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On the result of He concerning the smoothness of

solutions to the Navier-Stokes equations ∗

Milan Pokorný

Abstract

We improve the regularity criterion for the Navier-Stokes equations
proved by He [4]. We show that for the Cauchy problem the Leray-Hopf
weak solution is smooth provided ∇u3 ∈ Lt(0, T ; Ls), 2

t
+ 3

s
≤ 3

2
.

1 Introduction and Main Theorem

We consider the Cauchy problem for the Navier-Stokes equations in three space
dimensions, i.e. the system of PDE’s

%
∂u
∂t

+ %(u · ∇)u− ν∆u +∇p = %f

∇ · u = 0

 in (0, T )× R3

u(0,x) = u0(x) in R3 .

(1.1)

Here, u : (0, T ) × R3 7→ R3 is the velocity field, p : (0, T ) × R3 7→ R3 is the
pressure, f : (0, T ) × R3 7→ R3 denotes the volume force, 0 < T < ∞. For our
purpose, the values of the constant density % and the constant viscosity ν do
not play any role; we therefore assume without loss of generality % = ν = 1.
Moreover, in order to simplify the presentation of the result, we take f = 0.

As is well known, the existence of globally in time smooth solution to system
(1.1) is proved only for small data [6]; for large data we only have the existence
of a weak solution [8], which is locally in time smooth provided the data are
smooth enough [5].

On the other hand, if we assume that our weak solution is ”slightly” smoother
than it follows from the definition then such a solution is as smooth as the
data of the problem allow (provided the data are smooth enough). We call
u ∈ L∞(0, T ;L2) ∩ L2(0, T ;W 1,2) with ∇ · u = 0 a weak solution to (1.1) with
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f = 0, if 〈u′,v〉 +
∫
∇u : ∇v +

∫
((u · ∇)u) · v = 0 for a.a. t ∈ (0, T ) and all

v ∈ W 1,2 with ∇ · v = 0, and limt→0+ u(t) = u0 in the weak L2 sense.
Let us mention some of these regularity criteria

(I) u ∈ Lt(I;Ls), 2
t + 3

s ≤ 1, 2 ≤ t ≤ ∞, 3 ≤ s ≤ ∞ (see [13], for the case
s = 3 see [12], [3])

(II) ∇u ∈ Lt(I;Ls), 2
t + 3

s ≤ 2, 1 ≤ t ≤ ∞, 3
2 < s ≤ ∞ (see [1])

(III) p ∈ Lt(I;Ls), 2
t + 3

s ≤ 2, 1 ≤ t ≤ ∞, 3
2 < s ≤ ∞ (see [2])

On the other hand, in two space dimensions the weak solution is known to
be unique and as regular as the data of the problem allow (see [7]). Therefore
several authors tried to find regularity criteria which depend only on one velocity
component and/or on the derivatives of one velocity component or derivatives
only in the x3 direction

(IV) u3 ∈ Lt(I;Ls), 2
t + 3

s ≤
1
2 , 4 ≤ t ≤ ∞, 6 < s ≤ ∞ (see [9])

(V) u3 ∈ Lt(I;Ls), 2
t + 3

s ≤ 1, 2 ≤ t ≤ ∞, 3 < s ≤ ∞ and ∂u1
∂x3

, ∂u2
∂x3

∈ Lt(I;Ls),
2
t + 3

s ≤ 2, 1 ≤ t ≤ ∞, 3
2 < s ≤ ∞

(VI) ∂u3
∂x3

∈ L∞(I;L∞)

(VII) ∂u
∂x3

∈ Lt(I;Ls), 2
t + 3

s ≤
3
2 , 4

3 ≤ t ≤ ∞, 2 ≤ s ≤ ∞

(VIII) ∂u3
∂x3

∈ Lt(I;Ls), 2
t + 3

s ≤ 1, 2 ≤ t ≤ ∞, 3 ≤ s ≤ ∞ and ∂u1
∂x3

, ∂u2
∂x3

∈
Lt(I;Ls), 2

t + 3
s ≤ 2, 1 ≤ t ≤ ∞, 3

2 < s ≤ ∞ (For the results (V)–(VIII)
see [11].)

In the recent paper [4], He followed similar aim and obtained the regularity
of the Navier-Stokes system provided ∇u3 ∈ Lt(I;Ls), 2

t + 3
s ≤ 1, 2 ≤ t ≤ ∞,

3 ≤ s ≤ ∞. This result, in comparison to the result of Neustupa, Novotný and
Penel [9], does not seem to be optimal. One would rather expect in this case
2
t + 3

s ≤ 3
2 . The aim of this note is to show that this is indeed true. More

precisely

Theorem 1.1 Let u0 ∈ W 1,2(R3) with div u0 = 0, f = 0 and let u be a
weak solution to the Navier-Stokes equations (1.1) which satisfies the energy
inequality1. Assume moreover that ∇u3 ∈ Lt(0, T ;Ls) with 2

t + 3
s ≤

3
2 , 4

3 ≤ t ≤
∞, 2 ≤ s ≤ ∞. Then u and the corresponding pressure p is the smooth solution

1We say that a weak solution to the Navier-Stokes equations (1.1) satisfies the energy
inequality if for almost all t ∈ (0, T ) it holds

1

2

d

dt

( ∫
|u|2(t)

)
+

∫
|∇u|2(t) ≤ 0 .

It is not difficult to show that such weak solutions exist; on the other hand, it is not known
whether any weak solution in the sense above satisfies the energy inequality. Weak solutions
satisfying the energy inequality are usually called Leray-Hopf weak solutions
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to the Navier-Stokes equations, i.e. u ∈ L∞(0, T ;W 1,2(R3)∩L2(0, T ;W 2,2(R3)),
∇p ∈ L2(0, T ;W 1,2(R3)). Moreover u ∈ C∞([δ, T ) × R3) and p ∈ C∞([δ, T ) ×
R3) for delta any small positive number.

Remark 1.2 Assuming f 6= 0 we would get the regularity of the solution in
dependence on the regularity f . Since these calculations are relatively standard,
we omit them here.

Remark 1.3 At the first sight Theorem 1.1 seems to be a direct consequence
of the result from [9]. But this is true only for 2 ≤ s < 3, i.e. for the case when
W 1,s ↪→ L

3s
3−s . Nevertheless, we will prove Theorem 1 also in this case.

2 Proof of Theorem 1.1

In what follows, we use standard notation for the Sobolev and Lebesgue spaces
(W k,p and Lp, respectively) as well as for the corresponding norms (‖ · ‖k,p and
‖ · ‖p, respectively) without specifying the domain (always R3). Morerover, the
Bochner spaces Lp(I;X) will be in the case of X = Lq denoted shortly Lp,q. In
order to simplify the notation, we will not distinguish between (Lp)m and Lp.

Any generic constant will denoted by C; its value may vary, even on the
same line or in the same formula. We also use the summation convention.

The proof will be a modification of the procedure used by Neustupa, Novotný
and Penel (see [9] and also [10]), where regularity criteria only for suitable
weak solutions were studied. This proof can be also regarded as a way how to
transform the results from the above mentioned papers to the Cauchy problem.

First, as u0 ∈ W 1,2 with divu0 = 0, we know that there exists exactly one
strong solution to the Navier-Stokes equations with the initial condition u0 (on
a possibly short time interval). Denote

τ0 = sup
τ>0

{
there exists a strong solution to (1.1) on (0, τ)

}
.

It is well known that τ0 > 0. As our weak solution from Theorem 1.1 satisfies
the energy inequality, it coincides with the strong solution on its interval of
existence (see e.g. [15]). We will show that the assumption τ0 < T leads to a
contradiction. Note that the solution is smooth on the open interval (0, τ0) and
thus the equations are satisfied pointwise here.

Denote by Y = L∞(0, τ ;L2) ∩ L2(0, τ ;W 1,2) with 0 < τ < τ0. We will not
specify the length of the time interval (0, τ) in the notation for Y . Our aim will
be to show that under the assumptions of Theorem 1.1, ∇u remains bounded
in Y independently of τ , provided τ0 < T . Thus, using standard extension
argument, we get a contradiction with the maximality of τ0.

To this aim, we first show that for any τ < τ0

‖ω3‖2
Y ≡ ‖ω3‖2

L∞(0,τ ;L2) + ‖∇ω3‖2
L2(0,τ ;L2) ≤ C1 + C2‖ω‖Y (2.1)
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with Ci = Ci(u0, ‖∇u3‖Lt,s), i = 1, 2. In particular, the constants are indepen-
dent of τ . (Here, by ω we denote the vorticity, i.e. ω = curlu.) Using (2.1) it
will be relatively easy to show that

‖∇u‖Y ≤ C(u0, ‖∇u3‖Ls,t)

with the constant independent of τ . This finishes our proof as our weak solution
cannot blow up at τ0.

Let us first prove (2.1).

Lemma 2.1 Under the assumptions of Theorem 1.1, there exist positive con-
stants C1(u0, ‖∇u‖Lt,s) and C2(u0, ‖∇u‖Lt,s) such that (2.1) holds true.

Proof: As explained above, it is enough to show inequality (2.1) for smooth
solutions to (1.1). To this aim, let us look at the equation for the vorticity. We
have

∂ω

∂t
−∆ω + (u · ∇)ω − (ω · ∇)u = 0 . (2.2)

Multiplying the equation for ω3 by ω3 and integrating over R3 we get (note
that all integrals are finite)

1
2

d

dt
‖ω3‖2

2 + ‖∇ω3‖2
2 =

∫
(ω · ∇)u3ω3 ≡ I1 . (2.3)

We will now estimate I1. Using Hölder’s inequality and standard interpolation
inequalities we have ( 1

p + 1
q + 1

s = 1, 2 ≤ s ≤ ∞, 2 ≤ p ≤ 6, 2 ≤ q ≤ 3)

|I1| ≤ ‖∇u3‖s‖ω3‖p‖ω‖q

≤ ‖∇u3‖s‖ω3‖
6−p
2p

2 ‖ω3‖
3p−6
2p

6 ‖ω‖
6−q
2q

2 ‖ω‖
3q−6
2q

6

≤ 1
2
‖∇ω3‖2

2 + C‖∇u3‖
4p

6+p
s ‖ω‖2 p

q
6−q
6+p

2 ‖ω‖2 p
q

3q−6
6+p

6 ‖ω3‖
2 6−p

6+p

2 .

Thus
d

dt
‖ω3‖

4p
6+p

2 ≤ C‖∇u3‖
4p

6+p
s ‖ω‖2 p

q
6−q
6+p

2 ‖ω‖2 p
q

3q−6
6+p

6 ,

i.e.

‖ω3‖
4p

6+p

2 (τ) ≤ ‖ω3‖
4p

6+p

2 (0) + C‖ω‖4 p
q ( 3−q

6+p )

L∞,2

∫ τ

0

‖∇u3‖
4p

6+p
s ‖ω‖

2p
6+p

2 ‖ω‖2 p
q

3q−6
6+p

6 ds .

Now, 3s−4
6s + p

6+p + 3q−6
q

p
6+p = 1 (recall that 1

p + 1
q + 1

s = 1) and we get

‖ω3‖
4p

6+p

L∞(0,τ ;L2) ≤ C(u0) + C‖∇u3‖
4p

6+p

Lt,s‖ω‖
2p

6+p

L2,2‖ω‖
2p

6+p

Y ,

i.e.
‖ω3‖2

L∞,2 ≤ C1 + C2‖ω‖Y . (2.4)
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Returning to (2.3), repeating calculations above and using (2.4) we get the
desired inequality (2.1). �

Proof of Theorem 1.1: We rewrite equation (1.1)1 in the form

∂u
∂t

−∆u + (ω × u) +∇(p +
1
2
|u|2) = 0 . (2.5)

Multiplying equation (2.5) by −∆u and integrating over R3 we easily see that
for 0 < τ < τ0

1
2

d

dt
‖∇u‖2

2(τ) +
∫
‖∇2u‖2

2(τ) =
∫

(ω × u) ·∆u ≡ I2 (2.6)

Using

(ω × u) ·∆u = (ω2u3 − ω3u2)∆u1 + (ω3u1 − ω1u3)∆u2 + (ω1u2 − ω2u1)∆u3

we get

|I2| ≤ C
( ∫

|∇u|2|∇u3|+ |u||∇2u||∇u3|+
∫
|u||∇2u||ω3|

)
≡ C(I21 + I22 + I23) .

We estimate each term separately; I21 and I22 using better regularity properties
of ∇u3, I23 using Lemma 2.1. If s < ∞,

I21 ≤ ‖∇u3‖s‖∇u‖2
2s

s−1
≤ ε‖∇2u‖2

2 + C(ε)‖∇u3‖
2s

2s−3
s ‖∇u‖2

2 . (2.7)

Similarly we proceed for s = ∞.

I22 ≤ ε‖∇2u‖2
2 + C(ε)

∫
|u|2|∇u3|2 . (2.8)

If 2 ≤ s ≤ 3 we estimate the integral on the right-hand side by ‖∇u3‖2
s‖u‖2

2s
s−2

and using the interpolation inequality

‖u‖ 2s
s−2

≤ C‖∇u‖
2s−3

s
2 ‖∇2u‖

3−s
s

2

we get

I22 ≤ 2ε‖∇2u‖2
2 + C(ε)‖∇u3‖

2s
2s−3
s ‖∇u‖2

2 . (2.9)

For s > 3 we estimate∫
|u|2|∇u3|2 ≤ ‖∇u3‖2(1−α)

s ‖∇u3‖2α
2 ‖u‖2

2s
(s−2)(1−α)

,

where for our purpose the optimal choice of α is 2s−6
5s−6 (for s < ∞) and s = 2

5

(for s = ∞), respectively. Note that 0 ≤ α ≤ 2
5 . Now, as 10

3 ≤ 2s
(s−2)(1−α) ≤ 6,

we use the interpolation inequality

‖u‖2
2
3

5s−6
s−2

≤ C‖u‖4 s−3
5s−6

2 ‖∇u‖
6s

5s−6
2
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and thus ∫
|u|2|∇u3|2 ≤ C‖∇u3‖

6s
5s−6
s ‖∇u‖2

2‖u‖
4 s−3

5s−6
2 .

Taking (2.8) into account we end up with

I22 ≤ ε‖∇2u‖2
2 + C(ε,u0)‖∇u3‖

6s
5s−6
s ‖∇u‖2

2 .

Note that, even though 6s
5s−6 ≥

2s
2s−3 for s ≥ 3, we still have with t = 6s

5s−6 that
2
t + 3

s = 5
3 + 1

s for 3 ≤ s ≤ ∞.
Finally we consider I23. Here we apply Lemma 2.1 and

I23 ≤ ‖∇2u‖2‖ω3‖3‖u‖6 ≤ ε‖∇2u‖2
2 + ε‖ω3‖4

3 + C(ε)‖∇u‖4
2 . (2.10)

Inequalities (2.6)–(2.10), after integrating over (0, τ), τ < τ0 read as follows

1
2
‖∇u‖2

2(τ) +
∫ τ

0

‖∇2u‖2
2

≤ Kε

∫ τ

0

‖∇2u‖2
2 + ε

∫ τ

0

‖ω3‖4
3

+C(ε,u0)
∫ τ

0

(‖∇u3‖
2s

2s−3
s + g(s)‖∇u3‖

6s
5s−6
s + ‖∇u‖2

2)‖∇u‖2
2 ,

(2.11)

where g(s) = 0 for 2 ≤ s ≤ 3 and g(s) = 1 for s > 3. Lemma 2.1 yields∫ τ

0

‖ω3‖4
3 ≤ C1(u0, ‖∇u3‖Lt,s) + C2(u0, ‖∇u3‖Lt,s)‖∇u‖2

Y .

(Note that the larger ‖∇u3‖Lt,s is, the smaller ε must be.) Thus from (2.11),
taking ε sufficiently small, it follows that

‖∇u‖2
2(τ) +

∫ τ

0

‖∇2u‖2
2

≤ sup
σ∈(0,τ)

‖∇u‖2
2(σ) +

∫ τ

0

‖∇2u‖2
2

≤ C1(u0, ‖∇u3‖Lt,s)

+C2(u0, ‖∇u3‖Lt,s)
∫ τ

0

(
‖∇u3‖

2s
2s−3
s + g(s)‖∇u3‖

6s
5s−6
s + ‖∇u‖2

2

)
‖∇u‖2

2

and, applying the Gronwall inequality, we obtain

‖∇u‖2
L∞(0,τ ;L2) + ‖∇2u‖2

L2(0,τ ;L2) ≤ C(u0, ‖∇u3‖Lt,s) ,

where the constant C is in particular independent of τ as τ → τ0. Theorem 1.1
is proved. �

Remark 2.2 I would like to thank the referee who kindly informed me that a
similar result as presented in Theorem 1.1 was recently obtained by Y. Zhou
[16]. The main idea of the proof (i.e. the estimate of ω3 in Lemma 2.1 and
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consequently of ω (proof of Theorem 1.1)) is basically the same. On the other
hand, the too papers differ in the way how the quantities on the right-hand side
are estimated as well as in the argument how the formally obtained a priori
estimates are verified for only weak solutions to the Navier-Stokes equations.
I was also kindly informed by the authors below that a similar problem, for
s = 3 and suitable weak solutions in bounded domains, was also considered by
Z. Skalák and P. Kučera in [14].
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