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SDDES LIMITS SOLUTIONS TO SUBLINEAR
REACTION-DIFFUSION SPDES

HASSAN ALLOUBA

Abstract. We start by introducing a new definition of solutions to heat-

based SPDEs driven by space-time white noise: SDDEs (stochastic differential-
difference equations) limits solutions. In contrast to the standard direct def-

inition of SPDEs solutions; this new notion, which builds on and refines our
SDDEs approach to SPDEs from earlier work, is entirely based on the approx-
imating SDDEs. It is applicable to, and gives a multiscale view of, a variety of

SPDEs. We extend this approach in related work to other heat-based SPDEs
(Burgers, Allen-Cahn, and others) and to the difficult case of SPDEs with
multi-dimensional spacial variable. We focus here on one-spacial-dimensional

reaction-diffusion SPDEs; and we prove the existence of a SDDEs limit solu-
tion to these equations under less-than-Lipschitz conditions on the drift and
the diffusion coefficients, thus extending our earlier SDDEs work to the nonzero

drift case. The regularity of this solution is obtained as a by-product of the
existence estimates. The uniqueness in law of our SPDEs follows, for a large

class of such drifts/diffusions, as a simple extension of our recent Allen-Cahn

uniqueness result. We also examine briefly, through order parameters ε1 and
ε2 multiplied by the Laplacian and the noise, the effect of letting ε1, ε2 → 0 at

different speeds. More precisely, it is shown that the ratio ε2/ε
1/4
1 determines

the behavior as ε1, ε2 → 0.

1. Introduction and statements of results

We consider the parametrized space-time white noise driven SPDE on RT
4
=

T× R = [0, T ]× R:

∂Uε1,ε2

∂t
=

ε1
2

∆Uε1,ε2 + b(Uε1,ε2) + ε2a(Uε1,ε2)
∂2W

∂t∂x
; (t, x) ∈ (0, T ]× R,

Uε1,ε2(0, x) = ξ(x); x ∈ R,
(1.1)

where T > 0 is fixed but arbitrary, ∆ is the Laplace operator in space, and a, b :
R → R are Borel measurable. W (t, x) is the Brownian sheet corresponding to the
driving space-time white noise–with intensity Lebesgue measure–written formally
as ∂2W/∂t∂x. As in Walsh [19], white noise is regarded as a continuous orthogonal
martingale measure, which we denote by W, with the corresponding Brownian sheet
as the random field induced by W in the usual way. ξ(x) is taken to be a continuous
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bounded deterministic function. The parameters ε1, ε2 > 0 are order parameters,
which allow us to control the competing effects of the Laplacian ∆ and the driving
space-time white noise ∂2W/∂t∂x. We denote the SPDE in (1.1) by eε1,ε2

heat (a, b, ξ)
Before going into the statements of our results, let’s highlight one of the main

features of this article. We introduce and formalize the notion of SDDEs limit
solutions (see Definition 1.4 and Remark 1.5 below), and most of our treatment
here focuses on this class of solutions to eε1,ε2

heat (a, b, ξ) whose elements are limits of
an approximating sequence of stochastic-differential-difference equations (SDDEs)
(see [3, 6]). SDDEs are obtained from eε1,ε2

heat (a, b, ξ) by discretizing space but leaving
time continuous. We have used SDDEs before in [6, 3] to give a non-nonstandard
proof of Reimers’ existence result for eheat(a, 0, ξ) (the case of zero drift) when a
is continuous and satisfies a linear growth condition. In addition to extending our
existence proof there to the case of nonzero continuous drift (Theorem 1.6) and
examining the effects of the order parameters ε1, ε2 on eε1,ε2

heat (a, b, ξ) (Theorem 1.8),
our new definition (Definition 1.4) of solutions to SPDEs as limits of approximating
SDDEs establishes a general approach of SPDEs in which solutions to the SPDE
in question are defined entirely in terms of its approximating SDDEs and their
limits (more on this approach and its implications in d-dimensional space as well
as for other SPDEs is detailed in [4]). It is important to note that (even in one
dimension spacial variable) this is different from, and has several advantages not
shared with, the traditional direct approach (in which solutions to eε1,ε2

heat (a, b, ξ)
are understood in the sense of either the standard test function (1.8) or Green
function formulations (1.9) of eε1,ε2

heat (a, b, ξ)). In addition to the obvious numerical
advantage; 1. this is a multiscale approach which allows us to view the model under
consideration in two different scales simultaneously (the microscopic-in-space SDDE
scale and their limiting SPDE scale), and thus be able to see which properties of the
SPDEs being approximated is captured by their SDDEs and which ones are different
(e.g. Proposition 2.7, Lemma 2.10, and Lemma 2.11 show how some regularity
properties for eε1,ε2

heat (a, b, ξ) are captured by their SDDEs, and the proof of Theorem
1.8 part (ii) is the same for both eε1,ε2

heat (a, b, ξ) and the corresponding SDDEs, while
the proof of Theorem 1.8 part (i) is an example of an argument which holds in the
continuous setting but not in the SDDE one, possibly pointing to different behaviors
in the two different scales), 2. the role of the heat Green function for eε1,ε2

heat (a, b, ξ) is
played by a continuous-time random walk density in the case of SDDEs, allowing us
to use powerful and simpler random walk arguments like coupling (see Lemma 2.4)
and others to get needed estimates to prove existence and regularity for eε1,ε2

heat (a, b, ξ)
under mild conditions on a and b (more on the intimate connection between the
Green function and the random walk density is also detailed in [4]), and 3. unlike
the usual Green’s function formulation in the direct approach to SPDEs, these
SDDEs make sense as real-valued random fields in any spatial dimension d, and we
use them in [4] to extend our Definition 1.4 below to a class of solutions for SPDEs
in any dimension. In this last regard, SDDEs limit solutions to SPDEs are similar
to Lions-Crandal notion of viscosity solutions in that they are defined as limits of
more “regular” solutions.

Consider the sequence of lattices (Xn)∞n=1 defined by

Xn
4
= {· · · ,−2δn,−δn, 0, δn, 2δn, · · · },
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where δn → 0 as n → ∞. Then, following [3], eε1,ε2
heat (a, b, ξ) may be approximated

by the sequence of SDDEs {eSDDE
heat (a, b, ξ, n)}n∈N:

dŨx
n,ε1,ε2(t) =

[ε1
2

∆nŨx
n,ε1,ε2(t) + b(Ũx

n,ε1,ε2(t))
]
dt

+ ε2a(Ũx
n,ε1,ε2(t))

dW x
n (t)

δ
1/2
n

; (t, x) ∈ (0, T ]× Xn,

Ũx
n,ε1,ε2(0) = ξ(x); x ∈ Xn,

(1.2)

where ∆nf(x) is the n-th discrete Laplacian

∆nf(x) =
f(x + δn)− 2f(x) + f(x− δn)

δ2
n

. (1.3)

For each n ∈ N, we think of W x
n (t) as a sequence of independent standard Brownian

motions indexed by the set Xn (independence within the same lattice). We also
assume that if m 6= n and x ∈ Xm ∩ Xn then W x

m(t) = W x
n (t), and if n > m and

x ∈ Xn \ Xm then W x
m(t) = 0.

Definition 1.1. Fix ε1, ε2. A solution to the SDDE system {eSDDE
heat (a, b, ξ, n)}∞n=1;

with respect to the Brownian (in t) system {W x
n (t)}(n,x)∈N×Xn

on the filtered prob-
ability space (Ω,F{Ft}, P); is a sequence of real-valued processes{

Ũn,ε1,ε2 = {Ũx
n,ε1,ε2(t); (t, x) ∈ (T× Xn)}

}∞
n=1

with continuous sample paths in t for each fixed x ∈ Xn and n ∈ N such that, for
every (n, x) ∈ N× Xn, Ũx

n,ε1,ε2(t) is Ft-adapted, and

Ũx
n,ε1,ε2(t) =

∫ t

0

[ε1
2

∆nŨx
n,ε1,ε2(s) + b(Ũx

n,ε1,ε2(s))
]
ds + ε2a(Ũx

n,ε1,ε2(s))
dW x

n (s)

δ
1/2
n

+ ξ(x); (t, x) ∈ T× Xn, n ∈ N, a.s. P.

(1.4)
A solution is said to be strong if {W x

n (t)}(n,x)∈N×Xn
and (Ω,F{Ft}, P) are fixed a

priori; and with

Ft = σ {σ (W x
n (s); 0 ≤ s ≤ t, x ∈ Xn, n ∈ N) ∪N} ; t ∈ T, (1.5)

where N is the collection of null sets{
O : ∃G ∈ σ

( ⋃
t≥0

σ (W x
n (s); 0 ≤ s ≤ t, x ∈ Xn, n ∈ N)

)
, O ⊆ G and P(G) = 0

}
A solution is termed weak if we are free to choose (Ω,F{Ft}, P) and the Brownian
system on it and without requiring Ft to satisfy (1.5).

Unless otherwise stated all filtrations are assumed to satisfy the usual conditions,
and any filtered probability space with such filtration is called a usual probability
space.

Now, as in Lemma 2.1 in [3], we easily have the following representation and
existence result for our approximating SDDEs

Lemma 1.2. Under the conditions
(a) a(u) and b(u) are continuous in u; u ∈ R,

(b) a2(u) ≤ K(1 + u2) and b2(u) ≤ K(1 + u2); u ∈ R,

(c) ξ is continuous, nonrandom, and bounded on R,

(1.6)
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for some constant K > 0, the SDDE system (1.2) is equivalent to the discrete-space
continuous-time Green function formulation

Ũx
n,ε1,ε2(t) =

∑
y∈Xn

∫ t

0

Qt−s;x−y
δn,ε1

[
ε2a(Ũy

n,ε1,ε2(s))
dW y

n (s)

δ
1/2
n

+ b(Ũy
n,ε1,ε2(s))ds

]
+

∑
y∈Xn

Qt;x−y
δn,ε1

ξ(y); (t, x) ∈ T× Xn,
(1.7)

where Qt:x
δn,ε1

is the fundamental solution to the parametrized deterministic heat
equation on the lattice Xn:

dux
n,ε1(t)
dt

=
ε1
2

∆nux
n,ε1(t); (t, x) ∈ (0, T ]× Xn.

Furthermore, there is at least one weak solution to (1.2) (and hence (1.7)).

Similar to the zero drift case (Lemma 2.1 in [3]), the equivalence assertion in
Lemma 1.2 follows as in the continuous time-space case (e.g., Walsh [19]) from an
equivalence of test function and Green function formulations argument, and the
existence is a straightforward generalization of standard SDEs arguments and the
details will be omitted.

Remark 1.3. Just as in the continuous time-case, where we can look probabilisti-
cally at the fundamental solution of the deterministic heat equation as the density
of Brownian motion, we note that Qt;x

δn,ε1
is the density of a symmetric 1-dimensional

random walk on Xn, in which the times between transitions are exponentially dis-
tributed with mean δ2

n/ε1, for all n. To simplify notations, we will suppress the
dependence on the parameters ε1, ε2 unless we want to expressly consider the effect
of variations in them on the SPDE or SDDE (the subscript δn in Qt;x

δn
is to remind

us that the lattice points are δn apart). Of course, by enlarging the filtration Ft,
we can accomodate random initial ξ. Also, if the space R is replaced by a closed
bounded interval L = [a, b], a, b ∈ R then Xn is replaced by Xn∩L; and the random
walk will be either reflected or absorbed at a and b, with corresponding densities
Qδn

, depending on whether we have Neumann or Dirichlet boundary conditions.

Using linear interpolation, we extend the definition of the already continuous-
in-time process Ũx

n (t) on T × Xn, so as to obtain a continuous process on T × R,
for each n ∈ N, which we will also denote by Ũx

n (t). Henceforth, any such sequence
{Ũn} of interpolated Ũn’s will be called a continuous solution to eSDDE

heat (a, b, ξ, n).
We now give our definitions of SDDEs limit solutions to eε1,ε2

heat (a, b, ξ) (of course
solutions on R+ × R are defined in the same way, replacing T with R+).

Definition 1.4. [SDDEs limits solutions to eε1,ε2
heat (a, b, ξ)] We say that the ran-

dom field U(t, x) is a continuous SDDE limit solution to eε1,ε2
heat (a, b, ξ) on T × R

iff there is a continuous solution {Ũx
n (t)} to the SDDE system eSDDE

heat (a, b, ξ, n) on
a usual probability space (Ω,F{Ft}, P) and with respect to a Brownian system
{W x

n (t)}(n,x)∈N×Xn
such that U has P-a.s. continuous paths on T × R, and U is

the limit or a modification of the limit of Ũn (or of a subsequence Ũnk
) as n ↗∞

(k ↗∞). When desired; the types of the solution and the limit are explicitly stated
(e.g., we say strong (weak) SDDEs weak, in probability, Lp, or a.s. limit solution
to indicate that the solution to the approximating SDDEs system is strong (weak)
and that the limit of the SDDEs is in the weak, in probability, Lp, or a.s. sense,
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respectively). We say that uniqueness in law holds if whenever U and V are SDDEs
limit solutions, U and V have the same law.

Remark 1.5. Although in this article we restrict our treatment to the weak SDDEs
weak limit solutions and weak uniqueness (in law), Definition 1.4 easily admits
limits in any sense, not only those mentioned above, as well as stronger uniqueness
(pathwise).

Next, we use the existence in Lemma 1.2 to show the existence of a SDDE limit
solution to eε1,ε2

heat (a, b, ξ), and that this solution is a solution in the standard sense
of satisfying the test function formulation of eε1,ε2

heat (a, b, ξ). This complements the
results in [3] by treating the case of continuous drift which grows no more than
linearly.

Theorem 1.6 (Weak existence, uniqueness, and regularity). Fix ε1 and ε2. If the
conditions in (1.6) hold for some constant K > 0, then every sequence of continuous
SDDEs solutions is tight in C(T × R; R) and we have a weak SDDE weak limit
solution U to eε1,ε2

heat (a, b, ξ). Moreover, there is a continuous random field Y, with
the same law as U, that satisfies the test function formulation of eε1,ε2

heat (a, b, ξ):

(Y (t)− ξ, ϕ)− ε1
2

∫ t

0

(Y (s), ϕ′′)ds−
∫ t

0

(b(Y (s)), ϕ)ds

= ε2

∫ t

0

∫
R

a(Y (s, x))ϕ(x)W(dx, ds)
(1.8)

for every ϕ ∈ C∞
c (R; R), where (·, ·) denotes the scalar product on L2(R). The

continuous paths of Y are Hölder γs ∈ (0, 1
2 ) in space and Hölder γt ∈ (0, 1

4 ) in
time and are Lp bounded for every p ≥ 2. If a(u) = uγ , with 1/2 ≤ γ ≤ 1 and
b(u) =

∑N
i=1 ciu

αi for constants ci ∈ R, N ∈ N, and 1 ≥ αi ≥ γ, i = 1, . . . , N ; then
uniqueness in law holds for eε1,ε2

heat (a, b, ξ) on [0, T ]× [0, L], for any T,L ∈ R2
+, and

hence the convergence to U is along the whole SDDEs sequence.

Remark 1.7. In Theorem 1.6 we suppressed the dependence on the epsilons, since
the results are given for fixed ε1, ε2; i.e., U = Uε1,ε2 and Y = Yε1,ε2 .

The next result reveals that the behavior of eε1,ε2
heat (a, b, ξ) as ε1, ε2 ↘ 0 is con-

trolled by the ratio ε2/ε1
1/4: the solutions blow up in L2 if ε2/ε1

1/4 ↗∞ and they
converge to the deterministic ε1 ↘ 0 limit in L2q (q ≥ 1) if ε2/ε1

1/4 ↘ 0.

Theorem 1.8 (Limits of eε1,ε2
heat (a, b, ξ) as ε1, ε2 ↘ 0). i) Suppose that the conditions

in (1.6) hold, and that there are constants Kl,KL > 0 such that Kl ≤ a(u) ≤ KL

for all u ∈ R. If ε1, ε2 ↘ 0 (or ε1, ε2 ↗ ∞) such that the ratio ε2/ε1
1/4 → ∞;

then, sup0≤s≤T supx∈R EU2
ε1,ε2(s, x) ↗∞, for any T > 0 and for any SDDEs weak

limit solution Uε1,ε2 to eε1,ε2
heat (a, b, ξ) ii) If, in addition to the conditions in (1.6), b

is Lipschitz and a is bounded; and if Uε1(t, x) is the solution to the deterministic
PDE obtained from eε1,ε2

heat (a, b, ξ) by setting a ≡ 0, and Uε1,ε2 is a SDDEs weak limit
solution to eε1,ε2

heat (a, b, ξ), then for every q ≥ 1

sup
0≤t≤T

sup
x∈R

E |Uε1,ε2(t, x)− Uε1(t, x)|2q −→ 0

as ε1, ε2, and ε2/ε
1/4
1 → 0. Also, if

{
Ũx

n,ε1,ε2(t)
}

is a solution to the SDDEs system

{eSDDE
heat (a, b, ξ, n)} and if

{
Ũn,ε1

}
is a solution to the deterministic system obtained
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from eSDDE
heat (a, b, ξ, n) by setting a ≡ 0, then for every q, n ≥ 1

sup
0≤t≤T

sup
x∈R

E
∣∣∣Ũx

n,ε1,ε2(t)− Ũn,ε1(t, x)
∣∣∣2q

−→ 0

as ε1, ε2, and ε2/ε
1/4
1 → 0.

Remark 1.9. Taking note of Remark 1.7, it follows from well known facts in Walsh
[19] that, under (1.6), (1.8) is equivalent to the Green function formulation (1.9)
below

Yε1,ε2(t, x)−
∫

R
Gε1(t;x, y)ξ(y)dy

=
∫

R

∫ t

0

Gε1(s, t;x, y)
[
ε2a(Yε1,ε2(s, y))W(ds, dy) + b(Yε1,ε2(s, y))dsdy

]
,

(1.9)

where
Gε1(t;x, y) =

1√
2ε1πt

e−(x−y)2/2ε1t.

Also, note that when ε1, ε2 are fixed, sup0≤s≤T supx∈R EU2
ε1,ε2(s, x) < ∞ for all

T > 0 (see Proposition 2.7, (2.23), and note that Y has the same law as U).

2. Existence, uniqueness, and regularity

The proof of Theorem 1.6 proceeds in several steps as in the heat SPDE in [3],
with the extra difficulty caused by the extra term b(U): we first get Kolmogorov
type estimates on the spatial and temporal differences of the continuous Ũx

n (t)’s
establishing tightness, and so by Lemma 1.2 and Definition 1.4 this implies the
existence of a weak SDDE weak limit solution to eε1,ε2

heat (a, b, ξ). Then we show that
the limit satisfies the test function formulation of eε1,ε2

heat (a, b, ξ). Since Theorem 1.6
is stated for fixed ε1, ε2, we suppress the dependence on these parameters (except
in Lemma 2.1 below which we use in Remark 3.1 in the third section), and we
assume without loss of generality that they are both 1. Throughout the article, K
will denote a constant that may change its value from one step to the next.

2.1. Random walk estimates. The first set of estimates we need are bounds on
the random walk density Qt;x

δn
. Since all the results in this section hold for all n, we

will suppress the dependence on n, except in (2.10), to simplify the notation. The
first three lemmas are taken directly from [3] p. 32 and are reproduced below for
convenience:

Lemma 2.1. There is a constant K such that∑
x∈X

(Qt:x
δ )2 ≤ Kδ/

√
t and

∑
x∈X

(Qt;x
δ,ε1

)
2 ≤ Kδ/

√
ε1t,

and hence∫ t

0

∑
x∈X

(Qs;x
δ )2 ds ≤ Kδ

√
t and

∫ t

0

∑
x∈X

(Qs;x
δ,ε1

)2 ds ≤ Kδ

√
t

ε1
.

Lemma 2.2. There is a constant K such that∫ t

0

∑
x∈X

(Qs;x
δ −Qs;x+z

δ )
2
ds ≤ Kδ|z|.
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Lemma 2.3. There is a constant K such that∫ t

0

∑
x∈X

(Qt−s;x
δ −Qr−s;x

δ )
2
ds ≤ Kδ

√
t− r,

for r < t, and with the convention that Qx
δ (t) = 0 if t < 0.

The next three Lemmas are needed to deal with the reaction term b(U) in the
SPDE.

Lemma 2.4. There is a constant K such that∑
x∈X

|Qt;x
δ −Qt:x+z

δ | ≤ 1 ∧K
|z|√

t
, (2.1)

and thus ∫ t

0

∑
x∈X

∣∣Qs;x
δ −Qs;x+z

δ

∣∣ ds ≤ K
√

t|z|. (2.2)

Proof. We use a standard maximal coupling argument. For details on coupling
and related techniques the interested reader could consult [18] and the references
therein.

Denote by Λx
δ (t) the law of the random walk, starting at x, after time t; and let

‖ · ‖ denote the total variation norm. Then we are trying to bound

A
4
=

∫ t

0

∥∥Λx
δ (s)− Λx+z

δ (s)
∥∥ ds

So, using a coupling argument, we start two copies of the random walk at 0 and
z and run the maximal coupling. The total variation at time t between the two
random walks laws ‖Λ0

δ(t) − Λz
δ(t)‖ is exactly the probability of not yet coupling,

which is readily seen to be at most 1 ∧ K|z|/t1/2, for some constant K. Thus,
we get the first inequality (2.1), and the second inequality (2.2) (the bound on A)
immediately follows. �

Lemma 2.5. There are constants K and δ∗ such that∑
x∈X

∣∣Qt;x
δ −Qs;x

δ

∣∣ ≤ 1 ∧K

√
t−

√
s√

t
,

whenever s < t and δ < δ∗, and hence∫ t

0

∑
x∈X

∣∣Qt−s;x
δ −Qr−s;x

δ

∣∣ ds ≤ K
(
1 + log

[ t

t− r

])
(t− r),

for r < t and δ < δ∗, and with the convention that Qt;x
δ = 0 if t < 0.

This is a central limit theorem type argument, which we briefly present here for
convenience.

Proof. To see the first inequality, note that the total variation distance is

‖Λx
δ (s)− Λx

δ (t)‖ = sup
k
|Λx

δ (s)([−k, k])− Λx
δ (t)([−k, k])| , (2.3)

where Λx
δ (t) is as in the proof of Lemma 2.4. By the central limit theorem, we

see that the limit as δ → 0 in (2.3) is bounded by a constant multiple of (t1/2 −
s1/2)/t1/2; then there is a δ∗ > 0 such that, whenever δ < δ∗, the total variation
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distance in (2.3) is bounded by a constant multiple of (t1/2−s1/2)/t1/2 as well, with
a possibly different constant. So, for small enough δ, we get the first inequality.
The second inequality follows upon using the fact that (t1/2−s1/2)/t1/2 ≤ (t−s)/t

and integrating, using the convention that Qt;x
δ = 0 if t < 0. �

From this point on, and without explicitly stating it, we will assume δ < δ∗

whenever needed. Consequently, we have the following statement.

Lemma 2.6. There is a constant K, depending only on T , such that∫ t

0

∑
x∈X

∣∣Qt−s;x
δ −Qr−s;x

δ

∣∣ ds ≤ K
[
(t− r) + (t− r)1−e−1]

,

for 0 ≤ r < t ≤ T , and with the convention that Qt;x
δ = 0 if t < 0.

Proof. In light of Lemma 2.5, it suffices to show that

log
[T ∨ 1

t− r

]
≤ (T ∨ 1)(t− r)−e−1

, (2.4)

for 0 ≤ r < t ≤ T . So, setting x = t − r and letting `(x)
4
= log [(T ∨ 1)/x] − (T ∨

1)x−e−1
, we see from an easy calculus computation that

max `(x) = `([(T ∨ 1)/e]e) = (1− e) log[T ∨ 1] ≤ 0,

proving (2.4). �

2.2. Bounds on moments of Ũx(t). The main result of this subsection is as
follows.

Proposition 2.7. There exists a constant K depending only on q, maxx |ξ(x)|,
and T such that

Mq(t) ≤ K exp {Kt}; ∀ 0 ≤ t ≤ T, q ≥ 1,

where Mq(t) = supx E|Ũx(t)|2q. In particular, Mq is bounded on T for all q ≥ 1,
and

sup
t∈T

Mq(t) ≤ K exp {KT}. (2.5)

The proof of Proposition 2.7 proceeds via the following lemma and its corollary.

Lemma 2.8. There exists a constant K depending only on q ≥ 1, maxx |ξ(x)|, and
T such that

Mq(t) ≤ K
(
1 +

∫ t

0

[ Mq(s)√
t− s

+ Mq(s)
]
ds

)
; ∀0 ≤ t ≤ T, q ≥ 1.
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Proof. Fix q ≥ 1, let Ũx
D(t)

4
=

∑
y∈X Qt;x,y

δn
ξ(y) (the deterministic part of Ũ). Then,

for any (t, x) ∈ T× X, we have:

E|Ũx(t)|2q = E
∣∣∣ ∑

y∈X

∫ t

0

Qt−s;x,y
δ

[a(Ũy(s))√
δ

dW y(s) + b(Ũy(s))ds
]
+ Ũx

D(t)
∣∣∣2q

≤ K
(
E

∣∣∣ ∑
y∈X

∫ t

0

Qt−s;x,y
δ

a(Ũy(s))√
δ

dW y(s)
∣∣∣2q

+
∣∣∣Ũx

D(t)
∣∣∣2q )

+ KE
∣∣∣ ∑

y∈X

∫ t

0

Qt−s;x,y
δ b(Ũy(s))ds

∣∣∣2q

.

(2.6)

Applying Burkholder inequality to

V x(t) =
∑
y∈X

∫ t

0

Qt−s;x,y
δ

a(Ũy(s))√
δ

dW y(s)

Reduces (2.6) to

E|Ũx(t)|2q ≤ K
(
E

∣∣∣ ∑
y∈X

∫ t

0

(Qt−s;x,y
δ )

2 a2(Ũy(s))
δ

ds
∣∣∣q + |Ũx

D(t)|2q
)

+ KE
∣∣∣ ∑

y∈X

∫ t

0

Qt−s;x,y
δ b(Ũy(s))ds

∣∣∣2q

.

(2.7)

Now, for a fixed point (t, x) ∈ T × X let µx
t and νx

t be the measures on [0, t] × X
defined by dµx

t (s, y) = ((Qt−s;x,y
δ )

2
/δ)ds and dνx

t (s, y) = Qt−s;x,y
δ ds, and let |µx

t | =
µx

t ([0, t]× X) and |νx
t | = νx

t ([0, t]× X). Then, we can rewrite (2.7) as

E|Ũx(t)|2q ≤K
(
E

∣∣∣∣∣
∫

[0,t]×X
a2(Ũy(s))

dµx
t (s, y)
|µx

t |

∣∣∣∣∣
q

|µx
t |

q + |Ũx
D(t)|2q

)
+ KE

∣∣∣ ∫
[0,t]×X

b(Ũy(s))
dνx

t (s, y)
|νx

t |

∣∣∣2q

|νx
t |

2q
.

(2.8)

Observing that µx
t /|µx

t | and νx
t /|νx

t | are probability measures, we apply Jensen’s
inequality, the growth condition on a and b, and other elementary inequalities to
(2.8) to obtain

E|Ũx(t)|2q ≤ K
(
E

[ ∫
[0,t]×X

∣∣∣a(Ũy(s))
∣∣∣2q dµx

t (s, y)
|µx

t |

]
|µx

t |
q + |Ũx

D(t)|2q
)

+ KE
[ ∫

[0,t]×X

∣∣∣b(Ũy(s))
∣∣∣2q dνx

t (s, y)
|νx

t |

]
|νx

t |
2q

≤ K
[ ∫

[0,t]×X

(
1 + E|Ũy(s)|2q

)
dµx

t (s, y)
]
|µx

t |
q−1 + K|Ũx

D(t)|2q

+ K
[ ∫

[0,t]×X

(
1 + E|Ũy(s)|2q

)
dνx

t (s, y)
]
|νx

t |
2q−1

= K
([ ∑

y∈X

∫ t

0

(Qt−s;x,y
δ )2

δ

(
1 + E|Ũy(s)|2q

)
ds

]
|µx

t |
q−1 + |Ũx

D(t)|2q
)
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+ K
[ ∑

y∈X

∫ t

0

Qt−s;x,y
δ

(
1 + E|Ũy(s)|2q

)
ds

]
|νx

t |
2q−1

.

Using the simple fact that
∑

y∈X Qt−s;x,y
δ = 1 and Lemma 2.1, we see that |νx

t | and
|µx

t | are uniformly bounded for t ≤ T . So, using the boundedness of ξ, and hence
of Ũx

D(t), Lemma 2.1 and the definition of Mq(s), we get

E|Ũx(t)|2q ≤ K
(
1 +

∑
y∈X

∫ t

0

[ (Qt−s;x,y
δ )2

δ
Mq(s) + Qt−s;x,y

δ Mq(s)
]
ds

)
R1
≤ K

(
1 +

∫ t

0

[ Mq(s)√
t− s

+ Mq(s)
]
ds

)
.

Here, R1 follows from Lemma 2.1 and the fact that
∑

y∈X Qt−s;x,y
δ = 1. This implies

that

Mq(t) ≤ K
(
1 +

∫ t

0

[ Mq(s)√
t− s

+ Mq(s)
]
ds

)
.

�

Corollary 2.9. There exists a constant K depending only on q, maxx |ξ(x)|, and
T such that

Mq(t) ≤ K
(
1 +

∫ t

0

Mq(s)ds
)
; 0 ≤ t ≤ T, q ≥ 1.

Proof. Iterating the bound in Lemma 2.8 once, and changing the order of integra-
tion, we obtain

Mq(t) ≤K
{

1 + K
[ ∫ t

0

( 1√
t− s

)
ds

+
∫ t

0

Mq(r)
( ∫ t

r

1√
t− s

√
s− r

ds +
∫ t

r

1√
t− s

ds
)
dr

+
∫ t

0

Mq(r)
( ∫ t

r

1√
t− s

ds
)
dr

]
+

∫ t

0

Mq(s)ds
}

≤K
(
1 +

∫ t

0

Mq(s)ds
)
.

(2.9)

�

Now the proof of Proposition 2.7 is a straightforward application of Gronwall’s
lemma to Corollary 2.9.

2.3. Bounds on spatial and temporal differences moments and tightness
of the approximating SDDEs. Let Ũx(t) = Ũx

R(t)+Ũx
D(t), where Ũx

R(t) denotes
the first two (random) terms on the r.h.s. of (1.7). It is easily seen (see [17]) that
the deterministic part Ũx

D(t) converges pointwise to the solution of the deterministic
heat equation as n →∞ (δn → 0); i.e.,

lim
n→∞

Ũx
n,D(t) =

∫
R

G(t;x, y)ξ(y)dy, ∀(t, x) ∈ RT . (2.10)
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So, to show weak convergence of a subsequence of Ũx(t); it is enough to show
tightness, and hence the weak convergence, of the random part Ũx

R(t). Using the
inequalities of the previous two subsections, we obtain

Lemma 2.10 (Spatial differences). There exists a constant K depending only on
q, maxx |ξ(x)|, and T such that

E
∣∣∣Ũx

R(t)− Ũy
R(t)

∣∣∣2q

≤ K
(
|x− y|q + |x− y|2q

)
,

for all x, y ∈ X and t ∈ T.

Proof. Using Burkholder inequality, we have for any (t, x, y) ∈ T× X2

E
∣∣∣Ũx

R(t)− Ũy
R(t)

∣∣∣2q

≤KE
∣∣∣ ∑

z∈X

∫ t

0

(
Qt−s;x,z

δ −Qt−s;y,z
δ

)2

δ
a2(Ũz(s))ds

∣∣∣q

+ KE
∣∣∣ ∑

z∈X

∫ t

0

(
Qt−s;x,z

δ −Qt−s;y,z
δ

)
b(Ũz(s))ds

∣∣∣2q

.

(2.11)

For any fixed but arbitrary point (t, x, y) ∈ T×X2 let µx,y
t and νx,y

t be the measures
defined on [0, t]×X by dµx,y

t (s, z) = ((Qt−s;x,z
δ −Qt−s;y,z

δ )
2
/δ)ds and dνx,y

t (s, z) =∣∣Qt−s;x,z
δ −Qt−s;y,z

δ

∣∣ ds, and let |µx,y
t | = µx,y

t ([0, t]×X) and |νx,y
t | = νx,y

t ([0, t]×X).
So, from (2.11), Jensen’s inequality, the growth condition on a and b, the definition
of Mq(t), and elementary inequalities, we have

E
∣∣∣Ũx

R(t)− Ũy
R(t)

∣∣∣2q

≤KE
[ ∫

[0,t]×X

∣∣∣a(Ũz(s))
∣∣∣2q dµx,y

t (s, z)
|µx,y

t |

]
|µx,y

t |q

+ KE
[ ∫

[0,t]×X

∣∣∣b(Ũz(s))
∣∣∣2q dνx,y

t (s, z)
|νx,y

t |

]
|νx,y

t |2q

≤K
[ ∫

[0,t]×X
(1 + Mq(s))

dµx,y
t (s, z)
|µx,y

t |

]
|µx,y

t |q

+ K
[ ∫

[0,t]×X
(1 + Mq(s))

dνx,y
t (s, z)
|νx,y

t |

]
|νx,y

t |2q

(2.12)

Now, using the boundedness of Mq on T (Proposition 2.7), we get

E
∣∣∣Ũx

R(t)− Ũy
R(t)

∣∣∣2q

≤ K
(
|µx,y

t |q + |νx,y
t |2q

)
≤ K

(
|x− y|q + |x− y|2q

)
,

where the last inequality follows from Lemma 2.2 and Lemma 2.4. �

Lemma 2.11 (Temporal differences). There exists a constant K depending only
on q, maxx |ξ(x)|, and T such that

E
∣∣∣Ũx

R(t)− Ũx
R(r)

∣∣∣2q

≤ K
(
|t− r|q/2 + |t− r|2q + |t− r|2q(1−e−1)

)
,

for all x ∈ X and for all t, r ∈ T.

Proof. Assume without loss of generality that r < t. For a fixed point (r, t, x), let
µx

t,r and νx
t,r be the measures defined on [0, t]× X by

dµx
t,r(s, z) = ((Qt−s;x,z

δ −Qr−s;x−z
δ )

2
/δ)ds

dνx
t,r(s, z) =

∣∣Qt−s;x,z
δ −Qr−s;x−z

δ

∣∣ ds,
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with the convention that Qt;x
δ = 0 if t < 0, and let |µx

t,r| = µx
t,r([0, t] × X) and

|νx
t,r| = νx

t,r([0, t]× X). Then, arguing as in Lemma 2.10, we obtain

E
∣∣∣Ũx

R(t)− Ũx
R(r)

∣∣∣2q

≤ K
(
|µx

t,r|
q + |νx

t,r|
2q

)
≤ K

(
(t− r)q/2 + (t− r)2q + (t− r)2q(1−e−1)

)
,

where the last inequality follows from Lemma 2.3 and Lemma 2.6. �

Following [3], we conclude from Lemma 2.10 and Lemma 2.11 that the random

part of the sequence of (interpolated) continuous SDDEs solutions
(
Ũx

n (t)
)∞

n=1
is

tight on C(T×R; R). This and (2.10) imply that there exists a weakly convergent
subsequence Ũnk

. So, by Lemma 1.2 and Definition 1.4 we have proven the existence
of a weak SDDE weak limit solution to eε1,ε2

heat (a, b, ξ). Then, following Skorokhod,
we can construct processes Yk

d= Ũnk
on some probability space (ΩS ,FS , PS) such

that with probability 1, as k → ∞, Yk(t, x) converges to a random field Y (t, x)
uniformly on compact subsets of T× R for any T .

We will now show that Y (t, x) is a solution to eε1,ε2
heat (a, b, ξ) in the traditional

sense, by showing that it solves an equivalent martingale problem to the test func-
tion formulation (1.8) for eε1,ε2

heat (a, b, ξ) (see Theorem 2.12 and Theorem 4.1), and
this will complete the proof of the existence assertions in Theorem 1.6. It is worth
noting that Theorem 4.1 eliminates the need for a second martingale problem (as in
Theorem 5.3 in [3]), and provides a simpler way to establish the equivalence to the
test function formulation of any heat-based SPDE (not just for reaction diffusions
SPDEs).

2.4. The Martingale problem. For every ϕ ∈ C∞
c (R; R) let

Sϕ(Yk, t)

=
∑

x∈Xnk

[Yk(t, x)− ξ(x)]ϕ(x) δnk
− 1

2

∫ t

0

∑
x∈Xnk

Yk(s, x) ∆nk
ϕ(x) δnk

ds

−
∫ t

0

∑
x∈Xnk

b(Yk(s, x))ϕ(x)δnk
ds

(2.13)

and let Gt be the filtration on (ΩS ,FS , PS) generated by the process Sϕ(Yk, t) for
all ϕ and all k; i.e., Gt = σ [Sϕ(Yk, s); 0 ≤ s ≤ t, ϕ ∈ C∞

c (R; R), k = 1, 2, · · · ].

Theorem 2.12. For ϕ ∈ C∞
c (R; R) we have

(i) {Mϕ(t),Gt} is a martingale, for every ϕ ∈ C∞
c (R; R), where

Mϕ(t)
4
= (Y (t)− ξ, ϕ)− 1

2

∫ t

0

(Y (s), ϕ′′)ds−
∫ t

0

(b(Y (s)), ϕ)ds; 0 ≤ t < T,

where (·, ·) denotes the scalar product on L2(R),
(ii) 〈Mϕ(·)〉t = 〈(Y, ϕ)〉t =

∫ t

0

∫
R a2(Y x(s))ϕ2(x)dxds

Proof. (i) Assume that the sequence of Brownian motions W̃ x
n (t) in (1.2) is defined

on some probability space (Ω,F, P) and adapted to a filtration {Ft}t≥0. We first
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observe from (1.2) that for any k

[
Ũx

nk
(t)− ξ(x)

]
ϕ(x)δnk

−
∫ t

0

[
1
2
∆nk

Ũx
nk

(s) + b(Ũx
nk

(s))
]

ϕ(x)δnk
ds

is an Ft-martingale for each x ∈ Xnk
(this easily follows from the growth condition

on a ((b) in (1.6)) and Proposition 2.7, along with the boundedness of ϕ). Now
since ϕ has a compact support, it follows that

∑
x∈Xnk

[
Ũx

nk
(t)− ξ(x)

]
ϕ(x)δnk

− 1
2

∫ t

0

∑
x∈Xnk

∆nk
Ũx

nk
(s)ϕ(x)δnk

ds

−
∫ t

0

∑
x∈Xnk

b(Ũx
nk

(s))ϕ(x)δnk
ds

=
∑

x∈Xnk

[
Ũx

nk
(t)− ξ(x)

]
ϕ(x)δnk

− 1
2

∫ t

0

∑
x∈Xnk

Ũx
nk

(s)∆nk
ϕ(x)δnk

ds

−
∫ t

0

∑
x∈Xnk

b(Ũx
nk

(s))ϕ(x)δnk
ds

4
= Sϕ(Ũnk

, t)

(2.14)

is a finite sum, and hence an Ft-martingale. Replacing the Ũx
nk

(t) in (2.14) by the
Yk(t, x), and letting k →∞, we get that Sϕ(Yk, t) → Mϕ(t) a.s. (uniformly on T).
In addition, Sϕ(Yk, t) are uniformly integrable for each t and each ϕ. To see this,
observe that for each t ∈ T and each ϕ ∈ C∞

c (R; R), we have

E|Sϕ(Yk, t)|2 = E|Sϕ(Ũnk
, t)|2

= E
∣∣∣ ∫ t

0

∑
x∈Xnk

a(Ũx
nk

(s))ϕ(x)
√

δnk
dW x

nk
(s)

∣∣∣2
≤ K

∫ t

0

∑
x∈Xnk

Ea2(Ũx
nk

(s))ϕ2(x)δnk
ds ≤ K < ∞,

for some constant K > 0 independent of k, where the last two inequalities fol-
low from Burkholder’s inequality, the boundedness and compact supportedness of
ϕ, the growth condition on a ((b) in (1.6)), and Proposition 2.7. Thus, uniform
integrability of the sequence {Sϕ(Yk, t)}k follows for each ϕ and each t. So, If s < t

E [Mϕ(t)−Mϕ(s) |Gs ] = lim
k→∞

E [Sϕ(Yk, t)− Sϕ(Yk, s) |Gs ] = 0.

This proves (i).
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(ii) From (1.2) it follows that

d
[ ∑

x∈Xnk

Ũx
nk

(t)ϕ(x)δnk

]
=

∑
x∈Xnk

a
(
Ũx

nk
(t)

)
ϕ(x)

√
δnk

dW x
nk

(t)

+
[ ∑

x∈Xnk

(1
2
∆nk

Ũx
nk

(t) + b(Ũx
nk

(t))
)
ϕ(x)δnk

]
dt

=
[1
2

∑
x∈Xnk

Ũx
nk

(t)∆nk
ϕ(x)δnk

+
∑

x∈Xnk

b(Ũx
nk

(t))ϕ(x)δnk

]
dt

+
∑

x∈Xnk

a
(
Ũx

nk
(t)

)
ϕ(x)

√
δnk

dW x
nk

(t).

Observing that the first two terms on the right hand side of the last equality in the
above equation are of bounded variation, and that the

(
W x

nk
(t)

)
x∈Xnk

is a sequence

of independent Brownian motions, we obtain, after inspecting (2.14), that

〈
Sϕ(Ũnk

, ·)
〉

t
=

〈 ∑
x∈Xnk

Ũx
nk

(·)ϕ(x)δnk

〉
t
=

∫ t

0

[ ∑
x∈Xnk

a2
(
Ũx

nk
(s)

)
ϕ2(x)δnk

]
ds

(2.15)
Again, replacing the Ũx

nk
(t) in (2.15) by the Yk(t, x), we get, for 0 ≤ r ≤ t ≤ T ,

E
[
(Sϕ(Yk, t)− Sϕ(Yk, r))2

∣∣Gr

]
= E

[ ∫ t

r

∑
x∈Xnk

a2 (Yk(s, x))ϕ2(x)δnk
ds

∣∣∣Gr

]
.

(2.16)
Again, we observe that (Sϕ(Yk, t)− Sϕ(Yk, r))2 are uniformly integrable, for each
r and t and each ϕ. To see that, fix p ≥ 1, 0 ≤ r ≤ t ≤ T , and ϕ ∈ C∞

c (R; R); and
apply Burkholder’s inequality to obtain

E |Sϕ(Yk, t)− Sϕ(Yk, r)|2p = E
∣∣∣ ∫ t

r

∑
x∈Xnk

a (Yk(s, x))ϕ(x)
√

δnk
dW x

nk
(s)

∣∣∣2p

≤ KE
∣∣∣ ∑

x∈Xnk

∫ t

0

a2 (Yk(s, x))ϕ2(x)δnk
ds

∣∣∣p (2.17)

for some constant K > 0 independent of k. Now, let ηt
k

be the measure defined on
[0, t]×Xnk

by dηt
k
(s, x) = ϕ2(x)δnk

ds and let |ηt
k
| = ηt

k
([0, t]×Xnk

). Clearly, for a
fixed ϕ,

sup
k∈N

0≤t≤T

|ηt
k
| ≤ K

for some constant K > 0 independent of k (K depends only on T , supx ϕ2(x), and
the Lebesgue measure of the support of ϕ). Then, rewriting (2.17) and—observing
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that ηt
k
/|ηt

k
| is a probability measure—applying Jensen’s inequality yields

E |Sϕ(Yk, t)− Sϕ(Yk, r)|2p

≤ KE
∣∣∣ ∫

[0,t]×Xnk

a2 (Yk(s, x))
dηt

k
(s, x)
|ηt

k
|

∣∣∣p|ηt
k
|p

≤ |ηt
k
|p−1

K

∫
[0,t]×Xnk

E
[
a2p (Yk(s, x))

]
dηt

k
(s, x)

≤ K
∑

x∈Xnk

∫ T

0

E
[
a2p (Yk(s, x))

]
ϕ2(x)δnk

ds ≤ K < ∞,

(2.18)

for some constant K > 0 independent of k, where in the next to last inequality we
also used the growth condition on a ((b) in (1.6)) and Proposition 2.7 (Yk

d= Ũnk
),

along with the compact supportedness and boundedness of ϕ. Thus,

lim
k→∞

E
[
(Sϕ(Yk, t)− Sϕ(Yk, r))2

∣∣∣ Gr

]
= E

[
(Mϕ(t)−Mϕ(r))2

∣∣∣ Gr

]
. (2.19)

Also, for the same reasons as in the next to last inequality in (2.18), we see that

E
∫ t

r

∑
x∈Xnk

a2 (Yk(s, x))ϕ2(x)δnk
ds ≤ K < ∞,

for some constant K > 0 independent of k. Therefore, for each r, t and each ϕ,{∫ t

r

∑
x∈Xnk

a2 (Yk(s, x))ϕ2(x)δnk
ds

}
k

is a uniformly integrable sequence and thus

lim
k→∞

E
[ ∫ t

r

∑
x∈Xnk

a2 (Yk(s, x))ϕ2(x)δnk
ds

∣∣∣Gr

]
= E

[ ∫ t

r

∫
R

a2 (Y x(s))ϕ2(x)dxds
∣∣∣Gr

]
.

(2.20)

Now, equations (2.16), (2.19), and (2.20) yield

〈Mϕ(·)〉t =
∫ t

0

∫
R

a2(Y x(s))ϕ2(x)dxds, (2.21)

and (ii) is proved. �

2.5. Regularity and Uniqueness. Having established existence for the SPDE
eε1,ε2
heat (a, b, ξ) under our conditions (1.6), we turn to the proof of some properties of

our solution Y .

Proof of the regularity part of Theorem 1.6. We divide the proof in two steps:
(1) Y is Lp bounded for all p ≥ 2: First, note that Yk

d= Ũnk
and Proposition 2.7

give us, for each q ≥ 1:

E |Yk(t, x)|2q = E
∣∣∣Ũx

nk
(t)

∣∣∣2q

≤ K exp (KT ) < ∞; ∀(k, t, x) ∈ N× T× R, (2.22)
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for some constant K (independent of k, t, x). It follows that, for each (t, x) ∈ T×R
the sequence {|Yk(t, x)|p}k is uniformly integrable for each p ≥ 2. Thus,

E|Y (t, x)|p ≤ lim
k→∞

E |Yk(t, x)|p ≤ K < ∞; ∀(t, x) ∈ T× R, ∀p ≥ 2, (2.23)

and the desired conclusion follows.
(2) The continuous paths of Y are Hölder γs ∈ (0, 1

2 ) in space and Hölder γt ∈ (0, 1
4 )

in time: Using Proposition 2.7, we get, for each q ≥ 1, that

E |Yk(t, x)− Yk(t, y)|2q + E |Yk(t, x)− Yk(r, x)|2q

≤ K
(
E|Yk(t, x)|2q + E|Yk(t, y)|2q + E|Yk(r, x)|2q

)
≤ K; ∀(k, r, t, x, y) ∈ N× T2 × R2.

(2.24)

So, for each (r, t, x, y) ∈ T2 × R2, the sequences
{
|Yk(t, x)− Yk(t, y)|2q }

k
and{

|Yk(t, x)− Yk(r, x)|2q }
k

are uniformly integrable, for each q ≥ 1. Therefore, using
Lemma 2.10 and Lemma 2.11, we obtain

(i) E |Y (t, x)− Y (t, y)|2q

= lim
k→∞

E |Yk(t, x)− Yk(t, y)|2q

= lim
k→∞

E
∣∣∣Ũx

nk
(t)− Ũy

nk
(t)

∣∣∣2q

≤ K|x− y|q; whenever |x− y| < 1,

(ii) E |Y (t, x)− Y (r, x)|2q

= lim
k→∞

E |Yk(t, x)− Yk(r, x)|2q

= lim
k→∞

E
∣∣∣Ũx

nk
(t)− Ũx

nk
(r)

∣∣∣2q

≤ K|t− r|q/2; whenever |t− r| < 1.

(2.25)

Now, letting qn = n + 1 for n ∈ {0, 1, . . .} and let n = m + 1 for m ∈ {0, 1, . . .}, we
then have from (2.25) that

(i) E |Y (t, x)− Y (t, y)|2+2n ≤ K|x− y|1+n; whenever |x− y| < 1,

(ii) E |Y (t, x)− Y (r, x)|4+2m ≤ K|t− r|1+ m
2 ; whenever |t− r| < 1.

(2.26)

By Theorem 2.8 p. 53 [14] we get that γs ∈ (0, n
2n+2 ) and γt ∈ (0, m/2

2m+4 ) ∀m,n,
from which the proof follows upon taking the limits as m,n →∞. �

Proof of the uniqueness part of Theorem 1.6. Consider eε1,ε2
heat (a, b, ξ) on the rectan-

gle RT,L
4
= [0, T ] × [0, L] for some T,L > 0, and assume that a(u) and b(u) are as

given in Theorem 1.6. Then as in the proof of Theorem 1.2 in [1] (see also the com-
ment after Remark 1.1 in [2]), we only need to show that, if λ is Lebesgue measure
on RT,L, then the ratios b(U)/a(U) and b(V )/a(V ) are in L2(RT,L, λ) almost surely
whenever U solves eε1,ε2

heat (a, 0, ξ) and V solves eε1,ε2
heat (a, b, ξ). But this easily follows

as in the proof of Theorem 1.2 [1] under our conditions, since we always assume
that solutions to eε1,ε2

heat (a, b, ξ), and hence U and V are continuous. �

3. The vanishing of the Laplacian vs. noise

We now prove of Theorem 1.8, which asserts that ε2/ε1
1/4 is the correct scaling

of ε1 and ε2 when we investigate the asymptotic behavior as ε1, ε2 → 0.
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Proof of Theorem 1.8. Throughout this proof we use the process Y of Theorem 1.6,
Remark 1.7, and Remark 1.9 to get to the desired conclusions. This is justified by
the fact that Y has the same law as U .
(i) We prove it by contradiction. So, assume there is a T > 0 such that

lim
ε1,ε2↓0

ε2/ε1
1/4→∞

sup
0≤s≤T

sup
x∈R

EY 2
ε1,ε2(s, x) < ∞

and assume without loss of generality that ξ ≡ 0. Observe that

E |Yε1,ε2(t, x)|2

= E
∣∣∣ ∫

R

∫ t

0

Gε1(s, t;x, y) [ε2a(Yε1,ε2(s, y))W(ds, dy) + b(Yε1,ε2(s, y))ds dy]
∣∣∣2

= ε22

∫
R

∫ t

0

G2
ε1(s, t;x, y)Ea2(Yε1,ε2(s, y))ds dy

+ E
( ∫

R

∫ t

0

Gε1(s, t;x, y)b(Yε1,ε2(s, y))dsdy
)2

+ 2ε2E
( ∫

R

∫ t

0

Gε1(s, t;x, y)a(Yε1,ε2(s, y))W(ds, dy)

×
∫

R

∫ t

0

Gε1(s, t;x, y)b(Yε1,ε2(s, y))dsdy
)

≥ K2
l ε22

∫
R

∫ t

0

G2
ε1(s, t;x, y)ds dy + E

( ∫
R

∫ t

0

Gε1(s, t;x, y)b(Yε1,ε2(s, y))dsdy
)2

2ε2E
( ∫

R

∫ t

0

Gε1(s, t;x, y)a(Yε1,ε2(s, y))W(ds, dy)

×
∫

R

∫ t

0

Gε1(s, t;x, y)b(Yε1,ε2(s, y))dsdy
)
,

(3.1)

where we used the assumption 0 < Kl ≤ a(u) to get the last inequality in (3.1).
Now, denoting by PL the product inside the expectation in the last term in (3.1),
applying Cauchy-Schwarz, using the assumption that a(u) ≤ KL, the fact∫

R

∫ t

0

G2
ε1(s, t;x, y)dsdy =

√
t

√
πε1

, (3.2)

and letting CT = 2KLT 1/4/π1/4, we get that

|2ε2EPL| ≤ 2ε2

√∫
R

∫ t

0

G2
ε1(s, t;x, y)Ea2(Yε1,ε2(s, y))dsdy

×

√
E

( ∫
R

∫ t

0

Gε1(s, t;x, y))b(Yε1,ε2(s, y))dsdy
)2

≤ CT
ε2

ε11/4

[
E

( ∫
R

∫ t

0

Gε1(s, t;x, y))b(Yε1,ε2(s, y))dsdy
)2]1/2

(3.3)

Now, for a fixed point (t, x, ε1) ∈ T× R× R+ let νt,x
ε1 be the measure on [0, t]× R

defined by dνt,x
ε1 (s, y) = Gε1(s, t;x, y)dsdy, and let |νt,x

ε1 | = νt,x
ε1 ([0, t] × R). Then,
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observing that

∣∣νt,x
ε1

∣∣ =
( ∫

R

∫ t

0

Gε1(s, t;x, y)dsdy
)

= t, (3.4)

and that νt,x
ε1 /|νt,x

ε1 | is a probability measure, we apply Jensen’s inequality and the
growth condition on b to (3.3) to get

|2ε2EPL| ≤ CT
ε2

ε11/4

( ∫
[0,t]×R

Eb2(Yε1,ε2(s, y))
dνt,x

ε1 (s, y)∣∣νt,x
ε1

∣∣ )1/2∣∣νt,x
ε1

∣∣
≤ C̃T

ε2
ε11/4

( ∫
[0,t]×R

Eb2(Yε1,ε2(s, y))
dνt,x

ε1 (s, y)∣∣νt,x
ε1

∣∣ )1/2

≤ C̃T
ε2

ε11/4
sup

0≤s≤T
sup
x∈R

(
Eb2(Yε1,ε2(s, x))

)1/2

≤ KT
ε2

ε11/4
sup

0≤s≤T
sup
x∈R

(
1 + EY 2

ε1,ε2(s, x)
)1/2

≤ KT
ε2

ε11/4

(
1 + sup

0≤s≤T
sup
x∈R

[
EY 2

ε1,ε2(s, x)
]1/2

)
.

(3.5)

Equations (3.5), (3.2), and (3.1) then yield

E |Yε1,ε2(t, x)|2 −K2
l

√
t

π

ε22√
ε1

+ KT
ε2

ε11/4

(
1 +

[
sup

0≤s≤T
sup
x∈R

EY 2
ε1,ε2(s, x)

]1/2)
≥ 0.

(3.6)
Taking the limit as ε1, ε2 ↘ 0 in (3.6) such that ε2/ε1

1/4 → ∞ and using the
finiteness assumption on sup0≤s≤T supx∈R EY 2

ε1,ε2(s, x) (and hence the finiteness of
E |Yε1,ε2(t, x)|2), we obtain the desired contradiction (since the negative term is of
order ε22/

√
ε1). The fact that Yε1,ε2 has the same law as our SDDEs limit solution

Uε1,ε2 completes the proof. The proof for the case or ε1, ε2 ↗∞ follows exactly the
same steps.
(ii) The difference between our SPDE and its deterministic counterpart, whose
solution we denote by Uε1 , is given by

Yε1,ε2(t, x)− Uε1(t, x) =
∫

R

∫ t

0

Gε1(s, t;x, y)ε2a(Yε1,ε2(s, y))W(ds, dy)

+
∫

R

∫ t

0

Gε1(s, t;x, y)
[
b(Yε1,ε2(s, y))− b(Uε1)

]
ds dy.

(3.7)

Let νt,x
ε1 be the measure on [0, t]×R defined as in part (i) above, and let dµt,x

ε1 (s, y) =
G2

ε1(s, t;x, y)ds dy and let |µt,x
ε1 | = µt,x

ε1 ([0, t] × R); then, using Burkholder and
Jensen’s inequalities; and finally using the boundedness on a and the Lipschitz
continuity assumption on b and the simple fact that

∫
R Gε1(s, t;x, y)dy = 1, we get
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for 0 ≤ t ≤ T that

E |Yε1,ε2(t, x)− Uε1(t, x)|2q

≤ K
{

E
∣∣∣ ∫

R

∫ t

0

Gε1(s, t;x, y)ε2a(Yε1,ε2(s, y))W(ds, dy)
∣∣∣2q

+ E
∣∣∣ ∫

R

∫ t

0

Gε1(s, t;x, y) [b(Yε1,ε2(s, y))− b(Uε1(s, y))] ds, dy
∣∣∣2q}

≤ K
{

ε2q
2

∫
R

∫ t

0

Ea2q(Yε1,ε2(s, y))
dµt,x

ε1 (s, y)

|µt,x
ε1 |

|µt,x
ε1 |

q
}

+ K
{∫

R

∫ t

0

E |b(Yε1,ε2(s, y))− b(Uε1)|
2q dνt,x

ε1 (s, y)

|νt,x
ε1 |

|νt,x
ε1 |

2q
}

≤ Kt2q−1
{∫

R

∫ t

0

E |Yε1,ε2(s, y)− Uε1(s, y))|2q
dνt,x

ε1 (s, y)
}

+
Ktq/2ε2q

2

(πε1)q/2

≤ KT 2q−1
{∫ t

0

sup
x∈R

E |Yε1,ε2(s, x)− Uε1(s, x))|2q
ds

}
+

KT q/2ε2q
2

(πε1)q/2

(3.8)

Letting CT = K(1 ∨ T 2q−1) we get, upon applying Gronwall’s Lemma,

sup
0≤t≤T

sup
x∈R

E |Yε1,ε2(t, x)− Uε1(t, x)|2q ≤ CT ε2q
2

(πε1)q/2
eCT T → 0

as ε1, ε2, and ε2/ε
1/4
1 approach 0. The conclusion follows from the fact that Yε1,ε2

has the same law as Uε1,ε2 . Denoting the solution to the deterministic counterpart
of our approximating (discrete space) SDDE by Ũn,ε1 , replacing the integral over
space (R) with sum over the lattice (Xn) in the above argument, replacing the
Green function Gε1 above with the random walk density Qδn,ε1 , and following the
same steps as above we get

sup
0≤t≤T

sup
x∈Xn

E
∣∣∣Ũx

n,ε1,ε2(t)− Ũx
n,ε1(t)

∣∣∣2q

→ 0 as ε1, ε2, ε2/ε
1/4
1 → 0.

�

Remark 3.1. In contrast to part (ii) of the above proof, the argument in part (i)
doesn’t work for the approximating SDDEs, this becomes clear upon comparing
Lemmas 2.1 and (3.2).
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the elegant coupling proof of Lemma 2.4. I would also like to thank the referee for
his positive and thorough comments.

4. Appendix

We now show that the (local)-martingale problem in Theorem 2.12 is equivalent
to the test function formulation of eε1,ε2

heat (a, b, ξ). To simplify notations, we assume
ε1 = ε2 = 1 (the case of general parameters is proven in the same way with only
obvious notational differences). This equivalence holds as well for the Rd, d > 1,
case; and we will prove it in this generality.

Theorem 4.1. Assume that a, b, and ξ satisfy the conditions in (1.6). Then,
the (local) martingale problem in Theorem 2.12 is equivalent to the test function
formulation of eε1,ε2

heat (a, b, ξ).
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Proof. If the test function formulation of eε1,ε2
heat (a, b, ξ) holds on (Ω,F{Ft}, P), then

Mϕ(t)
4
= (U(t)− ξ, ϕ)− 1

2

∫ t

0

(U(s), ϕ′′)ds−
∫ t

0

(b(U(s)), ϕ)ds

=
∫ t

0

∫
Rd

a(U(s, x))ϕ(x)W(dx, ds)

=
∫ t

0

∫
Sϕ

a(U(s, x))ϕ(x)W(dx, ds),

(4.1)

where Sϕ ⊂ Rd is the compact support of ϕ. It follows from the assumptions on a
and the boundedness of ϕ that Mϕ(t) is an Ft-local martingale under P and that

〈Mϕ(·)〉t =
∫ t

0

∫
Sϕ

a2(U(s, x))ϕ2(x)dx ds =
∫ t

0

∫
Rd

a2(U(s, x))ϕ2(x)dxds. (4.2)

For the other direction, assume that Mϕ(t), as defined in (4.1), is a local mar-
tingale on (Ω,F{Ft}, P) with quadratic variation given by (4.2). Suppose also
that a vanishes almost nowhere in (u, ω) ∈ R × Ω (if this fails we can always do
the same as in the finite dimensional case cf. Ikeda and Watanabe [13] or Doob
[12]). Now let λ denote Lebesgue measure on B(R+ × Rd) and on B(Rd); and,
for each t ≥ 0, define the random measure Mt(A) = M([0, t] × A) on the ring

R
4
= {A ∈ B(Rd);λ([0, t]×A) < ∞, ∀t > 0} by the recipe∫ t

0

∫
A

ϕ(x)M(dx, ds) =
∫ t

0

∫
Rd

ϕ(x)M(dx, ds)
4
= Mϕ(t);

∀A ∈ R with λ(A4Sϕ) = 0 or such that A ⊃ Sϕ, ∀ϕ ∈ C∞
c (Rd; R).

(4.3)

By assumption, we have that Mϕ(t) is a continuous local martingale for each ϕ ∈
C∞

c (Rd; R). Furthermore, if ϕ1, ϕ2 ∈ C∞
c (Rd; R) have disjoint supports (Sϕ1∩Sϕ2 =

φ), then for any disjoint A,B ∈ R with λ(A4Sϕ
1 ) = 0 and λ(B4Sϕ

2 ) = 0 we have
by the definition of Mϕ(t), the fact that the second and third terms in Mϕ(t)’s
definition in (4.1) are of bounded variation, (4.2), and (4.3)〈 ∫ ·

0

∫
A

ϕ1(x)M(dx, ds),
∫ ·

0

∫
B

ϕ2(x)M(dx, ds)
〉

t

= 〈(U(t)− ξ, ϕ1), (U(t)− ξ, ϕ2)〉t

=
1
4

[〈(U(t)− ξ, ϕ1 + ϕ2)〉t − 〈(U(t)− ξ, ϕ1 − ϕ2)〉t]

=
∫ t

0

∫
Rd

a2(U(s, x))ϕ1(x)ϕ2(x)dx ds = 0 .

(4.4)

Thus, M is a continuous orthogonal local martingale measure [5]. By the quadratic
variation assumption on Mϕ(t), we also have that for each ϕ ∈ C∞

c (Rd; R)∫ t

0

∫
Rd

ϕ2(x)a2(U(s, x))dxds =
〈 ∫ ·

0

∫
Rd

ϕ(x)M(dx, ds)
〉

t

=
∫ t

0

∫
Rd

ϕ2(x)νM(dx, ds).
(4.5)

So that the intensity measure νM of M is given by

νM(dx, ds) = a2(U(s, x))dxds, on sets of the form [0, t]×A, A ∈ R. (4.6)
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We now show that there is a space-time white noise W such that∫ t

0

∫
Rd

ϕ(x)M(dx, ds) =
∫ t

0

∫
Rd

a(U(s, x))ϕ(x)W(dx, ds), ∀ϕ ∈ C∞
c (Rd; R). (4.7)

For each A ∈ R, let

Wt(A)
4
=

∫ t

0

∫
A

M(dx, ds)
a(U(s, x))

.

W = {Wt(A); t ∈ R+, A ∈ R} is clearly a continuous orthogonal local martingale
measure with intensity νW = λ([0, t] × A), where λ is Lebesgue measure, so it is a
white noise and clearly (4.7) holds, completing the proof. �

References

[1] Allouba, H. Uniqueness in law for the Allen-Cahn SPDE via change of measure.

C. R. Acad. Sci. 330 (2000), 371–376.
[2] Allouba, H. SPDE law equivalence and the compact support property: applications to the

Allen-Cahn SPDE. C. R. Acad. Sci. 331 (2000), 245–250.

[3] Allouba, H. A non-nonstandard proof of Reimers’ existence result for heat SPDEs. J. Appl.
Math. Stochastic Anal. 11 no. 1, (1998), 29–41.

[4] Allouba, H. SDDEs Limits solutions to SPDEs: the d > 1 spatial dimension case. In prepa-

ration .
[5] Allouba, H. Different types of SPDEs in the eyes of Girsanov’s theorem. Stochastic Anal.

Appl. 16, no. 5, (1998), 787–810.

[6] Allouba, H. Different types of SPDEs: existence, uniqueness, and Girsanov theorem. Ph.D.
Dissertation, Cornell University (1996).

[7] Bass, R. F. Probabilistic techniques in analysis. Springer-Verlag, New York (1995).
[8] Bass, R. F. Diffusions and elliptic operators. Springer-Verlag, New York (1997).
[9] Bass, R. F. and Chen, Z. Stochastic differential equations for Dirichlet processes. Probab.

Theory Related Fields 121, no. 3, (2001), 422–446.
[10] Blount, D. Comparison of stochastic and deterministic models of a linear chemical reaction

with diffusion. Ann. Probab. 19, no. 4, (1991), 1440–1462.
[11] Blount, D. Limit theorems for a sequence of nonlinear reaction-diffusion systems. Stochastic

Process. Appl. 45, no. 2, (1993), 193–207.

[12] Doob, J. Stochastic processes. John Wiley and Sons (1953).

[13] Ikeda, N. and Watanabe, S. Stochastic differential equations and diffusions, North-Holland
Publishing Company (1989).

[14] Karatzas, I. and Shreve, S. Brownian motion and stochastic calculus. Springer-Verlag (1988).

[15] Sowers, R. B. Multidimensional reaction-diffusion equations with white noise boundary per-
turbations. Ann. Probab. 22 no. 4, (1994), 2071–2121.

[16] Sowers, R. B. Large deviations for a reaction-diffusion equation with non-Gaussian pertur-
bations. Ann. Probab. 20 no. 1, (1992), 504–537.

[17] Stroock, D. and Zheng, W. Markov chain approximations to symmetric diffusions Ann. Inst.
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