖L∞(RN ) + 2ε‖g[ϕ(t, ·)]‖L∞(RN )

)
dt

(note that 1 − χδ is the characteristic function of ∪even p]pδ, (p + 1)δ]), that is to
say ∫ ∞

0

∫
RN

η(uε,δ(t, x))∂tϕ(t, x) + 2φ(uε,δ(t, x)) · ∇ϕ(t, x)χδ(t) dt dx

+
∫

RN

η(u0(x))ϕ(0, x) dx

≥ 2ε
∫ ∞

0

∫
RN

η(uε,δ(t, x))g[ϕ(t, ·)](x)(1− χδ(t)) dt dx

− ωε(δ, ν)
∫ ∞

0

(
‖∂tϕ(t, ·)‖L∞(RN ) + 2ε‖g[ϕ(t, ·)]‖L∞(RN )

)
dt.

(2.11)

As δ → 0, we have uε,δ → uε in C([0, T ];L1
loc(RN )) for all T > 0; hence, η and φ

being Lipschitz-continuous on [−‖u0‖∞, ‖u0‖∞] and uε,δ taking its values in this
interval, we deduce that η(uε,δ) → η(uε) and φ(uε,δ) → φ(uε), as δ → 0 and in
C([0, T ];L1

loc(RN )) for all T > 0. This allows to see that, as δ → 0,∫ ∞

0

∫
RN

η(uε,δ(t, x))∂tϕ(t, x) dt dx→
∫ ∞

0

∫
RN

η(uε(t, x))∂tϕ(t, x) dt dx. (2.12)

We also deduce that∫
RN

φ(uε,δ(·, x)) · ∇ϕ(·, x) dx→
∫

RN

φ(uε(·, x)) · ∇ϕ(·, x) dx in L∞loc([0,∞[),

and thus in L1(]0,∞[) (these functions are null for t large). Since χδ → 1/2 in
L∞(]0,∞[) weak-∗, this implies∫ ∞

0

∫
RN

2φ(uε,δ(t, x)) · ∇ϕ(t, x)χδ(t) dt dx→
∫ ∞

0

∫
RN

φ(uε(t, x)) · ∇ϕ(t, x) dt dx.

(2.13)
For all M ≥ 0, we have∣∣∣ ∫

RN

η(uε,δ(t, x))g[ϕ(t, ·)](x) dx−
∫

RN

η(uε(t, x))g[ϕ(t, ·)](x) dx
∣∣∣

≤ ‖g[ϕ(t, ·)]‖L∞(RN )

∫
|x|≤M

|η(uε,δ(t, x))− η(uε(t, x))| dx

+ 2C1

∫
|x|≥M

|g[ϕ(t, ·)](x)| dx

(2.14)

with C1 = sup{|η(z)| , |z| ≤ ‖u0‖∞}. By Remark 2.3, the function t ∈ [0,∞[7→
g[ϕ(t, ·)] ∈ L1(RN ) is continuous and null for t large enough; this implies that
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{g[ϕ(t, ·)] , t ≥ 0} is compact in L1(RN ), and thus, by Vitali’s theorem, that

lim
M→∞

∫
|x|≥M

|g[ϕ(t, ·)](x)| dx = 0 uniformly with respect to t ≥ 0.

For a fixed M , we have
∫
|x|≤M

|η(uε,δ(t, x))− η(uε(t, x))| dx→ 0 as δ → 0, locally
uniformly with respect to t ≥ 0; since supt≥0 ‖g[ϕ(t, ·)]‖L∞(RN ) < ∞ (see (2.10)),
these considerations and (2.14) show that, as δ → 0,∫

RN

η(uε,δ(·, x))g[ϕ(·, ·)](x)dx→
∫

RN

η(uε(·, x))g[ϕ(·, ·)](x) dx in L∞loc([0,∞[),

and thus also in L1(]0,∞[) (because ϕ(t, ·) = 0 for t large). We have 1− χδ → 1/2
in L∞(]0,∞[) weak-∗, which implies

2ε
∫ ∞

0

∫
RN

η(uε,δ(t, x))g[ϕ(t, ·)](x)(1− χδ(t)) dt dx

→ ε

∫ ∞

0

∫
RN

η(uε(t, x))g[ϕ(t, ·)](x) dt dx.
(2.15)

Passing to the limit δ → 0 in (2.11), thanks to (2.12), (2.13) and (2.15), we deduce∫ ∞

0

∫
RN

η(uε(t, x))∂tϕ(t, x) + φ(uε(t, x)) · ∇ϕ(t, x) dt dx

+
∫

RN

η(u0(x))ϕ(0, x) dx

≥ ε

∫ ∞

0

∫
RN

η(uε(t, x))g[ϕ(t, ·)](x) dt dx

−
(

lim
δ→0

ωε(δ, ν)
) ∫ ∞

0

(
‖∂tϕ(t, ·)‖L∞(RN ) + 2ε‖g[ϕ(t, ·)]‖L∞(RN )

)
dt.

Since this is satisfied for all ν > 0, we can let ν → 0 and use the property of ωε(δ, ν)
to see that (2.2) holds.
Step 2: We now only assume that u0 ∈ L∞(RN ). Let u0,n ∈ C∞c (RN ) which
converges a.e. to u0 and is bounded by ‖u0‖∞; we define uε

n as the solution to
(1.1) with u0,n as initial datum. As in Section 6.4 of [6], we can see that (uε

n)n≥1

is bounded (2) and converges pointwise to uε as n→∞ (3).
uε

n satisfies (2.2), with u0,n instead of u0. Hence, using the dominated conver-
gence theorem, we let n→∞ in this inequality to see that it is also satisfied by uε,
and the proof is complete. �

3. Proof of convergence

Proposition 3.1. Let u0 ∈ L∞(RN ), uε be the solution to (1.1) and u be the
entropy solution to (1.3). Let L be a Lipschitz constant of f on [−‖u0‖∞, ‖u0‖∞]

2This can be deduced from (2.1) by letting δ → 0, and using ‖u0,n‖∞ ≤ ‖u0‖∞.
3This is a consequence of estimates in [6] which show that all the derivatives of uε

n are bounded

on ]t0,∞[×RN , for all t0 > 0, uniformly with respect to n; there is thus a subsequence of (uε
n)n≥1

which converges pointwise and, to prove that the limit is a solution to (1.1), we let n → ∞ in

Duhamel’s formula which defines these solutions.
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and T > 0. If B is a subset of RN , we define B̃ = {x ∈ RN | dist(x,B) ≤ 1} and,
for (µ, ν) ∈]0, 1[2,

ωB
1 (µ, ν) = sup

0<t<T

(
sup

0<r<µ ,|z|<ν

∫
B

|u(t, x)− u(t+ r, x+ z)| dx
)

(3.1)

ωB
2 (µ, ν) = sup

|z|<ν

∫
B

|u0(x)− u0(x+ z)| dx+ sup
0<s<µ

∫
B̃

|u0(x)− u(s, x)| dx. (3.2)

Here B(R) denotes the ball in RN of center 0 and radius R. Then, for all M > LT ,
there exists C1 > 0 such that, for all t0 ∈ [0, T ], for all ε > 0, for all µ ∈]0, 1[ and
for all ν ∈]0, 1[,∫

B(M−LT )

|uε(t0, x)− u(t0, x)| dx

≤ C1ω
B(M+1)
1 (µ, ν) + ω

B(M+1)
2 (µ, ν)

+ 2ε‖u0‖∞
∫

RN

∫ T

0

∫
RN

|g[hν,M (y, t, ·)](x)| dy dt dx

(3.3)

for some hν,M ∈ C∞c (RN × [0, T ]× RN ) only depending on ν and M .

Remark 3.2. As in Remark 2.3, the regularity of hν,M enables us to see that
(y, t) ∈ RN × [0, T ] 7→ g[hν,M (y, t, ·)] ∈ L1(RN ) is continuous and that the mapping
(y, t, x) 7→ g[hν,M (y, t, ·)](x) is integrable on RN × [0, T ]× RN .

Proof of Proposition 3.1. We use the doubling variable technique of Kruzhkov (see
[8]). Equation (2.2) has been obtained for regular convex η but it is easy, thanks
to an approximation technique, to see that it also holds with the entropy ηκ(z) =
|z − κ|, associated to the flux φκ(z) = f(z>κ) − f(z⊥κ) (where z>κ = max(z, κ)
and z⊥κ = min(z, κ)).

Let ϕ ∈ C∞c ([0,∞[×RN × [0,∞[×RN ) be non-negative. Applying, for fixed
(s, y) ∈]0,∞[×RN , (2.2) to ηu(s,y) and ϕ(·, ·, s, y), and integrating on (s, y) ∈
]0,∞[×RN , we find∫ ∞

0

∫
RN

∫ ∞

0

∫
RN

|uε(t, x)− u(s, y)|∂tϕ(t, x, s, y)

+ F (uε(t, x), u(s, y)) · ∇xϕ(t, x, s, y) ds dy dt dx

+
∫ ∞

0

∫
RN

∫
RN

|u0(x)− u(s, y)|ϕ(0, x, s, y) ds dy dx

≥ ε

∫ ∞

0

∫
RN

∫ ∞

0

∫
RN

|uε(t, x)− u(s, y)| g[ϕ(t, ·, s, y)](x) ds dy dt dx

(3.4)

where F (z, w) = f(z>w) − f(z⊥w) is symmetric. We can see, as in Remarks 2.3
and 3.2, that (t, x, s, y) 7→ g[ϕ(t, ·, s, y)](x) is integrable on ]0,∞[×RN×]0,∞[×RN ,
so that all the integral signs in the right-hand side can be manipulated at wish,
using Fubini’s theorem.
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Since u is the entropy solution to (1.3), it satisfies, for all κ ∈ R and all non-
negative ψ ∈ C∞c ([0,∞[×RN ),∫ ∞

0

∫
RN

ηκ(u(s, y))∂sψ(s, y) + φκ(u(s, y)) · ∇yψ(s, y) ds dy

+
∫

RN

ηκ(u0(y))ψ(0, y) dy ≥ 0.

Applying this inequality to κ = uε(t, x) and ψ = ϕ(t, x, ·, ·), and integrating on
(t, x) ∈]0,∞[×RN , we obtain∫ ∞

0

∫
RN

∫ ∞

0

∫
RN

|u(s, y)− uε(t, x)|∂sϕ(t, x, s, y)

+ F (u(s, y), uε(t, x)) · ∇yϕ(t, x, s, y) ds dy dt dx

+
∫ ∞

0

∫
RN

∫
RN

|u0(y)− uε(t, x)|ϕ(t, x, 0, y) dt dx dy ≥ 0.

(3.5)

Summing (3.4) and (3.5), we see that∫ ∞

0

∫
RN

∫ ∞

0

∫
RN

|uε(t, x)− u(s, y)|(∂tϕ(t, x, s, y) + ∂sϕ(t, x, s, y)) ds dy dt dx

+
∫ ∞

0

∫
RN

∫ ∞

0

∫
RN

F (uε(t, x), u(s, y)) ·
(
∇xϕ(t, x, s, y)

+∇yϕ(t, x, s, y)
)
ds dy dt dx

+
∫ ∞

0

∫
RN

∫
RN

|u0(x)− u(s, y)|ϕ(0, x, s, y) ds dy dx

+
∫ ∞

0

∫
RN

∫
RN

|u0(y)− uε(t, x)|ϕ(t, x, 0, y) dt dx dy

≥ ε

∫ ∞

0

∫
RN

∫ ∞

0

∫
RN

|uε(t, x)− u(s, y)| g[ϕ(t, ·, s, y)](x) ds dy dt dx.

(3.6)
Let ρν ∈ C∞c (RN ) and θµ ∈ C∞c (R) be smoothing kernels such that supp(ρν) ⊂
{x ∈ RN | |x| < ν} and supp(θµ) ⊂]0, µ[. We take ψ ∈ C∞c ([0,∞[×RN ) a non-
negative function and we let ϕ(t, x, s, y) = ψ(t, x)ρν(y − x)θµ(s− t); we have

∂tϕ(t, x, s, y) + ∂sϕ(t, x, s, y) = ∂tψ(t, x)ρν(y − x)θµ(s− t),

∇xϕ(t, x, s, y) +∇yϕ(t, x, s, y) = ∇xψ(t, x)ρν(y − x)θµ(s− t),

ϕ(t, x, 0, y) = 0 for t ≥ 0.

Hence, (3.6) gives∫ ∞

0

∫
RN

∫ ∞

0

∫
RN

|uε(t, x)− u(s, y)|∂tψ(t, x)ρν(y − x)θµ(s− t) ds dy dt dx

+
∫ ∞

0

∫
RN

∫ ∞

0

∫
RN

F (uε(t, x), u(s, y)) · ∇xψ(t, x)ρν(y − x)θµ(s− t) ds dy dt dx

+
∫ ∞

0

∫
RN

∫
RN

|u0(x)− u(s, y)|ψ(0, x)ρν(y − x)θµ(s) ds dy dx

≥ ε

∫ ∞

0

∫
RN

∫ ∞

0

∫
RN

θµ(s− t)|uε(t, x)− u(s, y)|g[ρν(y − ·)ψ(t, ·)](x) ds dy dt dx.

(3.7)
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Let A1, A2 and A3 be the first three lines of this inequality (4). We take T > 0 and
B a bounded set in RN , and we suppose that supp(ψ) ⊂ [0, T ]×B. Then

∣∣∣A1 −
∫ ∞

0

∫
RN

∫ ∞

0

∫
RN

|uε(t, x)− u(t, x)|∂tψ(t, x)ρν(y − x)θµ(s− t) ds dy dt dx
∣∣∣

≤
∫ ∞

0

∫
RN

∫ ∞

0

∫
B

|u(t, x)− u(s, y)| |∂tψ(t, x)|ρν(y − x)θµ(s− t) ds dy dt dx

≤ ‖∂tψ‖L1(0,T ;L∞(RN ))

× sup
0<t<T

( ∫ ∞

0

∫
RN

∫
B

|u(t, x)− u(s, y)|ρν(y − x)θµ(s− t) ds dy dx
)

≤ ‖∂tψ‖L1(0,T ;L∞(RN ))ω
B
1 (µ, ν).

Since
∫∞
0
θµ(s− t) ds = 1 for all t > 0 and

∫
RN ρν(y − x) dy = 1 for all x ∈ RN , we

find

A1 ≤
∫ ∞

0

∫
RN

|uε(t, x)− u(t, x)|∂tψ(t, x) dt dx+ ‖∂tψ‖L1(0,T ;L∞(RN ))ω
B
1 (µ, ν).

(3.8)
We have |F (uε(t, x), u(s, y))| ≤ L|uε(t, x)−u(s, y)| (because both functions uε and
u take their values in [−‖u0‖∞, ‖u0‖∞]) and therefore

|A2|

≤ L

∫ ∞

0

∫
RN

∫ ∞

0

∫
RN

|uε(t, x)− u(s, y)| |∇xψ(t, x)|ρν(y − x)θµ(s− t) ds dy dt dx

≤ L

∫ ∞

0

∫
RN

∫ ∞

0

∫
RN

|uε(t, x)− u(t, x)| |∇xψ(t, x)|ρν(y − x)θµ(s− t) ds dy dt dx

+ L

∫ ∞

0

∫
RN

∫ ∞

0

∫
B

|u(t, x)− u(s, y)| |∇xψ(t, x)|ρν(y − x)θµ(s− t) ds dy dt dx

≤ L

∫ ∞

0

∫
RN

|uε(t, x)− u(t, x)| |∇xψ(t, x)| dt dx+ L‖∇xψ‖L1(0,T ;L∞(RN ))ω
B
1 (µ, ν).

(3.9)
Note that if x ∈ B and ρν(y−x) 6= 0, then dist(y,B) ≤ ν ≤ 1; therefore, for ν ≤ 1,

|A3|

≤ ‖ψ(0, ·)‖L∞(RN )

∫ ∞

0

∫
RN

∫
B

|u0(x)− u0(y)|ρν(y − x)θµ(s) ds dy dx

+ ‖ψ(0, ·)‖L∞(RN )

∫ ∞

0

∫
RN

∫
B

|u0(y)− u(s, y)|ρν(y − x)θµ(s) ds dy dx

≤ ‖ψ(0, ·)‖L∞(RN )ω
B
2 (µ, ν) .

(3.10)

4We keep the precise expression of the fourth term up to the end, since it will be useful in the

proof of Theorem 1.3.
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Gathering (3.8), (3.9) and (3.10) in (3.7), we deduce∫ ∞

0

∫
RN

|uε(t, x)− u(t, x)|(∂tψ(t, x) + L|∇xψ(t, x)|) dt dx

+
(
‖∂tψ‖L1(0,T ;L∞(RN )) + L‖∇xψ‖L1(0,T ;L∞(RN )

)
ωB

1 (µ, ν)

+ ‖ψ(0, ·)‖L∞(RN )ω
B
2 (µ, ν)

≥ ε

∫ ∞

0

∫
RN

∫ ∞

0

∫
RN

θµ(s− t)|uε(t, x)− u(s, y)| g[ρν(y − ·)ψ(t, ·)](x) ds dy dt dx.

(3.11)
Let M > LT and wM ∈ C∞c ([0,∞[) be non-increasing, with values in [0, 1],

such that wM ≡ 1 on [0,M ] and supp(wM ) ⊂ [0,M + 1]. Let Θ ∈ C∞c ([0, T [)
with values in [0, 1]. Then ψ(t, x) = wM (|x| + Lt)Θ(t) is non-negative, belongs to
C∞c ([0,∞[×RN ) (the function Θ has its support in [0, T [ and (t, x) 7→ wM (|x| +
Lt) is regular on [0, T ] × RN since, in the neighborhood of [0, T ] × {0}, we have
wM (|x|+ Lt) = 1) and supp(ψ) ⊂ [0, T [×B(M + 1). We have

∂tψ(t, x) = Lw′M (|x|+ Lt)Θ(t) + wM (|x|+ Lt)Θ′(t)

|∇xψ(t, x)| =
∣∣w′M (|x|+ Lt)Θ(t)

x

|x|
∣∣ = (−w′M (|x|+ Lt))Θ(t)

(recall that wM is non-increasing). Hence, ∂tψ(t, x) + L|∇xψ(t, x)| = wM (|x| +
Lt)Θ′(t). Moreover,

‖∂tψ‖L1(0,T ;L∞(RN )) ≤ LT‖w′M‖∞ + ‖Θ′‖L1(0,T ) ,

‖∇xψ‖L1(0,T ;L∞(RN )) ≤ T‖w′M‖∞.

Therefore, (3.11) gives∫ T

0

∫
RN

|uε(t, x)− u(t, x)|wM (|x|+ Lt)Θ′(t) dt dx

+ (2LT‖w′M‖∞ + ‖Θ′‖L1(0,T ))ω
B(M+1)
1 (µ, ν) + ω

B(M+1)
2 (µ, ν)

− ε

∫ ∞

0

∫
RN

∫ T

0

∫
RN

Θ(t)θµ(s− t)|uε(t, x)− u(s, y)|

× g
[
ρν(y − ·)wM (| · |+ Lt)

]
(x) ds dy dt dx ≥ 0.

(3.12)

Let t0 ∈ [0, T [ and take Θ(t) = Θβ(t) =
∫∞

t
θβ(s − t0) ds. Then, for β small

enough, Θβ ∈ C∞c ([0, T [), has its values in [0, 1] and ‖Θ′
β‖L1(0,T ) ≤ 1. Since, for all

t ∈ [0, T ], wM (| · | + Lt) ≡ 1 on B(M − LT ) and Θ′
β(t) = −θβ(t − t0), we deduce

from (3.12) that∫ T

0

∫
B(M−LT )

|uε(t, x)− u(t, x)|θβ(t− t0) dt dx

≤ (2LT‖w′M‖∞ + 1)ωB(M+1)
1 (µ, ν) + ω

B(M+1)
2 (µ, ν)

− ε

∫ ∞

0

∫
RN

∫ T

0

∫
RN

Θβ(t)θµ(s− t)|uε(t, x)− u(s, y)|

× g
[
ρν(y − ·)wM (| · |+ Lt)

]
(x) ds dy dt dx .

For all t0 ∈ [0, T [, θβ(· − t0) converges, as β → 0 and in the weak-∗ sense of the
measures on [0, T ], to the Dirac mass at t0; as β → 0, we also have Θβ → 1[0,t0]
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everywhere and |Θβ | ≤ 1. Since both u and uε are continuous [0, T ] 7→ L1
loc(RN )

and

t 7→
∫ ∞

0

∫
RN

∫
RN

θµ(s− t)|uε(t, x)− u(s, y)| g[ρν(y − ·)wM (| · |+ Lt)](x) ds dy dx

is integrable on [0, T ] (see Remark 3.2), we can let β → 0 to find∫
B(M−LT )

|uε(t0, x)− u(t0, x)| dx

≤ (2LT‖w′M‖∞ + 1)ωB(M+1)
1 (µ, ν) + ω

B(M+1)
2 (µ, ν) + εTε,µ,ν,M (t0)

(3.13)

where

Tε,µ,ν,M (t0) = −
∫ ∞

0

∫
RN

∫ t0

0

∫
RN

θµ(s− t)|uε(t, x)− u(s, y)|

× g[ρν(y − ·)wM (| · |+ Lt)](x) ds dy dt dx
(3.14)

satisfies

|Tε,µ,ν,M (t0)| ≤ 2‖u0‖∞
∫

RN

∫ T

0

∫
RN

|g[hν,M (y, t, ·)](x)| dy dt dx

with hν,M (y, t, x) = ρν(y−x)wM (|x|+Lt) ∈ C∞c (RN× [0, T ]×RN ). This concludes
the proof of the proposition for t0 < T , and the estimate for t0 = T is obtained by
letting t0 → T in (3.3). �

The result in Theorem 1.1 is then an easy consequence of the following lemma.

Lemma 3.3. Let u ∈ C([0,∞[;L1
loc(RN )) and T > 0. If B is a bounded subset of

RN , we define ωB
1 (µ, ν) and ωB

2 (µ, ν) from u by (3.1) and (3.2), with u0 = u(0, ·).
Then, as (µ, ν) → (0, 0), ωB

1 (µ, ν) and ωB
2 (µ, ν) approach 0.

Proof of Theorem 1.1. Let T > 0 and M > LT , with L a Lipschitz constant of f
on [−‖u0‖∞, ‖u0‖∞]. Let C1 and hν,M be given by Proposition 3.1. Take α > 0.
Since u is the entropy solution to (1.3), it is in C([0,∞[;L1

loc(RN )). Hence, applying
Lemma 3.3, we fix µ ∈]0, 1[ and ν ∈]0, 1[ small enough so that

C1ω
B(M+1)
1 (µ, ν) + ω

B(M+1)
2 (µ, ν) ≤ α.

By Remark 3.2, we can choose ε0 > 0 (depending on ν and M) such that

2ε0‖u0‖∞
∫

RN

∫ T

0

∫
RN

|g[hν,M (y, t, ·)](x)| dy dt dx ≤ α ,

and Proposition 3.1 shows that for all ε ≤ ε0

sup
t∈[0,T ]

∫
B(M−LT )

|uε(t, x)− u(t, x)| dx ≤ 2α.

This reasoning can be made for all T > 0 and all M > LT , which proves that
uε → u in C([0, T ];L1

loc(RN )) for all T > 0. �

Proof of Lemma 3.3. The convergence of ωB
2 (µ, ν) is quite easy. Indeed, since u0 =

u(0, ·) ∈ L1
loc(RN ) and B is bounded, we know that∫

B

|u0(x)− u0(x+ z)| dx→ 0 as z → 0.



14 JÉRÔME DRONIOU EJDE–2003/117

By continuity of u : [0,∞[7→ L1
loc(RN ) and since B̃ is bounded, we also have

‖u(s, ·)−u0‖L1(B̃) → 0 as s→ 0. Hence, this proves that ωB
2 (µ, ν) → 0 as (µ, ν) →

0.
The convergence of ωB

1 (µ, ν) is a bit more tricky. We split it in two parts:

ωB
1 (µ, ν) ≤ sup

0<t<T

(
sup
|z|<ν

∫
B

|u(t, x)− u(t, x+ z)| dx
)

+ sup
0<t<T

(
sup

0<r<µ ,|z|<ν

∫
B

|u(t, x+ z)− u(t+ r, x+ z)| dx
)

≤ sup
0<t<T

(
sup
|z|<ν

∫
B

|u(t, x)− u(t, x+ z)| dx
)

(3.15)

+ sup
0<t<T

(
sup

0<r<µ

∫
B̃

|u(t, y)− u(t+ r, y)| dy
)
. (3.16)

By hypothesis, u ∈ C([0, T+1];L1(B̃)); hence, u is uniformly continuous [0, T+1] 7→
L1(B̃) and

sup
0<t<T

(
sup

0<r<µ

∫
B̃

|u(t, y)− u(t+ r, y)| dy
)

≤ sup
(t,s)∈[0,T+1]2 , 0<s−t<µ

‖u(t, ·)− u(s, ·)‖L1(B̃) → 0
(3.17)

as µ → 0. Moreover, since u ∈ C([0, T ];L1(B̃)), the set K = {u(t, ·) , 0 ≤ t ≤
T} is compact in L1(B̃); therefore, by Kolmogorov’s compactness theorem, the
translations are equicontinuous on K, that is to say

sup
v∈K

(
sup
|z|<ν

∫
B

|v(x)− v(x+ z)| dx
)
→ 0

as ν → 0. This quantity bounds (3.15), which proves, together with (3.17), that
ωB

1 (µ, ν) → 0 as (µ, ν) → 0. �

4. Proof of the error estimate

In this section, we prove Theorem 1.3 beginning with a stronger version of Lemma
3.3 in the case of more regular functions.

Lemma 4.1. Let u ∈ Lip([0,∞[;L1(RN )) such that supt≥0 |u(t, ·)|BV (RN ) < ∞.
We define ωRN

1 (µ, ν) and ωRN

2 (µ, ν) from u by (3.1) and (3.2), with T = ∞, u0 =
u(0, ·) and B = RN . Then ωRN

1 (µ, ν) = O(µ+ ν) and ωRN

2 (µ, ν) = O(µ+ ν).

Proof. It is well-known (see e.g. [7] or (5.7)) that if v ∈ BV (RN ), then∫
RN

|v(x+ h)− v(x)| dx ≤ |h| |v|BV (RN ). (4.1)

Thus,

sup
|z|<ν

∫
RN

|u0(x)− u0(x+ z)| dx = O(ν)

and, since u : [0,∞[7→ L1(RN ) is Lipschitz continuous, we deduce that ωRN

2 (µ, ν) =
O(µ + ν). We split ωRN

1 (µ, ν) as in the proof of Lemma 3.3 (with B̃ = RN here).
By the Lipschitz continuity of u, (3.16) is a O(µ); by (4.1) and the bound on
|u(t, ·)|BV (RN ), (3.15) is a O(ν). This concludes the proof of the lemma. �
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Proof of Theorem 1.3. Since u0 ∈ L∞(RN )∩L1(RN )∩BV (RN ), it is classical that
|u(t, ·)|BV (RN ) ≤ |u0|BV (RN ). The function f being regular, the BV semi-norm of
f(u(t, ·)) is also bounded and, thanks to ∂tu + div(f(u)) = 0, we see that u is
Lipschitz continuous [0,∞[7→ L1(RN ). Hence, Lemma 4.1 and (3.13) show that,
for all T > 0, for all M > LT and all t0 ∈ [0, T ], if µ ∈]0, 1[ and ν ∈]0, 1[,∫

B(M−LT )

|uε(t0, x)− u(t0, x)| dx ≤ C0(2LT‖w′M‖∞ + 2)(µ+ ν) + εTε,µ,ν,M (t0),

(4.2)
where we recall that Tε,µ,ν,M (t0) is defined by (3.14).

To bound Tε,µ,ν,M (t0), we use (5.1). We handle the case λ ∈]1, 2[, the other one
being easier (and, anyway, well-known). We define β = −N − (λ − 2). It is not
hard to check, differentiating under the integral sign, that

g[hν,M (y, t, ·)](x) = Eλ| · |β ∗ (∆xhν,M (y, t, ·))(x)

= Eλdiv
(
| · |β ∗ ∇xhν,M (y, t, ·)

)
(x)

(recall that hν,M (y, t, x) = ρν(y − x)wM (|x| + Lt) ∈ C∞c (RN × [0, T ] × RN )). Let
A be such that the support of hν,M (y, t, ·) is contained in the ball of center 0 and
radius A. From the definition of the convolution product, we see that, for |x| > A,
| | · |β ∗∇xhν,M (y, t, ·)(x)| ≤ Λ(|x|−A)β ; hence, | · |β ∗∇xhν,M (y, t, ·)(x) goes to 0, as
|x| → ∞, quicker than |x|−N+1 (because β = −N−(λ−2) < −N+1). We know that
uε(t, ·) is regular for all t > 0 (see [6]), and that ‖∇uε(t, ·)‖L1(RN ) ≤ |u0|BV (RN ) (this
can be easily seen letting δ → 0 in (2.1) — we have noticed that the construction
of uε in subsection 2.1 is valid for initial data in L∞(RN ) ∩ L1(RN ) ∩ BV (RN )).
We can therefore use Stokes formula on a ball of radius R and let R→∞ to find∫

RN

|uε(t, x)− u(s, y)| g[hν,M (y, t, ·)](x) dx

= −Eλ

∫
RN

∇x(|uε(t, ·)− u(s, y)|)(x) · (| · |β ∗ ∇xhν,M (y, t, ·))(x) dx

= −Eλ

∫
RN

sgn(uε(t, x)− u(s, y))∇uε(t, x) · (| · |β ∗ ∇xhν,M (y, t, ·))(x) dx ,

which implies ∣∣∣ ∫
RN

|uε(t, x)− u(s, y)| g[hν,M (y, t, ·)](x) dx
∣∣∣

≤ |Eλ|
∫

RN

|∇uε(t, x)| |(| · |β ∗ ∇xhν,M (y, t, ·))(x)| dx.

Therefore, by (3.14),

|Tε,µ,ν,M (t0)|

≤ |Eλ|
∫

RN

∫ t0

0

∫
RN

|∇uε(t, x)| |(| · |β ∗ ∇xhν,M (y, t, ·))(x)| dy dt dx.
(4.3)

We choose wM such that (w′M )M≥1 is bounded by C1. Let δ ∈]0, 1[ and Bδ be the
ball of center 0 and radius δ; cutting as in the proof of Lemma 5.1 and using Stokes
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formula, we have

(| · |β ∗ ∇xhν,M (y, t, ·))(x)

=
∫

Bδ

|z|β∇xhν,M (y, t, x− z) dz −
∫

Bc
δ

|z|β∇z(hν,M (y, t, x− z)) dz

=
∫

Bδ

|z|β∇xhν,M (y, t, x− z) dz − δβ

∫
∂Bc

δ

hν,M (y, t, x− z)n(z) dσδ(z)

+ β

∫
Bc

δ

hν,M (y, t, x− z)|z|β−1 z

|z|
dz

(4.4)

(σδ is the (N − 1)-dimensional measure on ∂Bc
δ and n is the unit normal to ∂Bc

δ

outward to Bc
δ). Since

|hν,M (y, t, x)| = |ρν(y − x)wM (|x|+ Lt)| ≤ ρν(y − x)

and

|∇xhν,M (y, t, x)| =
∣∣∣−∇ρν(y − x)wM (|x|+ Lt) + ρν(y − x)w′M (|x|+ Lt)

x

|x|

∣∣∣
≤ |∇ρν(y − x)|+ C1ρν(y − x),

Equation (4.4) shows that

|(| · |β ∗ ∇xhν,M (y, t, ·))(x)|

≤
∫

Bδ

|z|β (|∇ρν(y − x+ z)|+ C1ρν(y − x+ z)) dz

+ δβ

∫
∂Bc

δ

ρν(y − x+ z) dσδ(z) + |β|
∫

Bc
δ

ρν(y − x+ z)|z|β−1 dz.

By Fubini-Tonelli’s theorem and (4.3), we obtain

|Tε,µ,ν,M (t0)| ≤ |Eλ|
∫

RN

∫ t0

0

∫
RN

|∇uε(t, x)|
( ∫

Bδ

|z|β
(
|∇ρν(y − x+ z)|

+ C1ρν(y − x+ z)
)
dz + δβ

∫
∂Bc

δ

ρν(y − x+ z) dσδ(z)

+ |β|
∫

Bc
δ

ρν(y − x+ z)|z|β−1 dz
)
dy dt dx

≤ |Eλ|
(
‖∇ρν‖L1(RN ) + C1

)
‖ | · |β‖L1(Bδ)‖∇uε‖L1(]0,t0[×RN )

+ |Eλ|δβσδ(∂Bc
δ)‖∇uε‖L1(]0,t0[×RN )

+ |Eλ| |β| ‖ | · |β−1‖L1(Bc
δ)‖∇uε‖L1(]0,t0[×RN ).

By change of variable, ‖ | · |β‖L1(Bδ) = C2δ
N+β , ‖ | · |β−1‖L1(Bc

δ) = C3δ
N+β−1

and σδ(∂Bc
δ) = C4δ

N−1, where C2, C3 and C4 do not depend on δ (recall that
β − 1 < −N < β). Since ‖∇uε(t, ·)‖L1(RN ) ≤ |u0|BV (RN ), we deduce that

|Tε,µ,ν,M (t0)| ≤ C5T (‖∇ρν‖L1(RN ) + 1)δN+β + C5Tδ
N+β−1 (4.5)

where C5 does not depend on t0, ε, µ, ν, M or δ.
Choosing smoothing kernels (ρν)ν>0 of the kind ρν(x) = ν−Nρ(ν−1x), we have

‖∇ρν‖L1(RN ) = C6ν
−1. Since (w′M )M≥1 is bounded by C1, (4.2) and (4.5) give, for
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all T > 0, for all M > LT and all t0 ∈ [0, T ],∫
B(M−LT )

|uε(t0, x)− u(t0, x)| dx

≤ C0(2LTC1 + 2)(µ+ ν) + ε
(C5C6Tδ

2−λ

ν
+ C5Tδ

2−λ + C5Tδ
1−λ

)
(we have N + β = 2− λ). We let M →∞ and µ→ 0; since ν < 1, this gives

‖uε(t0, ·)− u(t0, ·)‖L1(RN ) = O
(
ν + ε

(δ2−λ

ν
+ δ1−λ

))
.

Minimizing on δ and then on ν, we see that the best choices are (up to multiplicative
constants) δ = ν and ν = ε1/λ, which proves Theorem 1.3. �

5. Appendix

5.1. An expression and an estimate of g[ϕ].

Lemma 5.1. Let λ ∈]1, 2]. There exist Eλ ∈ R and Cλ > 0 such that, for all
ϕ ∈ S(RN ),

g[ϕ] =

{
Eλ| · |−N−(λ−2) ∗∆ϕ for λ ∈]1, 2[
Eλ∆ϕ for λ = 2

(5.1)

and ‖g[ϕ]‖L1(RN ) ≤ Cλ

(
‖∇ϕ‖L1(RN ) + ‖∆ϕ‖L1(RN )

)
.

Proof. If λ = 2, the result is obvious since, up to a multiplicative constant, g[ϕ] is
∆ϕ. We thus assume that λ ∈]1, 2[ and we have

g[ϕ] = F−1(| · |λF(ϕ)) = (2iπ)−2F−1(| · |λ−2F(∆ϕ))

(note that | · |λ−2 ∈ L1
loc(RN ), as λ − 2 > −N , and that F(∆ϕ) ∈ S(RN ), so

that | · |λ−2F(∆ϕ) is integrable on RN ). Since λ− 2 ∈]−N, 0[, it is classical that
F−1(| · |λ−2) = C1| · |−N−(λ−2) in S ′(RN ), for some C1 ∈ R. We can then check,
using the definition (by duality) of F−1 on S ′(RN ), that F−1(| · |λ−2F(∆ϕ)) =
C1| · |−N−(λ−2) ∗∆ϕ, which proves (5.1).

Let β = −N − (λ−2) ∈]−N, 0[. We now estimate ‖ | · |β ∗∆ϕ‖L1(RN ), which will
conclude the proof (note that this estimate is not a straightforward consequence of
Young’s inequalities for convolution, since | · |β is not integrable on RN ). We have,
if 1B is the characteristic function of the ball B of center 0 and radius 1 and 1Bc

is the characteristic function of Bc = RN\B,

| · |β ∗∆ϕ = (1B | · |β) ∗∆ϕ+ (1Bc | · |β) ∗∆ϕ. (5.2)

But 1B | · |β ∈ L1(RN ) (because β > −N), and thus

‖(1B | · |β) ∗∆ϕ‖L1(RN ) ≤ ‖1B | · |β ‖L1(RN )‖∆ϕ‖L1(RN ). (5.3)

By Stokes formula, we write

(1Bc | · |β) ∗∆ϕ(x)

=
∫

Bc

|y|β∆ϕ(x− y) dy

= −
∫

∂Bc

∇ϕ(x− y) · n(y) dσ(y) + β

∫
Bc

∇ϕ(x− y) ·
(
|y|β−1 y

|y|
)
dy
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where n is the outward unit normal to Bc and σ is the measure on ∂Bc. We deduce
that

|(1Bc | · |β) ∗∆ϕ(x)| ≤
∫

∂Bc

|∇ϕ(x− y)| dσ(y) + |β|
∫

Bc

|∇ϕ(x− y)| |y|β−1 dy

and, integrating this thanks to Fubini-Tonelli’s theorem,∫
RN

|(1Bc | · |β) ∗∆ϕ(x)| dx

≤
∫

∂Bc

∫
RN

|∇ϕ(x− y)| dxdσ(y) + |β|
∫

Bc

∫
RN

|∇ϕ(x− y)| dx |y|β−1 dy

=
(
σ(∂Bc) + |β|

∫
Bc

|y|β−1 dy
) ∫

RN

|∇ϕ(z)| dz.

(5.4)

Since β−1 = −N−(λ−2)−1 = −N−λ+1 < −N ,
∫

Bc |y|β−1 dy is finite. Gathering
(5.3) and (5.4) in (5.2), we deduce that ‖ | · |β ∗ ∆ϕ‖L1(RN ) ≤ C(‖∆ϕ‖L1(RN ) +
‖∇ϕ‖L1(RN )) for some C not depending on ϕ, and the proof is complete. �

5.2. Technical lemmas on the kernel of g. The results in the following two
lemmas have already been used in [6], but their proofs were left to the reader. We
include them here for sake of completeness.

Lemma 5.2. Let r > 0, w0 ∈ L1(RN ) and, for t > 0, w(t, ·) = Kr(t, ·)∗w0. Then,
for all ϕ ∈ C∞c ([0,∞[×RN ) and all t0 > 0,∫ t0

0

∫
RN

w(t, x)∂tϕ(t, x)− rw(t, x)g[ϕ(t, ·)](x) dt dx

=
∫

RN

w(t0, x)ϕ(t0, x) dx−
∫

RN

w0(x)ϕ(0, x) dx.

Proof. We ignore, as in the proof of Proposition 2.2, the space variable. Since Kr(t)
and w0 are integrable, w(t) is integrable and we have

F−1(w(t)) = F−1(Kr(t))F(w0) = e−rt|·|λF−1(w0) (5.5)

(note that, since Kr(t) is even, F−1(Kr(t)) = F(Kr(t))). By Fubini’s theorem, for
all (a, b) ∈ L1(RN ), ∫

RN

aF−1(b) =
∫

RN

F−1(a)b. (5.6)

Thus, writing g[ϕ(t)] = F−1(| · |λF(ϕ(t))) and ∂tϕ(t) = F−1(F(∂tϕ(t))), we
have, thanks to (5.5) and (5.6), for all t > 0,∫

RN

w(t)∂tϕ(t)− rw(t)g[ϕ(t)]

=
∫

RN

e−rt|ξ|λF−1(w0)(ξ)F(∂tϕ(t))(ξ)− r|ξ|λe−rt|ξ|λF−1(w0)(ξ)F(ϕ(t))(ξ) dξ

=
∫

RN

∂t

(
e−rt|ξ|λF(ϕ(t))(ξ)

)
F−1(w0)(ξ) dξ.

The mapping (t, ξ) 7→ e−rt|ξ|λF−1(w0)(ξ) is bounded on ]0, t0[×RN and, by
regularity of ϕ, (t, ξ) 7→ |ξ|λF(ϕ(t))(ξ) and (t, ξ) 7→ F(∂tϕ(t))(ξ) are integrable on
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]0, t0[×RN (see e.g. (2.10)); hence, integrating the preceding equality on ]0, t0[ and
using Fubini’s theorem, we find∫ t0

0

∫
RN

w(t)∂tϕ(t)− rw(t)g[ϕ(t)] dt

=
∫

RN

(
e−rt0|ξ|λF(ϕ(t0))(ξ)−F(ϕ(0))(ξ)

)
F−1(w0)(ξ) dξ.

Using once again (5.5) and (5.6), we get∫ t0

0

∫
RN

w(t)∂tϕ(t)− rw(t)g[ϕ(t)] dt

=
∫

RN

F−1(w(t0))F(ϕ(t0))−F−1(w0)F(ϕ(0))

=
∫

RN

w(t0)ϕ(t0)− w0ϕ(0)

which concludes the proof. �

Lemma 5.3. Let r > 0 and w0 ∈ W 1,1(RN ) ∩ C1(RN ). We define, for t > 0,
w(t, ·) = Kr(t, ·) ∗ w0. Then, for all ν > 0 and all t > 0,

‖w(t, ·)− w0‖L1(RN ) ≤ 2‖w0‖L1(RN )

∫
|y|≥ν

Kr(t, y) dy + ν‖∇w0‖L1(RN ).

Proof. The proof relies on classical cuttings of integration domain when approxi-
mate units are involved. Since Kr(t, ·) is non-negative with integral equal to 1, we
can write

|w(t, x)− w0(x)| =
∣∣∣ ∫

RN

Kr(t, y)(w0(x− y)− w0(x)) dy
∣∣∣

≤
∫

RN

Kr(t, y)|w0(x− y)− w0(x)| dy.

Now,

‖w(t, ·)− w0‖L1(RN )

≤
∫
|y|≥ν

Kr(t, y)
∫

RN

|w0(x− y)− w0(x)| dx dy

+
∫
|y|<ν

Kr(t, y)
∫

RN

|w0(x− y)− w0(x)| dx dy

≤ 2‖w0‖L1(RN )

∫
|y|≥ν

Kr(t, y) dy + sup
|z|<ν

∫
RN

|w0(x+ z)− w0(x)| dx.

Using Fubini-Tonelli’s theorem and a change of variable, we write∫
RN

|w0(x+ z)− w0(x)| dx ≤
∫

RN

∫ 1

0

|∇w0(x+ ζz)| |z| dζ dx

≤ |z|
∫

RN

|∇w0(y)| dy ,
(5.7)

and the proof is complete. �
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pp. 1489–1502, 1627.

[10] O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural’čeva, Linear and quasilinear
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