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On the result of He concerning the smoothness of
solutions to the Navier-Stokes equations *

Milan Pokorny

Abstract

We improve the regularity criterion for the Navier-Stokes equations
proved by He [4]. We show that for the Cauchy problem the Leray-Hopf

weak solution is smooth provided Vus € L*(0,T; L®), 2 + 2 < 3.

1 Introduction and Main Theorem

We consider the Cauchy problem for the Navier-Stokes equations in three space
dimensions, i.e. the system of PDE’s

Ju
Qa‘i’Q(UV)u*VAU‘va* Qf in (O,T) % R3 (1 1)
V.ou=0 '
u(0,x) = up(x) in R3.

Here, u : (0,7) x R3 — R3 is the velocity field, p : (0,7) x R? — R3 is the
pressure, f : (0,7) x R? — R? denotes the volume force, 0 < T' < oo. For our
purpose, the values of the constant density ¢ and the constant viscosity v do
not play any role; we therefore assume without loss of generality o = v = 1.
Moreover, in order to simplify the presentation of the result, we take f = 0.

As is well known, the existence of globally in time smooth solution to system
(1.1) is proved only for small data [6]; for large data we only have the existence
of a weak solution [8], which is locally in time smooth provided the data are
smooth enough [5].

On the other hand, if we assume that our weak solution is ”slightly” smoother
than it follows from the definition then such a solution is as smooth as the
data of the problem allow (provided the data are smooth enough). We call
u e L*(0,T; L*) N L*(0,T; W2) with V- u = 0 a weak solution to (1.1) with
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f=0,if (W,v)+ [Vu:Vv+ [((u-V)u)-v=0for aa. ¢te(0,7) and all
v € W12 with V- v = 0, and lim; o, u(t) = ug in the weak L? sense.
Let us mention some of these regularity criteria

(I) we LY(I;L%), 243 <1,2 <t <o00,3<s < oo (see [13], for the case
s =3 see [12], [3])

(II) Vue LY(I;L%), 2+ 2 <2, 1<t <00, 3 <s< oo (see[l])
(III) pe LY(I;L%), 2+ 3 <2,1 <t < o0, 3 <5< 00 (see [2])

On the other hand, in two space dimensions the weak solution is known to
be unique and as regular as the data of the problem allow (see [7]). Therefore
several authors tried to find regularity criteria which depend only on one velocity
component and/or on the derivatives of one velocity component or derivatives

only in the z3 direction
(IV) us € LY(I; L*), 2+ 2 < 1,4 <t <00, 6 < s < oo (see [9))

(V) us € LY(I; L),
24+3<21<

< 00,3 <s<ooand 2w %uz ¢ rt(r L#),

2
t Oxz’ Oxs
t

(VD) g% e L>(I;L>)

(VID) & e LMI;L%), 342 <3, §<t<00,2<5< 00

(VIH)%GLt(I;LS),%—i—fé 2<t<oo 3<3<ooandd“1 0“26

1,
Ox3 Oxz’ Oz
LY L), 2+ 2 <2, 1<t <00, 3 <s< oo (For the results (V)-(VIII)
see [11].)

In the recent paper [4], He followed similar aim and obtained the regularity
of the Navier-Stokes system provided Vug € L'(I;L%), 24+ 3 < 1,2 <t < oo,
3 < s < 0o. This result, in comparison to the result of Neustupa, Novotny and
Penel [9], does not seem to be optimal. One would rather expect in this case
% + % < % The aim of this note is to show that this is indeed true. More
precisely

Theorem 1.1 Let ug € WH2(R3) with divug = 0, £ = 0 and let u be a
weak solution to the Navier-Stokes equations (1.1) which satisfies the energy
inequality'. Assume moreover that Vuz € LY(0,T; L®) with % + g < %, % <t<
00, 2 < s <oo. Then u and the corresponding pressure p is the smooth solution

1We say that a weak solution to the Navier-Stokes equations (1.1) satisfies the energy
inequality if for almost all ¢ € (0,T') it holds

s ([ o)+ [1vuro <o

It is not difficult to show that such weak solutions exist; on the other hand, it is not known
whether any weak solution in the sense above satisfies the energy inequality. Weak solutions
satisfying the energy inequality are usually called Leray-Hopf weak solutions
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to the Navier-Stokes equations, i.e. u € L°(0,T; W12(R3*)NL2(0, T; W22(R3)),
Vp € L?(0,T; WH2(R3)). Moreover u € C([5,T) x R3) and p € C>([6,T) x
R3) for delta any small positive number.

Remark 1.2 Assuming f # 0 we would get the regularity of the solution in
dependence on the regularity f. Since these calculations are relatively standard,
we omit them here.

Remark 1.3 At the first sight Theorem 1.1 seems to be a direct consequence
of the result from [9]. But this is true only for 2 < s < 3, i.e. for the case when

Whs < [a5s, Nevertheless, we will prove Theorem 1 also in this case.

2 Proof of Theorem 1.1

In what follows, we use standard notation for the Sobolev and Lebesgue spaces
(WkP and LP, respectively) as well as for the corresponding norms (|| - ||, and
| - ||p, respectively) without specifying the domain (always R?). Morerover, the
Bochner spaces LP(I; X) will be in the case of X = L4 denoted shortly L*9. In
order to simplify the notation, we will not distinguish between (LP)™ and LP.

Any generic constant will denoted by C'; its value may vary, even on the
same line or in the same formula. We also use the summation convention.

The proof will be a modification of the procedure used by Neustupa, Novotny
and Penel (see [9] and also [10]), where regularity criteria only for suitable
weak solutions were studied. This proof can be also regarded as a way how to
transform the results from the above mentioned papers to the Cauchy problem.

First, as ug € W2 with divuy = 0, we know that there exists exactly one
strong solution to the Navier-Stokes equations with the initial condition uy (on
a possibly short time interval). Denote

To = sup {there exists a strong solution to (1.1) on (0, 7')} .
>0

It is well known that 79 > 0. As our weak solution from Theorem 1.1 satisfies
the energy inequality, it coincides with the strong solution on its interval of
existence (see e.g. [15]). We will show that the assumption 79 < T leads to a
contradiction. Note that the solution is smooth on the open interval (0, 7)) and
thus the equations are satisfied pointwise here.

Denote by Y = L>(0,7; L?) N L2(0,7; W'2) with 0 < 7 < 75. We will not
specify the length of the time interval (0, 7) in the notation for Y. Our aim will
be to show that under the assumptions of Theorem 1.1, Vu remains bounded
in Y independently of 7, provided 79 < 7. Thus, using standard extension
argument, we get a contradiction with the maximality of 7q.

To this aim, we first show that for any 7 < 19

lwsll¥ = lwsllZoc0.ri22) + IVwsli2@rir2) < CL+ Collwlly  (21)
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with C; = C;(uy, ||Vusl|Lts), ¢ = 1,2. In particular, the constants are indepen-
dent of 7. (Here, by w we denote the vorticity, i.e. w = curlu.) Using (2.1) it
will be relatively easy to show that

Vully < C(uo, [[Vus|

Lot)

with the constant independent of 7. This finishes our proof as our weak solution
cannot blow up at 7.
Let us first prove (2.1).

Lemma 2.1 Under the assumptions of Theorem 1.1, there exist positive con-
stants C1(ug, |Vu|pes) and Ca(ug, |Vu||pes) such that (2.1) holds true.

Proof: As explained above, it is enough to show inequality (2.1) for smooth
solutions to (1.1). To this aim, let us look at the equation for the vorticity. We
have

0
a—j—Aw—i—( V)w— (w-V)u=0. (2.2)
Multiplying the equation for ws by ws and integrating over R? we get (note
that all integrals are finite)

3 gpllenll + Vel = [ (@ Vs = 11, (23)

We will now estimate I;. Using Holder’s inequality and standard interpolation
inequalities we have (%—l—%—i—%:l,2§s§oo,2§p§6,2§q§3)

|11 <IIVuesH~||L«f:a||p||w||q

< |[[Vusls ||w3||2 ||w3||6 ||W||2 ||w||6
2 o5 1256 12h T 2678
< §HVW3H2+CIIVU3IIS [wll2 7 lwllg wslla™
Thus
22 32=6
||w3||2” < CIIVU3\|§“’IIUJ||2””|| e * s
i.e.

5 (1) < s (0) + Cllwol 25 [ [Vus |75 ol w]2F 5
lwsll3™ (7) < sl 377 (0) + Cllwll 25 i [Vus|| &7 w77 |lwllg 5.

Now, 25=4 4 P4 3062 _ 1 (recall that % + % + 1 =1) and we get

6s 6+p q 6+p
4p 2p 2p
lwall 72 0. 7.z2y < C(u0) +C||Vu3||6f’2 wllpzEwlly™
L°°(0,7;L2) L L

i.e.
lwsl[ 72 < C1 + Collwlly - (2.4)
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Returning to (2.3), repeating calculations above and using (2.4) we get the

desired inequality (2.1). O
Proof of Theorem 1.1: We rewrite equation (1.1); in the form
ou 1
E—Au+(wxu)—|—V(p+§|u|2):0. (2.5)

Multiplying equation (2.5) by —Au and integrating over R? we easily see that
for 0 <7< 71

sl VB + [V = [@xw-su=n o)

Using
(w x 1) - Au = (wauz — waug)Aug + (wsug — wiug)Aug + (Wius — woug ) Ausg
we get
I < C( [ 19ul2Vus] + [ul] V2l [Tug| + [ ]| V2ullws
= C(Igl + 122 + 123) .

We estimate each term separately; Is; and I35 using better regularity properties
of Vug, I>3 using Lemma 2.1. If s < oo,

_2s
Iy < [ Vuss [Vl < el V23 + C(e) [ Vus |77 [Vl (2.7)

Similarly we proceed for s = co.
Iy < £]|V2u2 +C(5)/|u|2|VU3|2. (2.8)

If 2 < s < 3 we estimate the integral on the right-hand side by || Vus||?||ul|?s.
5—2
and using the interpolation inequality

-3

2s
[uf| 2o, < C[[Vu, *

3—s
B
2

IV*ul

we get
_2s
Ipp < 2¢[|V*ul3 + C(e) Vs[5 [ Vul3. (2.9)

For s > 3 we estimate

/\H\QIW:#Q < [1Vus 3= Vs |3 a2

2s bl
s (1—a)
25—6
55—6
(for s = 00), respectively. Note that 0 < o < % Now, as 1—30 < (372)2% <6,

where for our purpose the optimal choice of « is (for s < c0) and s = %

we use the interpolation inequality

2 e 5225
e < Cllulls™ [ Tul
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and thus

[ a9 < €9 77 [ 9ulal;
Taking (2.8) into account we end up with

_6s
Iy < 5||v2u|\§ +C(e,w)|[Vug || & [ Vulf3 -

¥+‘:’ g—&-ifor?)gsgoo.
Finally we consider I53. Here we apply Lemma 2.1 and

Ins < [[V2ull2llws|lsllulls < e VZull3 + ellws|ls + C(e)l|Vull; . (2.10)

Inequalities (2.6)—(2.10), after integrating over (0,7), 7 < 7y read as follows

SIvale) + [ vl

< Ke / IV2ul2 + / sl (2.11)
0 0
O(e o) / (IVus| = + g Vuall I + Va2 Vul,

where g(s) =0 for 2 < s <3 and g(s) =1 for s > 3. Lemma 2.1 yields

/ lwalld < Ca(uo, [ Vsl o) + Co(uo, [[Vas | o) [Vl
0

(Note that the larger ||Vus| Lt is, the smaller ¢ must be.) Thus from (2.11),
taking ¢ sufficiently small, it follows that

IValin) + [ 19l

< sup |Vuli(o) + / V22
o€e(0,7) 0

< Ci(ug, [[Vus||Les)
_6s
I+ Vul3) Va3

+Ca(uo, [ Vs | o) / (IVuslZ= + 9(s)[[ Vg
0

and, applying the Gronwall inequality, we obtain
IVllZoe 0,r522) + IV20l1 220 722 < Cluo, [[Vuslzes)

where the constant C' is in particular independent of 7 as 7 — 79. Theorem 1.1
is proved. O

Remark 2.2 T would like to thank the referee who kindly informed me that a
similar result as presented in Theorem 1.1 was recently obtained by Y. Zhou
[16]. The main idea of the proof (i.e. the estimate of w3 in Lemma 2.1 and
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consequently of w (proof of Theorem 1.1)) is basically the same. On the other
hand, the too papers differ in the way how the quantities on the right-hand side
are estimated as well as in the argument how the formally obtained a priori
estimates are verified for only weak solutions to the Navier-Stokes equations.
I was also kindly informed by the authors below that a similar problem, for
s = 3 and suitable weak solutions in bounded domains, was also considered by
Z. Skaldk and P. Kucera in [14].
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